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Abstract
The ecological succession of microbes during cadaver decomposition has garnered interest

in both basic and applied research contexts (e.g. community assembly and dynamics; fo-

rensic indicator of time since death). Yet current understanding of microbial ecology during

decomposition is almost entirely based on plant litter. We know very little about microbes re-

cycling carcass-derived organic matter despite the unique decomposition processes. Our

objective was to quantify the taxonomic and functional succession of microbial populations

in soils below decomposing cadavers, testing the hypotheses that a) periods of increased

activity during decomposition are associated with particular taxa; and b) human-associated

taxa are introduced to soils, but do not persist outside their host. We collected soils from be-

neath four cadavers throughout decomposition, and analyzed soil chemistry, microbial ac-

tivity and bacterial community structure. As expected, decomposition resulted in pulses of

soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no

change in total bacterial abundances, however we observed distinct changes in both func-

tion and community composition. During active decay (7 - 12 days postmortem), respiration

and biomass production rates were high: the community was dominated by Proteobacteria

(increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to

29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once

decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass produc-

tion rates dropped dramatically; this community with low growth efficiency was dominated

by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria,

including the obligately anaerobic Bacteroides, were detected at high concentrations in soil

throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of

functional and compositional succession in soil microbial communities during decomposi-

tion of human-derived organic matter, provided insight into decomposition processes, and

identified putative predictor populations for time since death estimation.
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Introduction
Decomposition of organic matter is an integral process in all ecosystems. Most research on ter-
restrial ecosystems focuses on decomposing plant litter due to its sheer dominance as an input
[1]. Less well studied is the decomposition of animal carcasses, which are a chemically and
physically distinct organic residue input. Due to a narrow carbon to nitrogen ratio (5:1 to 8:1),
high water content, and a wide diversity of labile nutrients, carcasses decay much faster than
plant litter [2]. Carcass decomposition releases a diversity of compounds into the soil, includ-
ing adipose tissues, volatile fatty acids (primarily butyric and propionic acids), organic acids
(e.g. acetic and oxalic acids), organic nitrogen (nucleic acids, peptides, amino acids), and phe-
nolics [3]. This localized, ephemeral decomposition event results in a “hot spot” and “hot mo-
ment” of enhanced biogeochemical cycling in the soils below (vis a vis [4]). Indeed, previous
studies have noted increases in microbial respiration rates, nitrogen mineralization and bio-
mass carbon underneath carcasses [5–8]. Scientists have adopted a fertility island concept to
describe the localized ecosystem area created by a decaying carcass, referred to as a ‘cadaver (or
carcass) decomposition island (CDI)’ [9]. These hot spots, or CDIs, contribute to landscape
heterogeneity, biodiversity, and terrestrial biogeochemical cycling [2,8–11]. Understanding
carcass or cadaver decomposition processes may also have direct applications for forensic sci-
ence [9].

It is well accepted that microbes are responsible for recycling carcass-derived organic mat-
ter, yet we know surprisingly little about the microbial communities responsible. Decomposi-
tion of complex organic matter is carried out by multiple microbial taxa and there is emerging
evidence that community composition affects decomposition rates and processes [12–14].
Plant litter studies have identified soil bacteria and fungi associated with decomposition
[15,16], but soil taxa associated with carcass decomposition have not been thoroughly exam-
ined. In addition to the soil decomposers, carcasses carry a dense commensal microbial com-
munity (microbiome) which is presumably introduced to the soils as decomposition
progresses. We know that commensal microbes mediate the initial tissue decomposition in the
days following death [17,18], but it is unknown if they persist or contribute to decomposition
beyond this initial stage.

