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This study aimed to investigate the impact of probiotic fermentation on the active
components and functions of Perilla frutescens leaves (PFL). PFL was fermented for 7
days using six probiotics (Lactobacillus Plantarum SWFU D16, Lactobacillus Plantarum
ATCC 8014, Lactobacillus Rhamnosus ATCC 53013, Streptococcus Thermophilus
CICC 6038, Lactobacillus Casei ATCC 334, and Lactobacillus Bulgaricus CICC
6045). The total phenol and flavonoid contents, antioxidant abilities, as well as α-
glucosidase and acetylcholinesterase inhibition abilities of PFL during the fermentation
process were evaluated, and its bioactive compounds were further quantified by high-
performance liquid chromatography (HPLC). Finally, non-targeted ultra-HPLC–tandem
mass spectroscopy was used to identify the metabolites affected by fermentation and
explore the possible mechanisms of the action of fermentation. The results showed that
most of the active component contents and functional activities of PFL exhibited that it
first increased and then decreased, and different probiotics had clearly distinguishable
effects from each other, of which fermentation with ATCC 53013 for 1 day showed
the highest enhancement effect. The same trend was also confirmed by the result of
the changes in the contents of 12 phenolic acids and flavonoids by HPLC analysis.
Further metabolomic analysis revealed significant metabolite changes under the best
fermentation condition, which involved primarily the generation of fatty acids and their
conjugates, flavonoids. A total of 574 and 387 metabolites were identified in positive
ion and negative ion modes, respectively. Results of Spearman’s analysis indicated
that some primary metabolites and secondary metabolites such as flavonoids, phenols,
and fatty acids might play an important role in the functional activity of PFL. Differential
metabolites were subjected to the KEGG database and 97 metabolites pathways were
obtained, of which biosyntheses of unsaturated fatty acids, flavonoid, and isoflavonoid
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were the most enriched pathways. The above results revealed the potential reason for
the differences in metabolic and functional levels of PFL after fermentation. This study
could provide a scientific basis for the further study of PFL, as well as novel insights
into the action mechanism of probiotic fermentation on the chemical composition and
biological activity of food/drug.

Keywords: Perilla frutescens leaves, fermentation, phytochemical composition, biological activity, metabolomics

INTRODUCTION

Fermentation is one of the classic methods of food processing.
Under the effects of microorganisms, food components are
transformed and degraded, resulting in a variety of secondary
metabolites, which in turn have positive impacts on food quality,
such as flavor, taste, nutritional value, functional properties, and
shelf-life (1).

Due to the complexity of the food system, these quality
characteristic changes in food and its underlying mechanisms
during fermentation have been an important research focus. In
recent years, metabolomics, including liquid chromatography-
tandem mass spectrometry (LC-MS/MS), gas chromatography-
tandem mass spectrometry (GC-MS/MS), and nuclear magnetic
resonance (NMR), has been widely used in investigating the
chemical composition and metabolite contents of food products
(2). They provide fast and sensitive methods for the identification
and quantification of the small molecules produced in food
processing, which could be used to well explain the changes in
product, flavor, and nutrition during the fermentation process
(3, 4). However, in-depth studies on metabolite changes in
fermented food and their association with functional activities
are still lacking.

Perilla frutescens (L.) Britt. is a traditional food and medicinal
plant and is widely cultivated and distributed in many East
Asian countries (5). As its primary edible relevant part, the
perilla frutescens leaf (PFL) is widely used for fresh vegetables,
condiments, and kimchi. In addition, its medicinal properties
have been proven in traditional medicine for centuries, such
as diuresis, antitussive, detoxification, diaphoretic, etc. (6,
7). Modern pharmacological research has revealed that PFL
exerts diverse effects on chronic diseases related to oxidative
stress, such as diabetes, cancer, inflammatory, hypertension,
Alzheimer’s disease, etc. (8–11). Literature and our previous
work (12, 13) indicated that PFL possessed excellent biological
activities including antioxidant, anticancer, antibacterial, and
anti-inflammatory activity, which was associated with their
abundant active ingredients (e.g., phenolics and flavonoids) (14,
15). PFL has been considered to be an excellent raw material
for fermented foods. Research shows that the nutritional value
and biomedical benefits of Perilla frutescens seeds are enhanced
by fermentation, although there are only a few studies on PFL
fermentation, and the dynamic changes of its active components
and functional activities in the fermentation process are not
clear (16).

In this study, we employed six different probiotics to ferment
PFL. The differences and variations in the chemical composition
and functional activities of the fermented perilla frutescens

leaf (FPFL) were evaluated by spectrophotometry and high-
performance liquid chromatography (HPLC) methods, thus
selecting the best performing strain and elucidating the dynamic
changes of the ingredients and activities during the fermentation
process. Then we characterized the metabolic transition
before and after fermentation using mass spectrometry-based
metabolomics. By combining mass-spectrometry metabolomics
with the above in vitro study, the main compounds related to
the functional activities of PFL were obtained. Finally, KEGG
pathway enrichment analysis of the differential metabolites
was performed to investigate the possible action mechanism of
probiotic fermentation on PFL. We expect that our results could
provide a novel insight into the biotransformation of the active
components in natural products/foods and the scientific basis for
the further development and utilization of Perilla frutescens.

MATERIALS AND METHODS

Chemicals and Reagents
Lactobacillus Plantarum SWFU D16 was isolated from Yunnan
goat milk cake, a Chinese traditional fermented food in our
Laboratory. Lactobacillus Plantarum ATCC 8014, Lactobacillus
Bulgaricus CICC 6045, Lactobacillus Casei ATCC 334, and
Streptococcus Thermophilus CICC 6038 were purchased from the
Guangdong Microbial Culture Collection Center (GDMCC), and
Lactobacillus Rhamnosus ATCC 53013 was purchased from the
American Type Culture Collection (ATCC).

Folin–Ciocalteu reagent, gallic acid, rutin, 2,2-
diphenyl-1-picrylhydrazyl radical (DPPH), 2,2’-azinobis
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS), 2,4,6-tri (2-pyridyl)-1,3,5-triazine (TPTZ), iron chloride
(FeCl36H2O), p-Nitrophenol α-D-glycopyranoside (pNPG),
acetylthiocholine iodide (ATCI), 5,5’-Dithiobis-(2-nitrobenzoic
acid) (DTNB), and other chemicals were purchased from Aladdin
(Shanghai, China). Chromatographic acetonitrile was purchased
from Merck (Darmstadt, Germany). α-Glucosidase (G5003), and
acetylcholinesterase (AChE, C3389) were purchased from Sigma-
Aldrich (St. Louis, United States). Syringic acid, (+)-catechin,
rosmarinic acid, chlorogenic acid, and other standards were
purchased from Yuanye Bio-Technology (Shanghai, China).

