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Abstract
Background: Lung cancer is the most common cause of cancer-related death
among all human cancers and the five-year survival rates are only 23%. The pre-
cise molecular mechanisms of non-small cell lung cancer (NSCLC) are still
unknown. The aim of this study was to identify and validate the key genes with
prognostic value in lung tumorigenesis.
Methods: Four GEO datasets were obtained from the Gene Expression Omnibus
(GEO) database. Common differentially expressed genes (DEGs) were selected
for Kyoto Encyclopedia of Genes and Genomes pathway analysis and Gene
Ontology enrichment analysis. Protein-protein interaction (PPI) networks were
constructed using the STRING database and visualized by Cytoscape software
and Molecular Complex Detection (MCODE) were utilized to PPI network to
pick out meaningful DEGs. Hub genes, filtered from the CytoHubba, were vali-
dated using the Gene Expression Profiling Interactive Analysis database. The
expressions and prognostic values of hub genes were carried out through Gene
Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier plotter.
Finally, quantitative PCR and the Oncomine database were used to verify the dif-
ferences in the expression of hub genes in lung cancer cells and tissues.
Results: A total of 121 DEGs (49 upregulated and 72 downregulated) were iden-
tified from four datasets. The PPI network was established with 121 nodes and
588 protein pairs. Finally, AURKA, KIAA0101, CDC20, MKI67, CHEK1, HJURP,
and OIP5 were selected by Cytohubba, and they all correlated with worse overall
survival (OS) in NSCLC.
Conclusion: The results showed that AURKA, KIAA0101, CDC20, MKI67,
CHEK1, HJURP, and OIP5 may be critical genes in the development and progno-
sis of NSCLC.

Key points
Our results indicated that AURKA, KIAA0101, CDC20, MKI67, CHEK1, HJURP,
and OIP5 may be critical genes in the development and prognosis of NSCLC.
Our methods showed a new way to explore the key genes in cancer development.

Introduction

Lung cancer is the most common cause of cancer-related
death among all human cancers. It is estimated that there are
571 340 men and women living in the United States with a
history of lung cancer, and the number of estimated new cases
with lung cancer will be 228 150 in 2019.1 Compared with

histological classification, genes play an increasingly important
role in the diagnosis, treatment, and prognosis of non-small
cell lung cancer (NSCLC). The mutations of targeted driver
genes EGFR, BRAF and HER2, or the rearrangements of ALK
or ROS1 only exist in less than half of lung adenocarcinoma
cases, but in other cases of NSCLC without targeted molecular
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abnormalities the only therapeutic option is conventional
platinum-based doublet therapy maintenance for non-
squamous NSCLC.2,3 Despite the fact that great progress has
been made in chemotherapy, radiation therapy, surgery, and
immunotherapy in lung cancer, the five-year survival rates for
NSCLC are only 23%.1 Since the precise molecular mecha-
nisms of NSCLC remains unknown, it is extremely important
to investigate molecular mechanisms and to develop effective
therapeutic strategies in NSCLC.
With the rapid development of bioinformatics such as

microarray technology, some high throughput platforms
for analysis of gene expression are commonly used to find
the differentially expressed genes (DEGs) during tumori-
genesis.4 Now, through gene expression profiling studies
using microarray technology, more and more DEGs associ-
ated with NSCLC have been identified. However, the DEGs
identified with microarray technology depend on the sam-
ple size, tumor TMN, gender, ethnic group and other fac-
tors. A better option might be for DEGs to be obtained
from different microarrays.
In this study, four microarray datasets (GSE18842,5

GSE33532,6 GSE62113,7 and GSE747068) were downloaded
from the GEO database, and key genes identified by com-
bining bioinformatics analyses in NSCLC. Gene ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways associated with NSCLC were investigated,
and the key genes associated with NSCLC were identified by
network construction. Subsequently, we validated the
expression of key genes related to NSCLC. Furthermore, we
investigated the potential candidate biomarkers for their
utility in diagnosis, prognosis, and drug targeting in NSCLC.