As a carcass decomposes, there is a documented succession in insects, invertebrates and
other fauna [2,19,20]. These successional patterns are used to estimate post mortem interval
(PMI), or time since death, which can be key evidence in forensic investigations. Given the lim-
itations of current PMI estimation methods, the succession of microbes and their utility in esti-
mating PMI has garnered great interest in the forensic community [17,21–27]. There is
evidence that microbes, too, follow regular functional and perhaps taxonomic patterns in these
highly dynamic CDIs: with respect to carbon utilization, increases in soil respiration and mi-
crobial biomass during active decay are typical [6,28,29]. With respect to nitrogen cycling, en-
hanced protease activity [5] and free amino acid turnover rates [8] have been documented,
along with increased nitrogen species (peptides, amino acids, ammonium, and ninhydrin-reac-
tive nitrogen) [6,8,30]. Other functional shifts in CDIs include increased phosphodiesterase
and lipolytic activity [5,31]. From plant litter studies, we know that the functional changes in
decomposer communities are often mirrored by compositional changes [15,32–34]. Composi-
tional shifts in microbial communities on (or in) cadavers or carcasses have been documented
[17,23–26]. Fewer studies have examined soil microbial communities, but these also suggest
that soil communities exposed to decomposition products are compositionally altered
[22,23,35].

The aim of this study was to investigate successional dynamics of microbial communities in-
volved in decomposition of human-derived organic matter in a terrestrial ecosystem. We
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hypothesized that the microbial communities in CDI soils undergo successional shifts in both
function (biogeochemical cycling and activity) and structure (community composition and rel-
ative abundance of taxa). Specifically we hypothesized that periods of increased microbial ac-
tivity during decomposition was associated with changes in community composition. We
additionally hypothesized that members of the human microbiome would be introduced to the
soil environment, contributing to the altered structure, but would not persist outside their nat-
ural environment. To answer our questions, we studied replicate human cadavers decomposing
in a natural terrestrial environment at the University of Tennessee Anthropology Research Fa-
cility (ARF), a unique outdoor human decomposition laboratory.

Materials and Methods

Study site and sample collection
The study was conducted at The University of Tennessee Anthropology Research Facility
(ARF) in Knoxville, Tennessee (35°56' 28" N, 83°56' 25" W), a 1.3 acre outdoor laboratory dedi-
cated to the study of human decomposition. The site is a preserved temperate deciduous forest
with a well-drained fine textured clayey soil [36]. The annual mean high and low temperatures
were 21.3 and 10.9°C, respectively, with a mean relative humidity of 71.3% and a mean yearly
rainfall of 121.5 cm (data collected from the University of Tennessee Gardens Meteorological
Station, located 0.5 km from the ARF).

In total, four cadavers (two white males and two white females) were used in this study,
which were donations to the University of Tennessee Forensic Anthropology Center for the W.
M. Bass Donated Skeletal Collection (http://web.utk.edu/~fac/collection.html). As no living
human subjects were involved, this work was exempt from review by the University of Tennes-
see Institutional Review Board. No preference was employed for sex, age, ancestry, weight, etc.
The University of Tennessee protocol for accepting donations ensured the individuals did not
have communicable diseases. The bodies were not autopsied or embalmed; they were immedi-
ately refrigerated after death and placed at the ARF within three days. Their age at time of
death ranged from 60 to 90 years and weights from 56 to 77 kg, and all died of natural causes.
The four cadavers (referred to as A3, B4, C5, D6) decomposed through the summer and fall of
2012 when the average air temperatures were 22.4, 27.8, 26.0, and 17.2°C, respectively. We also
elected to examine gut samples from each cadaver as a reference, since the gut harbors a highly
dense microbial community which is compositionally distinct from soils and other environ-
ments [37]. Immediately before placement, the cadaver’s gastrointestinal tract was sampled:
the caecum was swabbed via a small incision, which was re-sealed with standard duct tape as
previously described [26]. The caecum swabs were transported on ice and stored at -20°C until
DNA extraction. Before the cadaver was laid on the soil, an initial soil sample was collected
from the placement site. Using the methodology detailed in Parkinson et al. [22], an open
weave mesh was placed underneath prone cadavers to allow for minimal disturbance while
rolling aside for sampling of the soil underneath. Although this facility has been continuously
used since 1980, every effort was made to obtain plots for the study that, to our knowledge, had
not been previously used for decomposition studies.