Material Preparation and Fermentation
Mature PFL were purchased from Meizhou city, Guangdong
province, China. After drying at 50 ◦C (Thermostatic blast
drying, DHG Series, Shanghai, China), samples were pulverized
and sifted through a 40-mesh sieve, then mixed with distilled
water in a 1:25 ratio (mass/volume) in a conical flask, and
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autoclaved at 121◦C for 15 min. When cooled to room
temperature, 10 mL of probiotics (1.5 × 107 CFU) were added
and incubated at 37◦C for 7 days. For consistency, each probiotic
was from the same culture bottle. In parallel, 2 g glucose and 2 g
skimmed milk powder were added as the carbon and nitrogen
source (CN) controls, respectively. During the fermentation,
fermented Perilla frutescens leaves (FPFL) were sampled daily and
frozen at -18◦C pending determination.

pH Values
The pH was measured by directly placing a pH electrode
of the pH meter (Hanna Instrument, Ann Arbor, Michigan,
United States) into samples at room temperature.

Total Phenolic and Flavonoid Content
Total phenolic content (TPC) was quantified by the Folin–
Ciocalteau method with some modifications (17). Briefly, 40 µL
of properly diluted sample was mixed with 20 µL of Folin–
Ciocalteau reagent (0.5 M) in a 96-well microplate and incubated
for 5 min. Next, 160 µL of Na2CO3 (7.5%, w/v) was added
to the mixtures. The reaction was then kept in the dark for
30 min at room temperature, after which the absorbance was
measured at 765 nm. As for the standard, gallic acid was used,
and the data were provided as milligram gallic acid equivalent
(mg GAE/g sample). For easier comparison, the final TPC
results were expressed as the relative content (%) compared
with the equivalent value of FPFL at the 0 days, and the
starting TPC was 100%.

Total flavonoid content (TFC) was measured by the aluminum
nitrate colorimetric method (18). A total of 20 µL of NaNO2 (3%,
w/v) was mixed with 40 µl of a properly diluted sample. After
6 min of reaction, 20 µL of Al (NO3)3 (6%, w/v) was added after
6 min of incubation, and the mixture was incubated for another
6 min. Subsequently, 140 µL of NaOH (4%, w/v) and 60 µL of
70% methanol were added. The mixture solution stood for 15 min
and the absorbance was measured at 510 nm. Rutin was used
as a standard, and the data were calculated as milligram rutin
equivalent per gram of sample (g RE/g sample). Similarly, the
TFC was also expressed as a relative content (%).

Antioxidant Assays
The abilities to scavenge DPPH and ABTS radicals were
estimated by following the methods of Dong (19) and Wang
(12) with slight modifications. Briefly, samples (100 µL) and 100
µL of DPPH (0.15 mM) were added to the 96-well microplate.
The mixture was shaken thoroughly and then kept for 30 min in
the dark at room temperature. Subsequently, the absorbance was
measured at 517 nm. In the ABTS assay, 50 µL of samples were
added to 200 µL of ABTS·+ freshly prepared working solution
in a 96-well microplate and incubated for 6 min in the dark,
and then the absorbance was measured at 734 nm. The sodium
phosphate buffer (pH 6.9) was used instead of the DPPH or
ABTS·+ solution as the control, and sodium phosphate buffer
instead of the sample was used as the blank. The percentage
of scavenging was calculated following Formula (1). The radical
scavenging abilities of DPPH and ABTS were expressed as a

relative percentage (%) compared with the scavenging rate of
FPFL on the 0th day.

Scavenging rate (%) =

(
1−

Asample−Acontrol

Ablank

)
× 100 (1)

The ferric reducing antioxidant power (FRAP) was quantified
by the reported method (20). The FRAP solution was prepared
with 1 ml of TPTZ (7 mM), 1 mL of FeCl3 (20 mM), and 10 mL
of acetate buffer (pH 3.6). Properly diluted samples (50 µL) were
mixed with 200 µL of freshly prepared FRAP working solution
in a 96-well microplate. After incubation in darkness for 10 min
at 37◦C, the absorbance was measured at 593 nm. The sodium
phosphate buffer (pH 6.9) was used instead of the FRAP solution
as the control, FeSO4 was used as the standard, and the data were
calculated as milligram of FeSO4 equivalent per gram of sample (g
FeSO4/g sample). FRAP was expressed as the relative percentage
(%) compared with the equivalent value of FPFL at the 0 days.

α-Glucosidase Inhibition Ability
The α-glucosidase inhibition ability was determined according
to the previous method (21). Briefly, 50 µL of the samples were
added to 50 µL of 0.1 U/mL α-glucosidase solutions and mixed
in a 96-well plate. After incubation at 37◦C for 10 min, a 50 µL
of 5 mM pNPG solution was added and reacted for 15 min at
37◦C. Finally, 100 µL of Na2CO3 (0.2 M) was added to terminate
the reaction and the absorbance was determined at 405 nm. The
sodium phosphate buffer (pH 6.9) was used instead of the α-
glucosidase solution as control, and sodium phosphate buffer
instead of the sample was used as the blank. The percentage
of inhibition was calculated following Formula (1). The results
were expressed as the relative percentage (%) compared with the
inhibition rate of FPFL on the 0th day.

Acetylcholinesterase Inhibition Ability
The acetylcholinesterase (AChE) inhibition ability was assessed
using a colorimetric method (22). Initially, 50 µL of samples, 15
µL of ATCI (15 mM), and 75 µL of DTNB (3 µM) were mixed
in a 96-well plate and incubated for 10 min at 30◦C. Then 20 µL
of 0.1 U/mL AChE and 50 µL of sodium phosphate buffer (pH
8.0) were added and shaken for 10 s. Followed by exposure to
blocking light for 30 min at room temperature, the absorbance
was measured at 410 nm by using a microplate reader. The
sodium phosphate buffer (pH 6.9) was used instead of the AChE
solution as the control, and sodium phosphate buffer instead of
the sample was used as the blank. The percentage of inhibition
was calculated following Formula (1). The results were expressed
as the relative percentage (%) compared with the inhibition rate
of FPFL on the 0th day.

High-Performance Liquid
Chromatography-DAD Analysis
HPLC-DAD analysis was performed by an HPLC 1260
(Agilent Technologies, CA, United States) equipped with a
degasser, quaternary pump solvent delivery, thermo-stated
column compartment, and a diode array detector. Samples were
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filtered through 0.22-µm nylon syringe filters for HPLC analysis.
The C18 reversed-phase analytical column (250 mm × 4.6 mm,
5 µm, Greenherbs Science and Technology, Beijing, China) was
maintained at 25◦C, with 0.1% formic acid (A) and acetonitrile
(B) as the mobile phase with a flow rate of 0.8 mL/min. The
gradient elution conditions of the mobile phase B were: 0–12 min,
2–8%; 12–15 min, 8–13%; 15–30 min, 13–18%; 30–50 min,
18–30%; 50–60 min, 30–50%; 60–70 min, 50–70%; 70–80 min,
70–90%; 80–85 min, 90–100%; 85–90 min, 100–2%. The DAD
was set in four wavelengths: 280 nm for identification of gallic
acid, (+)-catechin, epicatechin, rosmarinic acid, baicalin, luteolin,
apigenin, hesperetin, and baicalein; 310 nm for chlorogenic acid;
340 nm for ferulic acid; and 360 nm for rutin. Finally, compounds
were identified and quantified by comparison with the retention
times and peak areas from standards, and information on these
compounds is listed in Table 1.