Methods

Gene expression profile data

In this study, four gene expression profiles (GSE18842,
GSE33532, GSE62113 and GSE74706) were downloaded from
the GEO database (http://www.ncbi.nlm.nih.gov/geo).
GSE18842 included 46 NSCLC tissue samples and 45 paired
nontumor samples. GSE33532 consisted of four different sites
(A, B, C, D) of individual primary tumors and matched dis-
tant normal lung tissue from 20 patients. GSE62113 was total
RNAs from xenografts, primary tumor, and normal adjacent
tissues. GSE74706 included 18 NSCLC tissue samples and
18 paired nontumor samples. All the datasets included met
the following criteria: (i) the tissue samples were gathered
from NSCLC patients and corresponding adjacent or normal
tissues; (ii) the tissue samples were tested by authority agency
that recognized by Food and Drug Administration (FDA);
(iii) a total of 15 samples or more were included; (iv) all the
studies chosen had been previously published in the English
language.

Data preprocessing and identification
of DEGs

GEO2R is an interactive web tool used to compare two
groups of samples and is capable of analyzing most of the
GEO series.9 In this study, GEO2R was used to find DEGs
between lung cancer and normal tissue samples. The cutoff
criteria were adjusted P-value (adj. P) <0.05 and |logFC|
≥2. FunRich, a stand-alone software tool used mainly for
functional enrichment and interaction network analysis of
genes and proteins,10 was used to plot Venn diagrams from
four datasets.

Functional and pathway enrichment
analysis

The GO (http://www.geneontology.org) database mainly
includes three categories: biological process (BP), cellular
component (CC), and molecular function (MF).11 The
KEGG (http:// www.genome.ad.jp/kegg/) database collects
genomic, chemical, and systematic functional informa-
tion.12 The ClusterProfiler package implements methods to
analyze and visualize functional profiles of gene and gene
clusters.13 In this study, GO terms and KEGG pathways
were analyzed using the ClusterProfiler package with the
enrichment threshold of P < 0.05.

PPI network construction and analysis of
modules

The STRING database (http://string-db.org/) provides a
significant association of protein-protein interactions
(PPIs).14 Cytoscape is used for the visual exploration of
interaction networks.15 In this study, DEG PPI networks
were analyzed by the STRING database and subsequently
visualized by using Cytoscape. The cutoff criterion was set
as a combined score >0.4. The Cytoscape plugin
CytoHubba16 was used to identify the hub genes by finding
the intersection of the top 30 genes from 12 topological
analysis methods. Molecular Complex Detection
(MCODE) was then used to screen out modules of PPI
networks, and the degree cutoff = 2, node score cutoff = 0.2,
k-core = 2, and max depth = 100.17

Hub gene validation by GEPIA

The Gene Expression Profiling Interactive Analysis
(GEPIA) database (http://gepia.cancer-pku.cn/) is a web-
based tool to deliver fast and customizable functionalities
based on The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) data.18 In this study,
the GEPIA database was used to validate the expression of
hub genes identified in the module, and analyze the
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association of their expression levels with NSCLC TNM
stage. We selected P < 0.05 and fold change >2 as a
threshold.

Exploring cancer genomics data by
cBioportal

The cBioPortal for Cancer Genomics (http://cbioportal.
org) provides a resource for visualization and analyzing
multidimensional cancer genomics data.19 In this study,
alteration frequencies of hub genes were performed based
on mutation and DNA copy-number alterations in four
selected lung cancer subtypes: Lung Adenocarcinoma-
TCGA, Provisional; Pan-Lung Cancer-TCGA, Nat Genet
2016; Small-Cell Lung Cancer, U Cologne, Nature 2015;
Lung Squamous Cell Carcinoma-TCGA, Provisional.

Survival analysis of hub genes

A Kaplan-Meier plotter (www.kmplot.com) was used to
assess the effect of 54 675 genes on survival using 10 461
samples including 5143 breast, 1816 ovarian, 2437 lung,
and 1065 gastric cancer patients.20 The relapse-free and
overall survival (OS) information was based on the GEO,
EGA and TCGA database. The hazard ratio (HR) with
95% confidence intervals and log rank P-value were calcu-
lated and indicated on the plot.21

Cell culture

The human lung adenocarcinoma H2935, H4006 cells and
lung squamous cell carcinoma H226 cells were purchased
from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Human bronchial epithelial BEAS-
2B cells were purchased from MssBio Co., Ltd.
(Guangzhou, China). H2935, H4006, H226 and BEAS-2B
cells were cultured at Roswell Park Memorial Institute
(RPMI); 1640 medium (GIBCO, Los Angeles, CA, USA),
which contained 10% fetal bovine serum (FBS) and 100 U/
mL penicillin-streptomycin sulfate. All cell lines were
grown in a humidified incubator at 37�C (5% CO2)
environment.