Soil sampling started before cadavers were placed on the soil (“Initial”), and continued until
cadavers reached a late advanced decay stage (S1 Table). The frequency of sampling was deter-
mined by the approximate stage of decomposition (Fresh, Bloat, Active Decay, Advanced
Decay, and Late Advanced Decay, determined after Payne [38]), with attempts to capture each
stage at least once. Therefore samples were taken more frequently during the first few weeks, as
this was when decomposition proceeds most rapidly, then less frequently once cadavers
reached Advanced Decay and changes were occurring more gradually. The final samples
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(“Advanced III”) were taken at 87, 198, 83 and 114 days for cadavers A3, B4, C5, and D6, re-
spectively. At each sampling time, the top 0–3 cm of soil beneath the torso was sampled using a
0.8 cm corer; approximately 20 cores were randomly collected and composited. In addition, at
each time, a soil sample was collected in the same manner from a control site located approxi-
mately 2 m away from each cadaver which had not been exposed to decomposition. All com-
posite samples were sieved using standard soil sieve No. 10 (2 mmmesh) to remove plant
roots, rocks, insects, hair etc. A fraction was stored at -20°C until DNA extraction, while the
rest was used immediately for soil analyses.

Soil analyses
Soil was extracted with 2 M KCl (1:5) for 1 h. The filtered extract was used to measure total ex-
tractable carbon via combustion/catalytic oxidation and total extractable N via combustion/
chemiluminescence detection (Shimadzu TOC/TN-VCPH). Nitrate, ammonia and phosphate
were measured via colorimetry (Skalar autoanalyzer). pH was measured in distilled water (1:2).
Microbial biomass production rates were measured using a 3H-leucine incorporation method
adapted for soil bacteria [39]. Microbial respiration was measured using a sodium hydroxide
carbon dioxide trap and titration [40]. Gravimetric water content was determined to standard-
ize the microbial activity and soil chemistry data by the dry weight of soil.

DNA extraction and sequencing
Bacterial community structure analysis was done for select soil samples, based on decomposi-
tion stage. Since cadavers were placed at different times, there were slight differences in tem-
perature and climate which resulted in different rates of decomposition. While carcass
decomposition on the soil surface is not a process with distinct stages, categorization of com-
mon phenomena is a typical approach in forensic taphonomy. Daily photographic images of
the cadavers were reviewed to categorize each cadaver by stage, using the five stages identified
by Payne [38], plus intermediate stages to provide a higher resolution: Initial (before placement
of cadaver), Bloat, Bloat-Active, Active, Active-Advanced Decay, Advanced Decay I, Advanced
Decay II, Advanced Decay III (S1 Table). Community analysis was done on a soil sample from
each of the eight stages for each cadaver plus eight non-cadaver control samples and the gut
swab for each of the four cadavers (44 unique libraries) (S1 Table). DNA was extracted using
the PowerLyzer PowerSoil DNA Isolation Kit (MOBIO Laboratories, Inc. Carlsbad, CA.) and
PowerLyzer instrument (MOBIO), with an added heated incubation step to increase yield:
samples were incubated at 65°C for 10 minutes in a water bath and at 95°C in a heat block for
another 10 minutes prior to bead-beating. The remaining protocol was unchanged.