Metabolomics Analysis
The metabolomics analysis was performed by Shanghai Applied
Protein Technology Co. Ltd. An appropriate sample was added
to precooled methanol/acetonitrile/aqueous solution (2:2:1, V/V)
and vortex-mixed. After the ultrasound for 30 min at 4◦C, the
mixed sample was kept at -20◦C for 10 min and then centrifuged
(14,000 g, 4◦C) for 20 min. The supernatant was vacuum-dried
and redissolved in 100 µL acetonitrile solution (acetonitrile:
water = 1:1, V/V), and then centrifuged again at 14,000 g for 15
min at 4 ◦C. Finally, the supernatant was eventually used for mass
spectrometry (MS) analysis.

The samples were separated by an ultra-high performance
liquid chromatography (UHPLC) system (Agilent, Santa Clara,
United States) with a C18 column (1.7 µm, 2.1 mm × 100 mm).
The sample was injected using an autosampler and the injection
volume was 2 µL. The flow rate was 0.40 mL/min and the column
temperature was 40◦C. The mobile phase comprised of eluent A
(water with 25 mM ammonium acetate and 0.5% formic acid)
and eluent B (methanol). The gradient elution program was set
as follows: 0–0.5 min, 5% B; 0.5–10 min, 5–100% B; 10–12 min,
100% B; 12.0–12.1 min, 100–5% B; and a final 12.1–16 min, 5% B.

TABLE 1 | List of compounds identified by HPLC.

Number Retention time (min) Name Detection
wavelength (nm)

1 9.99 Gallic acid 280

2 16.78 (+)-Catechin 280

3 22.4 Chlorogenic acid 310

4 23.46 Epicatechin 280

5 26.936 Rutin 360

6 29.743 Ferulic acid 340

7 39.83 Rosmarinic acid 280

8 43.86 Baicalin 280

9 46.442 Luteolin 280

10 56.102 Apigenin 280

11 56.87 Hesperetin 280

12 62.4 Baicalein 280

MS/MS was conducted in both positive and negative ion
modes using electrospray ionization (ESI) on AB Triple TOF
6600 (AB Sciex, United States). The ESI source condition was set
as follows: Ion Source Gas1 (60 psi), Ion Source Gas2 (60 psi),
Curtain gas (30 psi), Source temperature (600◦C), Ion Sapary
Voltage Floating (± 5,500 V), TOF MS scan m/z range (60–
1,000 Da), Declustering potential (± 60 V), and Collision energy
(35 ± 15 eV). The information-dependent acquisition (IDA)
conditions were: exclude isotopes within 4 Da, and candidate
ions to monitor per cycle was 10. All samples were injected in
sequence. The quality control (QC) samples were pooled samples
prepared from mixed aliquots of equal volume from all samples
to validate system stability and repeatability.

Statistical Analyses
All experiments were done in triplicate and expressed as
mean ± standard deviation. The SPSS 22 software package
was used to perform a one-way ANOVA for the determination
of statistical significance. Principal component analysis (PCA),
Spearmen correlation, volcano plots, heatmap, and associated
network diagram were generated with R software (version
4.0.6). Significantly regulated metabolites between groups were
determined by Log2FC ≥ 1.5, p < 0.05.

RESULTS

pH Values
The variation in pH values of the fermentation broth reflects
the degree of fermentation (23). Table 2 indicated that the pH
values presented a dramatic decrease in the early stage, after
which the trend became flat. There was a significant difference
after a 1-day fermentation for each group when compared to
the unfermented sample (p < 0.05). Among them, ATCC 53013
and CICC 6038 decreased faster than other probiotics from the
third day (p < 0.05), which implied they exhibited the strongest
fermentation properties. Overall, the CN control groups also
showed similar trends to the experimental groups, but finally
decreased to a greater extent. This indicated that the addition
of CN sources might also contribute to increasing the extent
of fermentation.

Total Phenolic and Flavonoid Content
From Table 2, the TPC and TFC of FPFL behaved in a
general trend of increasing first and then decreasing for almost
all probiotics besides SWFU-D16, while the turning points
were pooled from days 1–3. Overall, we observed substantial
decreases in TPC and TFC after fermentation (p < 0.05).
Similarly, each of the corresponding CN control groups displayed
a significantly higher reduction than that of the probiotic
group (p < 0.05). Although final losses were significant for
TPC and TFC, a significant improvement was observed in
short-term fermentation (1–3 days), which was consistent with
the previously reported literature (24, 25). Among them, the
maximum TPC increase was observed in CICC 6038 (146.27%
at 1 day), while the largest TFC increase was found for ATCC
53013 (152.38% at 2 days). A possible reason for the increase of
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TABLE 2 | Change in the pH, TPC, and TFC of FEPL during different fermentation stages for different probiotics.

Probiotics Days

0 1 2 3 4 5 6 7

pH SWFU D16 5.43 ± 0.01a 4.31 ± 0.01b 4.22 ± 0.01b 4.32 ± 0.23b 4.17 ± 0.01b 4.24 ± 0.03b 4.22 ± 0.03b 4.22 ± 0.02b

SWFU D16 +
CN

5.63 ± 0.02a 3.90 ± 0.01b 3.68 ± 0.01c 3.55 ± 0.01d 3.50 ± 0.02e 3.44 ± 0.01f 3.40 ± 0.02g 3.41 ± 0.03g

ATCC 8014 5.92 ± 0.02a 5.44 ± 0.02b 4.67 ± 0.01c 4.31 ± 0.01d 4.15 ± 0.03e 3.93 ± 0.03f 3.81 ± 0.01g 3.77 ± 0.02h

ATCC 8014 +
CN

5.77 ± 0.12a 5.48 ± 0.03b 4.80 ± 0.27c 4.52 ± 0.08d 4.45 ± 0.01e 4.43 ± 0.02e 4.45 ± 0.02e 4.46 ± 0.02e

ATCC 53013 5.49 ± 0.03b 5.53 ± 0.01a 5.44 ± 0.01c 4.48 ± 0.01d,e 4.45 ± 0.01f 4.45 ± 0.03e,f 4.46 ± 0.01e,f 4.50 ± 0.01d

ATCC 53013 +
CN

5.71 ± 0.02a 5.70 ± 0.01a 5.40 ± 0.01b 3.76 ± 0.02c 3.59 ± 0.01d 3.45 ± 0.02e 3.40 ± 0.01f 3.33 ± 0.01g

CICC 6038 5.70 ± 0.03a 5.58 ± 0.02b 5.50 ± 0.02c 5.62 ± 0.01b 4.48 ± 0.07e 4.55 ± 0.02d 4.55 ± 0.01d 4.56 ± 0.01d