Detection of hub gene expression level

Total RNA was extracted from the cells using TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, USA).
Single-strand cDNA was synthesized from 1 mg of total
RNA using the PrimeScript RT reagent Kit with gDNA
Eraser (Takara Biotechnology Co. Ltd., Dalian, China).
Reverse transcription quantitative PCR was used to detect
the expression of mRNA of hub genes by 7500 PCR system
(Thermo Fisher Scientific). The primers were as follows in
the Table 1. The following cycling conditions: 95 minutes
or five minutes, followed by 40 cycles of 95�C for
20 seconds and 60�C for 30 seconds. qPCR assays were
conducted in triplicate in a 10 mL reaction volume each
sample. And calculate the relative expression of AURKA,
KIAA0101, CDC20, MKI67, CHEK1, HJURP and OIP5
mRNA by 2-Ct method.

Analysis of hub gene expression in the
Oncomine database

The Oncomine database (http://www.oncomine.org) was
applied for differential expression classification of common
cancer types, and their respective normal tissues, as well as
clinical and pathological analyses. In this study, the
Oncomine database was used to further analyze the expres-
sion of hub genes in other lung adenocarcinoma datasets.

Results

Identification of DEGs

A total of 49 upregulated and 72 downregulated DEGs
were identified from four datasets. The DEGs at the inter-
section of the four databases were selected for further
investigation by Venn’s diagram (Table 2 and Fig 1a–c).

Enrichment analyses

To further understand the function and mechanism of the
identified DEGs, GO and KEGG enrichment analyses were
performed using the ClusterProfiler package. The

Table 1 The primer of hub genes

Primer name Sense Antisense

AURKA CATTCCTTTGCAAGCACAAAAG ATTTCAAAGTCTTCCAAAGCCC
KIAA0101 AGGTTGTCCCCTAAAGATTCTG ATCATTTGTGTGATCAGGTTGC
CDC20 AGCAGCAGATGAGACCCTGAGG CAGCGGATGCCTTGGTGGATG
MKI67 CAGACATCAGGAGAGACTACAC GTTAGACTTGCTGCTGAGTCTA
CHEK1 CTCAAGTTTTGGCGGGAAAAG AAGTTGAACTTCTCCATAGGCA
HJURP AAAGACCCAGGCTATCAGAAC TGTTCTCTCCTCTCTCTTCTGA
OIP5 GTGGTCTTCTCCAGAGTTACAA GAATACAGATGGAAACCAACGG
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upregulated DEGs were mainly associated with the BP
terms mitotic nuclear division, nuclear division, organelle
fission, chromosome segregation and regulation of cell
cycle phase transition (Fig 2a). Additionally, CC analysis
showed that the upregulated genes were associated with
spindle, chromosomal region, midbody and centrosome,
and the downregulated genes were mainly found in apical
part of cell, apical plasma membrane, cell projection mem-
brane, lamellar body and multivesicular body (Figs 2b and
3a). Moreover, for upregulated genes, MF terms were

mainly protein serine/threonine kinase activity, protein ser-
ine/threonine/tyrosine kinase activity, kinetochore binding
and histone kinase activity (Fig 2c).
The main three pathways that were particularly enriched

by upregulated DEGs were P53 signaling pathway, cell
cycle and cellular senescence (Fig 2d). Similarly, down-
regulated DEGs were notably enriched in ECM-receptor
interaction, AGE-RAGE signaling pathway in diabetic
complications, hypertrophic cardiomyopathy and dilated
cardiomyopathy (Fig 3b).