DNA was sent to the Genomic Services Lab at Hudson Alpha Institute for Biotechnology
(Huntsville, AL) for library preparation using universal bacterial primers 515F and 806R [41]
to amplify the V4 region of bacterial 16S rDNA, and sequencing on the Illumina MiSeq plat-
form to generate 150 bp paired-end reads. DNA extractions from four randomly selected sam-
ples were sequenced in duplicate to assess technical reproducibility. Reads were processed with
Mothur (v.1.33.3), following the MiSeq SOP [42] (S1 Text). Briefly, sequences with homopoly-
mers longer than 8 nucleotides or containing ambiguous bases were removed. Remaining se-
quences were aligned to a SILVA bacterial reference library v102 [43] and trimmed to 291
bases that started and ended at the same alignment position. Reads were binned into operation-
al taxonomic units (OTUs) according to their taxonomic classification at the genus level. The
reads were subjected to the UCHIME chimera removal algorithm and the SILVA reference
alignment was used to generate best species classification. After screening, 11,174,851 reads re-
mained, available in MG-RAST (accession numbers 4629149.3–4629196.3). For diversity
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analysis, the number of sequences in each sample was normalized by randomly subsampling
the number of sequences present in the smallest sample (121,340 reads) to eliminate the effect
of uneven sampling depth. One sample, an Active Decay sample from cadaver C5, was re-
moved from our analysis due to inadequate coverage: it contained only 5.7% of the average
number of sample reads. The Simpson Diversity index and Chao richness were calculated for
the subsampled libraries in Mothur.

Enumeration of bacteria via quantitative PCR
To enumerate copies of bacterial 16S rRNA genes, qPCR with universal bacterial primers
1055F and 1392R were used as previously described [44]. Each 25 μl qPCR reaction consisted
of 12.5 μl Maxima SYBR Green/Fluorescein qPCR Master Mix (2X) (Thermo Fisher Scientific
Inc., Waltham, MA), 5.5 μl of nuclease-free water (Thermo Fisher Scientific Inc., Waltham,
MA), 1 μl of 1055F primer (10 μM), 1 μl of 1392R primer (10 μM) (Eurofins MWG Operon,
Huntsville, AL) and 5 μl template DNA diluted 1:100 in nuclease-free water. Standards con-
sisted of a bacterial plasmid containing a cloned 16S rRNA gene: the 16S rRNA gene was PCR
amplified from genomic DNA of a Sphingomonas isolate using the universal bacterial primers
8F and 1492R and cloned with the pGEM-T Vector System (Promega Corporation, Madison,
WI) according to manufacturer’s directions. Plasmids were extracted using the Wizard Plus SV
Minipreps DNA Purification System (Promega) and diluted to create standards from 108 to
104 copies per reaction. qPCR reactions were performed in triplicate, alongside template-free
controls, on a C1000 Thermal Cycler with a CFX96 Real Time System (Bio-Rad, Hercules, CA)
using the following protocol: 95°C for 10 min, then 40 cycles of denaturing at 95°C for 30 s, an-
nealing at 51°C for 25 s, and extending at 72°C for 25 s. Gene copy numbers were determined
using the regression equation relating threshold cycle (CT) to copies in the standards. Standard
curves had a R2 > 0.969 in all cases with an average efficiency of 100.6% (data not shown).

To identify and track the fate of human-associated microbes in the soil, we enumerated a
representative bacterial population from the human gut microbiome: following the method of
Layton et al. [45], human-associated Bacteroides were enumerated throughout the decomposi-
tion process and at three time points after the cadaver remains were removed. Primers
HuBac566f and HuBac692r were designed from partial alignments of Bacteroides 16S rRNA
genes from fecal source libraries and GenBank. Each 25 μl qPCR reaction consisted of 12.5 μl
ABsolute Blue qPCR Master Mix (Thermo Fisher Scientific Inc., Waltham, MA), 6.5 μl nucle-
ase-free water (Thermo Fisher Scientific Inc., Waltham, MA), 1.5 μl of HuBac566f primer
(10 μM), 1.5 μl of HuBac69r primer (10 μM), 0.5 μl HuBac594Bhqf probe (10μM) (synthesized
by Eurofins MWGOperon, Huntsville, AL) and 2.5μl template DNA (diluted in nuclease-free
water to 1:10 for soil, 1:100 for gut samples). All qPCR reactions were performed in triplicate.
The plasmid used for the standard curve was obtained from the A. Layton lab group (UTK)
and is described in Layton et al. [45]. The standard curve ranged from 2.5 x 102 to 2.5 x 107

plasmid DNA copy number per reaction. Standard curves had a R2 > 0.989 in all cases with an
average efficiency of 84% (data not shown).