CICC 6038 +
CN

5.71 ± 0.03a 5.65 ± 0.03a 5.71 ± 0.01a 5.29 ± 0.01b 3.83 ± 0.02c 3.49 ± 0.13d 3.48 ± 0.02d 3.49 ± 0.01d

ATCC 334 5.67 ± 0.02c 5.73 ± 0.01b 5.75 ± 0.01a 5.37 ± 0.01d 4.74 ± 0.01e 4.66 ± 0.01g 4.69 ± 0.01f 4.67 ± 0.01g

ATCC 334 +
CN

5.68 ± 0.04a 5.80 ± 0.02b 4.47 ± 0.02c 3.78 ± 0.01d 3.60 ± 0.02e 3.53 ± 0.01f 3.43 ± 0.04g 3.42 ± 0.02g

CICC 6045 5.69 ± 0.02d 5.65 ± 0.01e 5.71 ± 0.03c,d 5.77 ± 0.02a 5.73 ± 0.01b,c 5.72 ± 0.03c,d 5.73 ± 0.00b,c 5.76 ± 0.01a,b

CICC 6045 +
CN

5.62 ± 0.01c 5.70 ± 0.01b 5.73 ± 0.01a 3.95 ± 0.01d 3.80 ± 0.02e 3.50 ± 0.01f 3.42 ± 0.01g 3.37 ± 0.01h

TPC (%) SWFU D16 100.00 ± 1.11a 94.12 ± 3.53b 87.77 ± 1.39c 91.68 ± 3.40b,c 66.63 ± 2.45e 69.04 ± 3.12e 76.90 ± 1.73d 53.10 ± 1.38f

SWFU D16 +
CN

100.22 ± 2.22a 95.72 ± 1.85a 80.87 ± 1.44b 66.56 ± 3.83c 65.49 ± 3.56c 58.25 ± 3.12d 44.54 ± 1.73e 39.56 ± 1.72e

ATCC 8014 100.00 ± 0.49b,c 78.60 ± 2.64d 85.24 ± 5.05d 113.07 ± 5.19a 100.16 ± 3.46b,c 96.71 ± 6.03c 107.23 ± 7.25a,b 57.63 ± 1.25e

ATCC 8014 +
CN

100.00 ± 5.45b,c 110.34 ± 1.96a 84.58 ± 2.87d 89.35 ± 4.86d 101.78 ± 8.59a,b 51.00 ± 1.19e 92.45 ± 0.83c,d 86.07 ± 2.67d

ATCC 53013 100.00 ± 1.61a,b 95.64 ± 5.50a,b 105.44 ± 9.35a 99.90 ± 3.87a,b 85.07 ± 5.85c,d 82.84 ± 2.44c,d 78.04 ± 3.28d 91.25 ± 4.22b,c

ATCC 53013 +
CN

100.00 ± 4.60a 105.48 ± 1.53a 91.06 ± 5.56b 70.17 ± 3.48c 68.77 ± 0.84c 70.11 ± 2.21c 60.60 ± 1.48d 69.89 ± 1.85c

CICC 6038 100.00 ± 2.40c 146.27 ± 8.70a 105.63 ± 4.34c 115.75 ± 2.47b 91.18 ± 3.72d 57.53 ± 3.85e 57.39 ± 1.05e 64.02 ± 1.83e

CICC 6038 +
CN

100.00 ± 2.53c 126.83 ± 2.46b 132.78 ± 2.94a 99.63 ± 2.48c 98.07 ± 3.88c 83.25 ± 3.30d 83.46 ± 1.18d 76.39 ± 1.46e

ATCC 334 100.00 ± 8.24c,d 97.47 ± 0.64c,d 90.47 ± 9.17d 118.97 ± 4.89a 64.78 ± 5.04f 113.83 ± 1.35a,b 105.90 ± 1.77b,c 102.32 ± 5.50c

ATCC 334 +
CN

100.00 ± 1.86a 96.75 ± 2.99a 68.85 ± 2.57b 41.77 ± 2.92f 53.82 ± 2.55d 49.04 ± 0.99e 61.65 ± 1.05c 63.16 ± 1.78c

CICC 6045 100.00 ± 4.88a,b,d 93.78 ± 4.94b,c 99.27 ± 0.34a,b 91.80 ± 2.46c,d 87.14 ± 3.95d 95.03 ± 4.60b,c 49.42 ± 1.81e 105.72 ± 0.65a

CICC 6045 +
CN

100.00 ± 0.98a 66.01 ± 3.97d 60.39 ± 3.18e 81.80 ± 1.01b 75.00 ± 0.73c 43.47 ± 1.34f,g 41.16 ± 1.34g 45.61 ± 0.63f

TFC (%) SWFU D16 100.00 ± 2.93a 73.27 ± 1.91b 65.34 ± 4.09c 71.30 ± 3.83b 50.84 ± 2.02d 48.04 ± 3.39d 60.88 ± 1.58c 16.39 ± 1.53e

SWFU D16 +
CN

100.00 ± 2.93a 75.14 ± 9.09b 68.95 ± 7.26b 49.33 ± 3.93c 36.43 ± 3.63d 35.45 ± 2.65d,e 26.01 ± 3.66e,f 17.19 ± 0.21f

ATCC 8014 100.00 ± 10.75c,d 89.17 ± 6.30d 144.86 ± 4.99a 130.39 ± 17.41a,b 101.89 ± 6.03c,d 100.68 ± 7.39c,d 116.90 ± 3.14b,c 44.51 ± 6.26e

ATCC 8014 +
CN

100.00 ± 2.80a 97.78 ± 4.95a 72.36 ± 5.77b 53.45 ± 5.33c 52.00 ± 3.89c 3.14 ± 0.45e 30.52 ± 3.78d 25.22 ± 0.31d

ATCC 53013 100.00 ± 4.45c 152.38 ± 4.75a 150.00 ± 6.20a 131.87 ± 10.76b 50.00 ± 2.23d 112.51 ± 10.26c 107.35 ± 13.92c 110.61 ± 4.17c

ATCC 53013 +
CN

100.00 ± 2.78a,b 107.39 ± 13.99a 93.22 ± 9.81b 34.84 ± 6.11c 23.74 ± 3.99c,d 15.01 ± 1.20d 20.09 ± 2.81d 16.82 ± 1.79d

CICC 6038 100.00 ± 9.54b,c 126.57 ± 2.72a 138.09 ± 8.69a 126.63 ± 8.37a 85.75 ± 13.71c,d 70.06 ± 2.30d 90.23 ± 3.87b,c 102.35 ± 7.72b

CICC 6038 +
CN

100.00 ± 10.84b 122.15 ± 3.24a 137.68 ± 5.45a 81.18 ± 17.03c 50.32 ± 3.95d 18.33 ± 0.81e 17.61 ± 2.60e 17.50 ± 1.52e