Table 2 The gene expression profile data characteristics

Record Tissue Platform Normal Tumor Reference

GSE18842 NSCLC GPL570[HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array

45 46 Sanchez-Palencia et al.5

GSE33532 NSCLC GPL570[HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array

20 80 Meister et al.6

GSE62113 NSCLC GPL14951Illumina HumanHT-12 WG-DASL V4.0 R2 expression
beadchip

9 10 Li et al.7

GSE74706 NSCLC GPL13497Agilent-026652 Whole Human Genome Microarray
4x44K v2 (Probe Name version)

18 18 Marwitz et al.8

Figure 1 Identification of DEGs in profiling datasets. (a) Venn’s diagram of upregulated DEGs; (b) Venn’s diagram of downregulated DEGs; (c)
Heatmap plot of the DEGs in the GSE33532 dataset. Red, higher expression; green, lower expression.
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Figure 2 Legend on next page.
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PPI network construction

The DEG PPI network consisted of 121 nodes and
588 edges, including 49 upregulated genes and 72 down-
regulated genes (Fig 4a). A total of 10 hub genes were
selected by the CytoHubba, including CLDN5, CHEK1,
MKI67, AURKA, KIAA0101, HJURP, CDC20, OIP5,
C4BPA and CA4. A significant module was obtained from
the DEG PPI network by using MCODE, including
33 nodes and 523 edges (Fig 4b). Functional and KEGG
pathway enrichment analyses revealed that genes in this
module were mainly associated with cell cycle, p53 signal-
ing pathway and cellular senescence (Fig 5a–d). Further-
more, we found that AURKA, KIAA0101, CDC20, MKI67,
CHEK1, HJURP and OIP5 were involved in the GO,
KEGG, and module analyses (Table 3).

Hub gene validation

GEPIA, the online tool with data sourced from TCGA and
GTEx, was used to validate the expression of these hub
genes in lung cancer. GEPIA provides box plots, violin
plots based on pathological stages, dot plots, and matrix
plots. Consistent with the GEO analysis, GEPIA box plots
of key gene expression levels showed that seven hub genes
were overexpressed in lung cancer samples compared with
normal tissues (Fig 6a–g). In addition, GEPIA violin plots
of gene expression by pathological stages based on the

TCGA clinical annotation revealed their high expression
levels significantly associated with advanced TNM stage
(P-value <0.05) (Fig 7a–g).

Genomic alterations of hub genes

We explored the specific alterations of hub genes using the
cBioportal tool in four selected lung cancer datasets with
1662 samples. Cancer type summary analysis showed that
the ratio of alteration of seven genes varied from 11.46% to
17.5%, with the lowest to highest level as lung squamous
cell carcinoma, small-cell lung cancer, and LAC in four
lung cancer datasets (Fig 8a–h).

Overall survival analyses

Overall survival analysis of hub genes was performed using
the Kaplan-Meier plotter. It was found that high expres-
sion of AURKA (HR 1.52 [1.33–1.72], log-rank P = 1.2e–
10), CDC20 (HR 1.82 [1.6–2.07], log-rank P < 1e–16),
CHEK1 (HR 1.9 [1.6–2.25], log-rank P = 3.2e–14), HJURP
(HR 1.89 [1.66–2.15], log-rank P < 1e–16), KIAA0101
(HR 1.56 [1.37–1.77], log-rank P < 5.1e–12), MKI67
(HR 1.6 [1.41–1.82], log-rank P < 2.6e–13), and OIP5
(HR 1.79 [1.57–2.03], log-rank P = 1e–16) was associated
with worse OS for lung cancer patients (Fig 9a–g).

Figure 3 Functional and pathway enrichment analysis of downregulated genes. (a) Enrichment of cellular component. (b) Enrichment of Kyoto Ency-
clopedia of Genes and Genomes.

FIGURE 2 Functional and pathway enrichment analysis of upregulated genes. (a) Enrichment of biological process. (b) Enrichment of cellular com-
ponent. (c) Enrichment of molecular function. (d) Enrichment of Kyoto Encyclopedia of Genes and Genomes. The y-axis shows significantly enriched
pathways, and the x-axis shows the Rich factor. Rich factor stands for the ratio of the number of target genes belonging to a pathway to the number
of all the annotated genes located in the pathway. The higher Rich factor represents the higher level of enrichment. The size of the dot indicates the
number of target genes in the pathway, and the color of the dot reflects the different P-value range.