Statistical analysis
Since the cadavers decomposed at different temperatures, the rates of decomposition varied. In
order to combine the four cadavers as experimental replicates, data from each cadaver were
binned by decomposition stage. Then, data from each stage for replicate cadavers were com-
bined and subjected to graphical and statistical analysis. For the microbial activity data, a
ranked mixed model ANOVA (SAS software) was used to analyze the statistical differences be-
tween stages, treatment (CDI and its respective control) and their interaction. Tukey-Kramer’s
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multiple comparisons tests were run and differences with a p-value less than 0.05 were re-
garded as statistically significant. To reveal significantly changing OTUs across stages, STAMP
software used ANOVA with a Tukey-Kramer Post-Hoc test (p< 0.05)[46]. Unclassified reads
were used only for calculation frequency profiles. Statistically significant OTUs were filtered
with an effect size (η2) of 0.50 or larger and contained at least one stage in which the population
was higher than 0.001%. Non-metric multidimensional scaling (NMDS) was used to visualize
the phylogenetic distance (Bray-Curtis similarity) between the bacterial communities at each
stage for the four cadavers. The taxonomic abundance data fromMothur was imported into
the Plymouth Routines In Multivariate Ecological Research v6 (Primer v6, Lutton, UK) [47],
standardized by total count, and square-root transformed before the resemblance matrix was
created. Similarity was determined by hierarchical agglomerative clustering of group means. A
second stage NMDS of the samples was performed on a pairwise correlation matrix (Spearman
Rank method) using the 2STAGE tool within Primer v6. This software was also used to identify
the taxa primarily providing the variance between two decomposition stages of interest using
the SIMPER tool.

Results

Soil chemistry
In the control plots without cadavers, soil chemistry did not significantly change over the
course of the study. The pH of the control soils ranged from 6.34 to 6.58. Total extractable or-
ganic carbon and nitrogen ranged from 0.185 to 0.465 mg C per g dry weight soil (gdw-1) and
0.023–0.458 mg N gdw-1 (data not shown). There was also no significant change in ammonia,
nitrate, and phosphate in the control soils with stage means ranging from 0.007 to 0.034 mg N
gdw-1, 0.007 to 0.067 mg N gdw-1 and 0.067 to 0.224 ppm phosphate, respectively (data not
shown).

In the soils below decaying cadavers, there were significant changes in soil chemistry. Dur-
ing Bloat-Active Decay there was a significant increase in extractable total organic carbon and
total nitrogen, most of which was ammonia (Table 1). We also observed an increase in phos-
phate with three of the four cadavers (A3, C5 and D6); the fourth cadaver (B4) had consider-
ably lower phosphate in both the control and CDI soils and this variability rendered the data
non-significant. This increase in C and nutrients corresponded to the influx of decomposition
fluids during Bloat-Active and remained significantly elevated in the cadaver decomposition is-
lands (CDI) until the Advanced Decay III stage. Soil pH below the cadavers did not significant-
ly increase nor decrease, and was not significantly different from the control soils, largely due
to high variability between the four replicate cadavers.

Microbial activity
In the control soils, microbial respiration rate remained relatively constant over the course of
the study with mean respiration rates of 0.004 to 0.009 mg C h-1 gdw-1 (data not shown). Mean
biomass production rates varied from 0.000752 to 0.227 mmol 3H-leucine incorporated h-1

gdw-1. Because biomass production rate in control soils were quite variable, production rates in
the soils below cadavers were normalized to rates in the control soils sampled on the same day.
In soils below the cadavers, respiration rates and biomass production rates began to increase
during the Bloat stage. The highest respiration rates were observed at two time points: The first
local maximum was during Bloat-Active and Active Decay, the second maximum was during
the Advanced I stage (Fig 1). The first increase in respiration during Active Decay was concom-
itant with the highest rates of biomass production (Fig 2), indicating a community with high
microbial growth efficiency (i.e. high ratio of biomass production rates to respiration rates).