ATCC 334 100.00 ± 0.62a 95.20 ± 2.91a 66.84 ± 2.15c 83.48 ± 4.40b 34.27 ± 1.84d 84.50 ± 5.24b 83.11 ± 1.88b 70.27 ± 5.09c

ATCC 334 +
CN

100.00 ± 13.73a 93.23 ± 5.36a 51.26 ± 6.77b 6.47 ± 1.71c 17.66 ± 1.55c 10.28 ± 1.79c 12.04 ± 0.88c 13.33 ± 0.82c

CICC 6045 100.00 ± 4.62a 85.17 ± 6.87b,c 88.43 ± 4.85b 75.98 ± 4.20c,d 102.78 ± 3.18a 63.01 ± 4.35e 37.58 ± 4.11f 69.80 ± 5.73d,e

CICC 6045 +
CN

100.00 ± 6.39a 86.42 ± 4.36b 95.15 ± 0.43a 86.76 ± 1.96b 99.88 ± 2.12a 19.45 ± 1.43c 16.70 ± 2.40c 17.15 ± 1.81c

Different lower-case letters in the same row indicate significant differences at p < 0.05.
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FIGURE 1 | Changes in the antioxidant abilities of FPFL during the fermentation process for different probiotics. (A) DPPH· scavenging ability. (B) ABTS·+

scavenging ability. (C) FRAP. Asterisks (∗) represent the significant difference when comparing the unfermented sample (0 days) (p < 0.05∗), the samples from the
same group are represented by the same color.

TPC and TFC in the early fermentation stage was the vigorous
growth of microorganisms, and their high metabolic activities
consumed the components in PFL, such as starch, protein,
pectin, etc., which led to the release of phenolics and flavonoids

(26). With the continuation of the fermentation process, the
substances in PFL were utilized, degraded, and transformed by
microorganisms, which is the cause of the decrease in TPC
and TFC (27).
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Antioxidant Abilities
The antioxidant ability of the sample depends on the presence
of various compounds with different action mechanisms. In
this study, three methods were performed to evaluate the
antioxidant effects of FPFL, including DPPH, ABTS radical
scavenging abilities, and FRAP. Of these, DPPH and ABTS
radical scavenging assays utilize hydrogen atom transfer and
single electron transfer reaction mechanisms, while the FRAP
assay takes up the single electron transfer method (28, 29).

From Figure 1, all the three antioxidant abilities were
decreased after 7 days of fermentation (p < 0.05), and this
decrease was more pronounced in the CN control groups.
During short-term fermentation time, the antioxidant abilities
were substantially improved for ATCC 53013, CICC 6038,
and ATCC 8014 (p < 0.05), regardless of whether they
were in the CN control groups or the unfermented samples.
Similar to TPC and TFC, the time points with the highest
antioxidant ability were focused primarily on the first 1–3
days. For DPPH and ABTS radical scavenging ability, the
highest increase was noted for ATCC 53013 at 1 day (153.03
and 143.26%), while for FRAP, it was 148.63% (CICC 6038
at 6 days). It was also observed that FRAP was always
high from the beginning of fermentation to the end of
fermentation (1–7 days), which was different from DPPH and
ABTS radical scavenging abilities, and this also illustrated the
different antioxidant mechanisms between them. Overall, FPFL
demonstrated excellent antioxidant abilities after short-term
fermentation, of which CICC 6038 and ATCC 53013 had the
strongest boosting effects, which was consistent with a previous
study reported by Ru et al. (30).

A previous study reported that short-term fermentation
could release bound phenols in plants, which in turn increased
the TPC and TFC, and improved the antioxidant ability
(31). To elucidate the similarities and differences between
TPC, TFC, antioxidant ability, and the other variables more
clearly, the correlation analysis and principal component
analysis (PCA) were further performed and are displayed in
Figure 2 in the form of the correlation heatmap, correlation
network, and PCA graph, respectively. The high and significant
correlation coefficients indicated higher correlations between
TPC/TFC and different antioxidant abilities, which had also
been proved by the cluster distances, the intersection networks,
and the relative distance in 2D principal-component space. This
implicated phenolics and flavonoids, especially, phenolics were
the main factors contributing to antioxidant ability, which also
explained the similar changing trends among TPC/TFC and
antioxidant abilities.

α-Glucosidase Inhibition Ability
α-Glucosidase is an essential target for type II diabetes. Inhibition
of α-glucosidase can delay carbohydrate digestion and glucose
absorption, which in turn leads to reducing postprandial blood
glucose levels, and ultimately improves mitigation of diabetes and
its complications (32). From Figure 3A, most of the probiotics
could enhance the α-glucosidase inhibition ability of FPFL during
the first 1–3 days (p < 0.05). Among them, ATCC 53013
showed the highest level of increase after fermentation for 1 day,

194.14% as large as the unfermented sample, and maintained
at a high level (> 122%) over the following 3 days. Followed
by ATCC 8014 (126.61% at the 2 days), in brief, these two
strains were significantly better compared to their corresponding
CN control groups. The reason may be that the addition of
CN could facilitate PFL fermentation, which results in a higher
degree of conversion and degradation of the active ingredients in
FPFL, which in turn, reduces its α-glucosidase inhibition ability.
However, the CN control groups of ATCC 334 and CICC 6045
presented better α-glucosidase inhibition ability than without
CN samples, likely because different probiotics had different
lactic fermentation, acid tolerance, and CN source utilization
abilities (33). The proper amount of CN addition can make
the bioactive ingredients of fermentation substrate release most,
which in turn gives a stronger α-glucosidase inhibition ability.
For example, L. bulgaricus, L. casei, L. fermentum, L. delbrueckii,
and L. lactis showed different lactic acid yields under the same
CN conditions, while lactic acid yields instead decreased at
higher concentrations of carbon source for L. casei (34, 35).
In addition, Bacillus licheniformis is a non-lactic acid bacteria
regarded as a probiotic. It was found that high CN source
concentration stimulated the cell growth of B. licheniformis
but reduced its trypsin activity, while the opposite result
was observed with low concentrations (36). From significant
but lower correlations, and the long distances in the PCA
graph (Figure 2), while the α-glucosidase inhibition ability was
significantly influenced by TPC, TFC, and other antioxidant
material, it was not determined entirely by them. Overall, the
α-glucosidase inhibition ability of FPFL was decided by the
integrated effect of various bioactive ingredients, and ATCC
53013 proved to be an excellent probiotic tool to increase the
α-glucosidase inhibition ability (30).