856 Thoracic Cancer 11 (2020) 851–866 © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd

Key genes in NSCLC L. Wang et al.



Figure 5 Functional and pathway enrichment analysis of module. (a) Enrichment of biological process. (b) Enrichment of cellular component. (c)
Enrichment of molecular function. (d) Enrichment of Kyoto Encyclopedia of Genes and Genomes.

Figure 4 PPI network and module analysis. (a) PPI network of DEGs. (b) A significant module selected from PPI network. Red nodes, upregulated
genes; yellow nodes, downregulated genes; red lines, strong interaction relationship between nodes; green lines, weak interaction relationship
between nodes.
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Table 3 Hub genes with high degree of connectivity

Gene Degree Type MCODE cluster

AURKA 34 up Cluster 1
KIAA0101 33 up Cluster 1
CDC20 33 up Cluster 1
MKI67 33 up Cluster 1
CHEK1 33 up Cluster 1
HJURP 32 up Cluster 1
OIP5 31 up Cluster 1

Figure 6 The expression level of hub genes in NSCLC. (a) AURKA; (b) CDC20; (c) CHEK1; (d) HJURP; (e) KIAA0101; (f) MKI67 and (g) OIP5. The red
and gray boxes represent cancer and normal tissues, respectively. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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Gene expression levels of seven genes in
lung cancer cells

The RT-qPCR results showed that the gene expression
level of AURKA, KIAA0101, CDC20, MKI67, CHEK1,
HJURP and OIP5 in H2935, H4006 and H226 cell lines
was significantly higher than BEAS-2B cells lines. Finally,
we analyzed the expression of AURKA, KIAA0101, CDC20,
MKI67, CHEK1, HJURP and OIP5 in lung adenocarcinoma
using the Oncomine database, and the results showed that
hub genes were upregulated in lung cancer tissues and
downregulated in normal tissues (Fig 10a–n).

Discussion

In this study, we performed a series of bioinformatics analysis
to screen key genes and pathways. The expression profiles

found that 49 upregulated genes and 72 downregulated genes
overlap DEGs (Intersection area of each dataset) were identi-
fied in lung cancer tissues compared to adjacent lung tissues.
The upregulated genes were mainly enriched in P53 signaling
pathway, cell cycle and cellular senescence, and closely related
to tumorigenesis or metastasis. The downregulated genes were
mainly enriched in ECM-receptor interaction, AGE-RAGE sig-
naling pathway in diabetic complications, hypertrophic cardio-
myopathy and dilated cardiomyopathy. Among the DEGs, the
top 10 hub genes selected in the PPI network were all over-
expressed. Functional and pathway enrichment analyses rev-
ealed that the significant modules were mainly enriched in cell
cycle, p53 signaling pathway and cellular senescence.
Based on these findings, DEGs including AURKA,

KIAA0101, CDC20, MKI67, CHEK1, HJURP and OIP5
were identified in these functions. These genes were also

Figure 7 Violin plots of hub genes in NSCLC. (a) AURKA; (b) CDC20; (c) CHEK1; (d) HJURP; (e) KIAA0101; (f) MKI67 and (g) OIP5.
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hub nodes in PPI networks. We then found the expression
of seven key genes in NSCLC were higher than the control
group. Furthermore, we researched the genomic alterations
of hub genes in lung cancer cases from TCGA databases
using the cBioPortal tool. We found hub gene mutation
frequencies were highest in LUAD. Compared with other
hub genes in lung cancer samples, MKI67 and CHEK1 had
a higher alteration frequency of 6% and 2.7%, respectively.
Survival analysis of the seven key genes showed that these
genes were significantly associated with lung cancer.
Our bioinformatics analysis results predicted that

AURKA, KIAA0101, CDC20, MKI67, CHEK1, HJURP and

OIP5 gene markers may be closely related to the develop-
ment of NSCLC. Finally, the verification results in cells
showed that the expression of the hub genes was higher in
lung cancer cells than normal cells, indicating that seven
genes may play a significant role in the occurrence and
development of lung cancer.
Aurora kinase A (AURKA) is a protein coding gene

which plays a critical role in regulating many of the pro-
cesses that are pivotal to mitosis. AURKA has many func-
tions including regulation of cell cycle progression and the
p53 /TP53 pathway.22 This gene may play a role in tumor
development and progression. Diseases associated with

Figure 8 Matrix heatmap of hub genes in four selected lung datasets. (a) All hub genes; (b) AURKA; (c) CDC20; (d) CHEK1; (e) HJURP; (f) KIAA0101;
(g) MKI67 and (h) OIP5. Each row represents a gene and each column a tumor sample. Red bars, gene amplifications. Blue bars, deep deletion.
Green squares, missense mutation.
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AURKA include breast, colorectal, gastric, and liver
cancers.23–26 Previous studies have confirmed that AURKA
expression is associated with lung cancer progression. A
study by Zheng et al. showed that AURKA-mediated phos-
phorylation of LKB1 may compromise the LKB1/AMPK
signaling axis to facilitate NSCLC growth and migration.27

Additionally, Schneider et al.28 demonstrated that that the
expression of the mitosis-associated genes AURKA is asso-
ciated with the prognosis of NSCLC patients. Therefore,

our results suggest that AURKA may play an important
role in future diagnostic and therapeutic targets in the
treatment of lung cancer.
PCNA Clamp Associated Factor (PCLAF/KIAA0101) is

a 15-kDa protein containing a conserved proliferating cell
nuclear antigen (PCNA)-binding motif, a key factor in
DNA repair and/or apoptosis and cell cycle regulation,
which has been observed in a variety of human malignan-
cies.29 The functions of KIAA0101 mainly include cellular

Figure 9 Prognostic value of hub genes in lung cancer patients. (a) OIP5; (b) MKI67; (c) KIAA0101; (d) HJURP; (e) CHEK1; (f) CDC20 and (g)
AURKA.
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response to DNA damage stimulus, DNA replication and,
regulation of cell cycle.30–32 Several studies have revealed
that KIAA0101 overexpression is associated with the pro-
gression and recurrence in prostate cancer, gastric cancer,
breast cancer, liver cancer and other malignancies.33–36 A
study showed that KIAA0101 overexpression was an inde-
pendent prognostic factor, and associated with high-grade
tumor, high-stage tumor, and early tumor recurrence in
hepatocellular carcinoma.36 However, there is insufficient
evidence to support the role of KIAA0101 in lung cancer.
Kato et al. reported that overexpression of KIAA0101 may
predict a poor prognosis in primary lung cancer patients.29

Cell cycle regulatory factors play an important role in can-
cer development, and this study suggested that KIAA0101
may be a cell cycle regulatory factor with therapeutic
potential for the treatment of lung cancer.
Cell division cycle 20 (CDC20) is an important spindle

assembly checkpoint protein and activates APC/C to initi-
ate anaphase.37,38 Previous studies have already reported
overexpression of CDC20 in various tumors such as gastric,
breast, prostate, colorectal tumors and others.39–42 Cur-
rently, the overexpression of CDC20 has been reported in
human NSCLC43 and the overexpression of CDC20 has
been shown to predict a poor prognosis in primary NSCLC

patients.44 In our study, we found that CDC20 was
enriched in cell cycle pathway and oocyte meiosis, and
involved in the GO BP terms cell cycle phase, M phase,
mitotic cell cycle and nuclear division. Cell cycle dys-
regulation underlies the aberrant cell proliferation which
characterizes cancer, and the loss of cell cycle checkpoint
control promotes genetic instability. CDC20 was highly
expressed in NSCLC samples compared with normal sam-
ples in our study. Thus, our findings suggest that CDC20
may be a promising diagnostic and therapeutic target in
NSCLC.
Marker of proliferation Ki-67 (MKI67) is a protein cod-

ing gene which is expressed in proliferating cells. Due to
being strongly expressed in proliferating cells, the MKI67
has been considered as an established prognostic indicator
for the assessment of cell proliferation in biopsies from
cancer patients.45,46 Ki-67 is primarily expressed during the
active phases of the cell cycle, cell population proliferation,
regulation of mitotic nuclear division and regulation of
mitotic nuclear division.47,48 Accumulating evidence has
shown that MKI67 overexpression is associated with cancer
progression and prognosis in prostate cancer, breast can-
cer, gastric cancer and nasopharyngeal carcinoma.49–52 A
study reported that E-cadherin and Ki-67 together play a