Acetylcholinesterase Inhibition Ability
Up to today, acetylcholinesterase (AChE) is an attractive target
for the treatment of Alzheimer’s disease, and acetylcholinesterase
inhibitors represent the major approved drugs to treat this
neurodegenerative disease (37). With the advantage of being
safe, cost-effective, and efficacious, natural food or medicinal
plants are considered novel strategies for the prevention and
treatment of Alzheimer’s disease. Gratifyingly, almost all the
samples presented a certain inhibition activity against AChE, and
all six probiotics could enhance the AChE inhibition ability of
FPFL after fermentation (Figure 3B), which is consistent with
the conclusion of Li (38). Of these, after fermentation for 1 day,
ATCC 53013 and CICC 6038 showed the strongest upregulation
with the maximum value of 140.48 and 153.39%, respectively.
Surprisingly, most of the CN control groups showed stronger
AChE inhibition ability except SWFU D16. The reason could
be that SWFU D16 was isolated from goat milk cake, which
was not fit for PFL fermentation, and there was no obvious
effect of CN-addition. Considering that the addition of CN had
a greater degree of conversion and degradation for FPFL, we
supposed that these new products were more likely to have a
role in the inhibition of AChE. The correlation analysis and PCA
analysis further validated our results that AChE inhibition ability
was also weakly correlated with TPC/TFC, antioxidant abilities,
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FIGURE 2 | Associations among different indicators. (A) Correlation heatmap. (B) Correlation network. (C) Principal component analysis. TPC, total phenolic
content; TFC, total flavonoid content; DPPH, DPPH·scavenging activity; ABTS, ABTS·+ scavenging ability; FRAP, ferric reducing antioxidant power; α-glucosidase,
α-glucosidase inhibition ability; AChE, acetylcholinesterase inhibition ability.
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FIGURE 3 | The enzymes’ inhibition abilities of the FPFL during the fermentation process for different probiotics. (A) α-glucosidase inhibition ability. (B)
Acetylcholinesterase inhibition ability. Mean ± standard deviation, (n = 3). Bars with different letters indicate a significant difference (p < 0.05).

and α-glucosidase inhibition ability, and falls away from them
on the PCA plot.

High-Performance Liquid
Chromatography Analysis Results
To elucidate the changes of the various compounds in PFL
fermented by different probiotics at different fermentation stages,
HPLC analysis was performed to present their chromatographic
characterizations. According to the studies published previously

by us and others, a total of 12 compounds were confirmed and
quantified by comparing their retention time and UV spectrum
to the standard, including gallic acid, (+)-catechin, chlorogenic
acid, epicatechin, rutin, ferulic acid, rosmarinic acid, baicalin,
luteolin, apigenin, hesperetin, and baicalein (12, 17, 39). These
compounds are labeled in Figures 4A,B with Arabic numerals
according to their elution order.

Firstly, samples fermented by different probiotics for 1 day
were selected for comparative analysis, and their chromatograms
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FIGURE 4 | HPLC chromatogram and heatmap of FPFL. (A) Chromatogram of FPFL for different probiotics at 280 nm on 1 day of fermentation. (B) Chromatogram
of FPFL during different fermentation periods for ATCC 53013 at 280 nm. (C) Heatmap of compounds content of FPFL during different fermentation periods and
different probiotics.

at 280 nm were shown in Figure 4A. For all probiotics, their
chromatograms were essentially identical, while there was some
difference in the height and area of some chromatographic peaks.
Among them, the chromatographic peak of rosmarinic acid (peak
7) of ATCC 53013 was significantly higher than other probiotics.
Similarly, the same phenomena can also be observed in other
peaks for different probiotics. When compared to the blank
sample (without probiotics), CICC 6045 had significantly higher
and more chromatographic peaks in the first 10 min, which
indicated that it could produce more high-polarity compounds.

Among all six probiotics, ATCC 53013 showed excellent
promoting effects on nearly all the evaluation metrics of PFL,
especially for α-glucosidase inhibition ability, thus it was a
superior probiotic for the fermentation of PFL. In accordance
with these experiment results, we choose FPFL fermented by

ATCC 53013 to compare the changes of the various compounds
each day. As shown in the chromatographs in Figure 4B,
the peaks of rutin, hesperetin, and baicalein (peaks 5, 11,
12) decreased gradually and almost disappeared on day 4,
while peaks of rosmarinic acid, baicalin, luteolin, and apigenin
(peaks 7, 8, 9, 10) were increased first and decreased afterward,
reaching the highest levels on the first day. For other peaks,
there were no obvious changes. Interestingly, these compounds
with large content changes were almost all flavonoids, except
for rosmarinic acid, which means the biotransformation of
flavonoids might be one of the major reactions during
fermentation. Of which, luteolin (peak 9) has been previously
reported to possess beneficial biological activities, such as anti-
inflammatory, anti-allergic, and antibacterial activities, and could
stably bind to α-glucosidase via hydrophobic force, which
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in turn caused inactivation of α-glucosidase (40). Similarly,
apigenin (peak 10) had potential therapeutic effects on a
variety of neurodegenerative diseases such as Alzheimer’s
disease and Parkinson’s disease (41). In addition, rosmarinic
acid (peak 7) also had a lot of interesting pharmacological
activities, including antiviral, antibacterial, anti-inflammatory,
and antioxidant abilities, and was identified as a potential
treatment for Alzheimer’s disease (42, 43). The above results
explained the improvement of antioxidant abilities, α-glucosidase
inhibition ability, and acetylcholinesterase inhibition ability of
PFL after fermentation.

To better present the changes of different probiotic groups
at different stages of fermentation, the contents of these 12
compounds were visually exhibited as a heatmap in Figure 4C.
Blue represented low content while red represented high content.
It could be clearly seen that SWFU D16 and CICC 6045 showed
an obvious trend from red to blue, which indicated the decreasing
trend of the content of these compounds in these two probiotic
groups. For ATCC 8014, ATCC 53013, CICC 6038, and ATCC
334 groups, their colors changed from blue to red and then
to blue, showing that the levels of these compounds were first
increased and then decreased. In addition, when compared with
other probiotic groups, ATCC 53013, ATCC 8014, and CICC
6038 groups had significantly more red areas and darker color
groups within 3 days of fermentation, which implied that the
increase of these major compounds was more accentuated in
these probiotic groups. Again, these results strongly supported
the preceding results, especially for ATCC 53013 in Figure 4B.
The significant difference between different strains could not
only be found according to the heatmap but also between the
different compounds from the same probiotic group. For the
rutin, rosmarinic acid, and luteolin of these compounds, clear
red color in the first 3 days and distinct changes were clearly
observed. They have been reported to be the major compounds
of PFL in our previous reports and exhibit excellent biological
activity (12, 17).

Taken together, the above results suggested that probiotic
fermentation had different effects on various compounds in
PFL, and different probiotics exerted different effects, which
might be due to the various mechanisms of action of
probiotic fermentation, including formation, transformation,
and degradation.

Metabolomic Analysis
To further elucidate the metabolite changes during fermentation,
we analyzed the metabolites of FPFL (fermented by ATCC
53013 for 1 day) using a non-targeted metabolomics approach
based on UHPLC–Triple–TOF–MS/MS. It is generally believed
that ESI positive ion mode is more sensitive than the negative
ion mode, while the negative ion mode is more suitable for
acidic compounds (44). Positive and negative ion modes were
complementary and they were both therefore used for analysis.
The representative base peak chromatograms (BPC) of PFL
(unfermented sample) and FPFL in both modes are shown in
Figures 5A–D, respectively. According to the BPC plots, there
were significant differences in the metabolites of the samples
before and after fermentation. The spectral signal intensities of

FPFL were weaker than PFL, which indicated that fermentation
reduced the content of the primary metabolites and secondary
metabolites in PFL.