Figure 10 Histogram of the difference between expression of hub genes in lung cancer cells and the Oncomine database. (a,b) AURKA; (c,d)
CDC20; (e,f) CHEK1; (g,h) HJURP; (i,j) KIAA0101; (k,l) MKI67 and (m,n) OIP5. **Compared to normal groups, P < 0.05, ***P < 0.001. ****P <
0.0001.
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key role in the development, invasion and metastasis of
NSCLC.53 Our results further revealed that MKI67 might
play an important role in lung cancer development and
could be used as a therapeutic target for NSCLC cancer
patients.
Checkpoint kinase 1 (CHEK1) encodes serine/threonine

kinases which is a central component of DNA damage
response and is involved in the control of the cell cycle.
The function of CHEK1 is to regulate cell cycle check-
points, and coordinate cellular activities involving DNA
repair and cell cycle arrest.54 More and more research has
indicated that CHEK1 is widely associated with carcinoma,
such as breast, ovarian and colorectal cancers.55–57 There is
a lack of evidence in determining the relationship between
CHEK1 and NSCLC, with a study by Liu et al. reporting
that miR-195 interacted with CHEK1 mRNA and
suppressed its protein expression in NSCLC, indicating
that CHEK1 expression may be associated with patient sur-
vival.58 Our results demonstrated that CHEK1 might con-
tribute to NSCLC and be used as a novel therapeutic target
in NSCLC.
The Holliday junction recognition protein (HJURP) is

an exclusive companion for the centromere CENP-A depo-
sition during the early G1 phase.59 In the human being,
HJURP has been identified to be an important regulator of
DNA binding and phosphorylation involved in the regula-
tion of chromosomal segregation and cell division.60,61

Recently, the biological effects of HJURP attracted growing
attention in several tumors such as hepatocellular carci-
noma, breast cancer, and glioblastoma.62–64 A study by
Zhou et al. reported that HJURP was found to be over-
expressed in lung cancer65 and promoted NSCLC cell pro-
liferation and metastasis by inactivating the Wnt/β-catenin
pathway in the report by Wei et al.66 Our observations sug-
gest that HJURP abnormalities may contribute to the risk
of developing lung cancer.
Opa Interacting Protein 5 (OIP5) is a protein coding

gene. The protein encoded by this gene localizes to centro-
meres where it is essential for recruitment of CENP-A
through the mediator Holliday junction recognition pro-
tein.67 Expression of this gene is upregulated in several can-
cers including bladder cancer, gastric cancer, colorectal
cancer, breast cancer and hepatocellular carcinoma.68–71 In
lung cancer, OIP5 might play an important role in the
growth of lung cancers by interacting with Raf1.72 Further-
more, in our study, we were able to demonstrate that OIP5
was a key gene in tumor development in NSCLC.
Compared with previous work, our study has several

advantages. First, this study had a large sample size
obtained from multiple GEO datasets. Second, we further
analyzed and visualized the functional and pathway enrich-
ment of the main DEGs. Third, the hub genes were cross-
validated using different databases such as GEO, TCGA,

Oncomine and GTEx. Finally, we determined the expres-
sion level of hub genes in different cell lines by quantitative
reverse transcription PCR.
However, there are some limitations to our study. First,

the quality of data from the GEO database could not be
appraised. Second, our results did not include characteristics
such as sex, age, smoke, tumor classification, and staging in
detail. We are therefore of the opinion that there should be
more clinical research in order to confirm our results.
In conclusion, in this study, we determined that AURKA,

KIAA0101, CDC20, MKI67, CHEK1, HJURP and OIP5 may
be critical genes in the development and prognosis of lung
cancer through bioinformatics analysis combined with
quantitative reverse transcription PCR. However, it is essen-
tial that further experiments are carried out and clinical data
made available to confirm the results of our study and guide
the discovery of future gene therapies against NSCLC.
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