The metabolites were identified by comparing accurate mass
(error < 10 ppm), retention times, fragmentation patterns,
and collision energies against standard compounds and the
in-house database (Shanghai Applied Protein Technology
Co., Ltd, Shanghai, China), and their confidence levels of
compound annotations were at level 2 or higher (45). In this
study, a total of 961 metabolites were identified, among which
574 and 387 were detected in positive mode and negative
mode (Supplementary Table 1), respectively. To show the
composition and classification of these metabolites more
intuitively, the corresponding pie diagrams are plotted in
Figure 6. The different colors in each pie chart represented
different classifications, and the area represented the relative
proportion of metabolites in the classification. As exhibited in
Figure 6, the predominant superclass metabolites were lipids
and lipid-like molecules, phenylpropanoids and polyketides,
organoheterocyclic compounds, benzenoids, and organic oxygen
compounds. At the class level, they were mainly prenol lipids,
fatty acyls, flavonoids, organooxygen compounds, as well as
benzene, and substituted derivatives. While at the subclass
level, they were fatty acids and conjugates, flavonoid glycosides,
carbohydrates and carbohydrate conjugates, o-methylated
flavonoids, and terpene glycosides.

Next, we sought to quantify differences in metabolite
compositions before and after fermentation with principal
components analysis (PCA). In Figures 7A,B, highly significant
discrimination between two groups, both in positive and
negative ion modes, is shown, indicating significant variation in
metabolites of PFL after fermentation. To display differentially
metabolites, the volcano plots (Figures 7C,D) were constructed
based on statistical value p < 0.05 and fold change ≥ 1.5.
The results showed that 92 metabolites were significantly up-
regulated and 33 were significantly down-regulated in positive
ion mode, while 87 metabolites were significantly up-regulated
and 25 were significantly down-regulated in negative ion mode.
According to the variable importance in projection (VIP) value
obtained by OPLS-DA and the results of t-tests, metabolites that
had both VIP > 1 and p < 0.05 were selected to generate
hierarchical cluster heatmaps (Figures 7E,F). The heatmaps
in both positive and negative ion modes revealed significant
changes in these compounds in different classes, including
primary metabolites (fatty acids, lipids, and nucleosides) and
secondary metabolites (alkaloids, flavonoids, phenols, and
terpenoids). In brief, the upregulated metabolites were more
numerous compared with the downregulated metabolites after
fermentation, and the negative ion mode provided a higher ability
to detect more significant metabolites.

To further explore the correlation between metabolites and
functional activity, a series of Spearman’s correlation analyses
were conducted and illustrated with heatmaps and network
diagrams in Figure 8. Interestingly, most of the metabolites
that highly correlated with the previously described activity
indicators belonged to the upregulated metabolites, no matter
in both positive and negative ion modes. α-Glucosidase
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FIGURE 5 | Representative base peak chromatograms (BPC) of PFL and FPFL in the positive (A,C) and negative (B,D) ions mode.

FIGURE 6 | The schematic diagram of the different classifications of the metabolites of FPFL.

inhibition ability and TFC were significantly associated with the
greatest number of metabolites, followed by three antioxidant
abilities, and acetylcholinesterase inhibition ability, which further
explained the significant improvements of these metrics,
especially the α-glucosidase inhibition ability. An unexpected
observation was that no metabolites were significantly associated
with TPC, which was also in agreement with the results

in Table 2, that no significant changes were observed in
TPC after 1 day of fermentation. The complex relationships
between these indicators and key metabolites were further
illustrated in Figures 8B,D. In addition, it was found that
classifications at the class level of these key metabolites
majorly belonged to flavonoids, isoflavonoids, prenol lipids,
organooxygen compounds, hydroxy acids, and derivatives,
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FIGURE 7 | PCA, volcano plots, and heat map show the changes of metabolites in PFL and FPFL. (A) Score plot in positive ions mode, (B) score plot in negative
ions mode. Represent high cohesion within groups and good separation among before and after fermentation. (C) Volcano plot in positive ions mode. (D) Volcano
plot in negative ions mode. The blue dots represent significantly downregulated differentially expressed metabolites, the red dots represent significantly upregulated
differentially expressed metabolites. Significantly different metabolites between groups were determined by p < 0.05 and an absolute Log2FC (fold change) ≥ 1.
(E) Heat map in positive ions mode, (F) heat map in negative ions mode. Each sample is represented by one column, and each metabolite is visualized in one row.
Red indicates high abundance; blue indicates relatively low metabolite abundance.

phenols, and fatty acyls. This illustrated the complicated chemical
and biological changes that occurred during the fermentation
process involving almost all the constituents of PFL.

It is well known that the secondary metabolites of plants are
mainly regulated by their metabolic pathways, which in turn
affect their functional activities. The KEGG pathway database1 is
a main public database of metabolic pathways, which could be
used in studies of gene expression information and metabolite
accumulation in a general network. In this study, all the
differential metabolites were entered into the KEGG database
for pathway analysis and obtained the pathway information
of metabolite participation. Pathway enrichment analysis was
performed using the KEGG ID of differential metabolites to
derive the metabolic pathway enrichment results.

A total of 97 signaling pathways were significantly enriched
through the KEGG pathway enrichment analysis, and these
pathways are listed in Supplementary Table 2. As shown
in Figure 9A, the bubble plot demonstrated the Top 20
most strongly enriched pathways, and flavonoid biosynthesis,
biosynthesis of unsaturated fatty acids, and isoflavonoid
biosynthesis were the most enriched pathways. This validated the
results described in the previous paragraphs, with flavonoids and

1www.kegg.jp/kegg/pathway.html

isoflavonoids being the most associated with their corresponding
bioactivities. Flavonoids are dominant secondary metabolites in
plants and play an important role in their biological functions.
Notably, accumulation of antioxidants was often observed in
the flavonoid biosynthesis pathway (46). Figure 9B presented
the network plot of the relationships between these pathways
and differential metabolites, and the metabolic differences of
these metabolites were revealed by the corresponding heatmap.
Among them, apigenin, kaempferol, and pinocembrin were the
differential metabolites involved in the flavonoid biosynthesis
pathway, and apigenin, biochanin A, and formononetin were
involved in the isoflavonoid biosynthesis pathway, while for
unsaturated fatty acid biosynthesis pathway, they were linoleic
acid, linolenic acid, and oleic acid, respectively. In summary,
the results of KEGG enrichment analyses further revealed
the diversity of the metabolic pathways of PFL during the
fermentation of probiotics and strongly supported the results
previously mentioned.

DISCUSSION

As a traditional medicinal and edible plant, PFL has been shown
to possess many bioactive compounds and health properties and
has been widely cultivated as a major crop (47). Thus, both
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FIGURE 8 | Spearman’s analysis and associated network diagram show the correlation between metabolites and 6 functional activities. (A,C) Spearman’s analysis
of FPFL in the positive and negative ions mode. (B,D) Associated network of FPFL in positive and negative ions mode. Asterisks represent *p < 0.05, **p ≤ 0.01,
respectively.

from the human nutrition and food bioprocessing perspective,
various food processing techniques could be used to improve its
sensory and dietary properties. Probiotic fermentation is one of
the safe and effective means to improve the nutritional value,
functional activity, and pharmacological efficacy of plants, and
therefore, could be useful as an important processing technique
for PFL. Our study offers several interesting findings. It illustrates
the dynamic changes of the active components and functional
activities of PFL during the fermentation process and also
provides a superior probiotic (ATCC 53013) for the fermentation
of PFL. It also deciphers its mechanism of action.

In this study, PFL was fermented by six different probiotics,
and the dynamic changes of its active components and functional
activities in the fermentation process were evaluated. The results
showed that probiotic fermentation had obvious implications
for the chemical components and functional activities of PFL,
and it showed an overall trend of rising first and then
falling. This might be attributed to the metabolism effect of
microorganisms, and similar results were also reported in other

studies (27, 48, 49). As is well known, for plants, fruits, or
vegetables, their phytochemical concentrations and biological
activities during the fermentation process are generally affected
by the fermentation substrate, strains, and fermentation time
(50). By comparing these samples of different times, different
probiotics, and the addition of CN source or not, we found
that the optimal fermentation time was 1–3 days, and ATCC
53013 was the best probiotic tool for the fermentation of PFL.
After short-term fermentation, FPFL showed excellent biological
activities, such as antioxidant abilities (ABTS, DPPH, FRAP), α-
glucosidase, and Ache inhibition abilities, especially fermented
for 1 day using ATCC 53013. Also, the addition of CN could
improve the degree of fermentation.

It is known that microorganisms during the fermentation
process could release various enzymes that could disrupt
the major components of the plant cell wall, such as
cellulose, hemicellulose, pectin, lignin, and protein, and promote
the transformation of nutrients and hydrolysis of biological
macromolecules, as well as increase the content of bioactive
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FIGURE 9 | Enriched KEGG pathways based on significantly different metabolites between PFL and FPFL. (A) Pathway enrichment analysis. Each bubble in the
bubble graph represents a metabolic pathway, the bubble size being proportional to the enrichment. The top 20 items with the highest p values were selected. (B)
Associated network diagram. The elliptical nodes represent pathways, and the rectangular nodes represent metabolites.

substances (49). On the other hand, organic matter and protein
in PFL provide a partial CN source for microbial fermentation.
Hence, short-term fermentation was found to increase the
antioxidant activity of fermented food by the production of
different active compounds (51, 52). As the fermentation
process proceeded, the substrate was continuously consumed
and the lignin degradation by ligninases generates inhibitory
compounds, which inhibit cellulolytic enzymes and fermenting
microorganisms, thus having a negative effect on fermentation
(53, 54). Xiao et al. (48) also found that some active ingredients
of tea such as degalloyl catechins and gallic acid increased in
the initial stage of fermentation and decreased after long-term
fermentation. This could be the reason why FPFL exhibited
better biological activities following short-term fermentation.
The above results were of importance for PFL fermentation and
its application in food/drug engineering.

The HPLC assays further reveal the different effects between
different probiotics by analysis of 12 standard compounds.
Among them, rutin, rosmarinic acid, and luteolin were the
major compounds with large variations. For different probiotics,
ATCC 53013 and CICC 6038 showed better enhancement effects.
A quantitative analysis further revealed the dynamic variation of
these compounds at different fermentation times. The content of
these compounds showed a trend of first decline and then rise,
while some other compounds continued to rise or declined, or
were relatively constant. In addition, some new peaks appeared
for some probiotic groups when compared to the unfermented
sample, which might imply that some new substances were
produced. These changes suggested the different modes of action
of probiotic fermentation, including formation, transformation,
and degradation, which might be the reason for the variable
change of the active components and functional activities of
FPFL (55).

The metabolic products of plants were diverse, and many of
them were biologically active molecules. Microbial fermentation
could alter these metabolites and produce new metabolites,
which in turn affect its functional activity. To analyze the
metabolic profile changes of PFL before and after fermentation,
the UPLC-MS/MS-based metabolomics method was applied.
From the informative metabolic profiling data, we found
significant differences in metabolites between PFL and FPFL,
and they were mainly focused on some primary metabolites
and secondary metabolites. Surprisingly, we observed significant
upregulation of some flavonoids, phenols, and fatty acids, such
as hispidulin, apigenin, kaempferol 7-O-glucoside, astragalin,
kaempferol, sagerinic acid, mundulone acetate, choline,
camptothecin, etc. Due to most of these compounds showing
good functional activities, these could be the main reason for
FPFL exhibiting good activity after short-term fermentation
(56–58).

Further, KEGG pathway analysis of significantly differential
metabolites found 97 metabolic signaling pathways, of
which biosynthesis of unsaturated fatty acids, flavonoid
biosynthesis, and isoflavonoid biosynthesis were the most
enriched pathways. Among them, biosynthesis of unsaturated
fatty acids was the significantly enriched lipid-related
metabolic process, and it predominantly appeared in plants
rich in proteins, oils, and carbohydrates (59). Moreover,
flavonoid biosynthesis and isoflavonoid biosynthesis could
be inducible by several abiotic and biotic stimuli (60).
Studies have revealed that flavonoids and essential oils are
the most abundant constituents in PFL, and we speculated
that these three pathways were the main mechanisms of
the action of probiotic fermentation on PFL (12, 37). These
results further illustrated that in addition to strains and
fermentation conditions, the fermentation substrate composition
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played an important role in metabolic pathway; this might be
considered for the biosynthesis of some bioactive metabolites by
using probiotics.

CONCLUSION

In conclusion, this study employed six different probiotics to
ferment PFL, and the dynamic change of the active components
and functional activities of PFL during the fermentation
process were evaluated. The results showed that short-term
fermentation (1–3 days) could significantly improve its chemical
components and functional activities. There were significant
differences in fermentation performance for different strains,
where ATCC 53013 was the best probiotic tool for fermentation
PFL. HPLC analysis indicated that rutin, rosmarinic acid,
and luteolin were the major compounds with large variations
during fermentation. Metabolomics analysis further revealed
the differential metabolites including flavonoids, phenols, and
fatty acids. KEGG pathway analysis showed that biosynthesis of
unsaturated fatty acids, flavonoid biosynthesis, and isoflavonoid
biosynthesis were the most enriched metabolic signaling
pathways. The results could provide a novel insight into the
biotransformation of the active components in natural products,
and represent a scientific basis for the further utilization of
Perilla frutescens. More in-depth studies such as screening more
probiotics and optimization of the fermentation process are
needed in the following work.
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