Soil Microbial Communities below Decomposing Cadavers

PLOS ONE | DOI:10.1371/journal.pone.0130201 June 12, 2015 6 / 20



Table 1. Soil pH and chemical concentrations in soils below decomposing cadavers.

Initial Bloat Bloat- Active Active Active-
Advanced

Advanced I Advanced II Advanced III

pH 6.678
±0.151

6.030 ±1.156 7.049 ±1.214 6.595 ±0.964 6.797 ±0.906 6.876 ±0.929 7.192 ±0.897 6.470 ±0.946

PO4 0.186
±0.162

0.160 ±0.189 0.283647
±0.12

0.156 ±0.191 0.174 ±0.116 0.224 ±0.187 0.170 ±0.142 0.160 ±0.197

NO3 (mg N
gdw-1)

0.021
±0.017

0.170 ±0.273 0.118 ±0.169 0.070 ±0.095 0.027 ±0.061 0.036 ±0.046 0.172 ±0.221 0.045 ±0.054

NH3 (mg N
gdw-1)

0.011A

±0.008
0.084A

±0.087
0.800B ±0.687 1.502BC

±0.924
2.253BC ±0.726 3.846C

±1.722
3.296BC

±1.180
1.515AB ±1.781

TN (mg N gdw-

1)
0.046A

±0.023
0.363AB

±0.394
1.354BC

±1.314
2.147BC

±1.171
2.894CD ±0.693 4.363D

±1.416
3.979CD

±1.294
2.078ABC

±2.025

TOC (mg C
gdw-1)

0.310A

±0.245
0.637AB

±0.417
1.427ABC

±1.307
4.130ABC

±2.594
4.814ABC

±2.614
6.421C

±1.969
5.866BC

±3.165
4.920ABC

±4.382

TN and TOC are total extractable nitrogen and organic carbon, respectively. Each number is the mean ± standard deviation of n = 4 cadavers.

Statistically, stages that were significantly different from the others are indicated by different letter designation (p < 0.05, ranked ANOVA, Tukey-Kramer).

doi:10.1371/journal.pone.0130201.t001

Fig 1. Microbial respiration rates in soils below decomposing cadavers.Means and standard deviations
of n = 4 cadavers are presented for each stage; means with the same letter are not significantly different
(p < 0.05, mixed model ranked ANOVA, Tukey-Kramer post-hoc). The light grey bar is the mean and
standard deviation for control (no cadaver) soils throughout the duration of the study (n = 45).

doi:10.1371/journal.pone.0130201.g001
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Assuming a conversion factor of 0.54 kg C per mol 3H-leucine incorporated [48], these com-
munities had a mean growth efficiency not significantly different from the control communi-
ties (0.57 ± 0.33%). Starting in Active Decay, biomass production rates in CDI soils declined to
less than rates in control soils (Fig 2). Therefore the second period of maximum respiration
rates observed during the Advanced Decay I stage corresponded with very low biomass pro-
duction rates, and thus, low mean microbial growth efficiency (0.003 ± 0.001%). Respiration
rates remained elevated through the final stages of decomposition, while biomass production
rates returned to near starting values.

Bacterial community structure and composition
Sequencing of amplified 16S rRNA genes resulted in 11,147,851 reads (2,634,911 unique) of
sufficient quality after filtering, which had a mean read length of 291 bp. Libraries were sub-
sampled to n = 121,340 reads each. These sequence reads clustered into 1050 operational taxo-
nomic units (OTUs), with a mean of 421 OTUs per library. Rarefaction curves (S1 Fig) and a
Good’s Coverage estimate of 0.994 (S2 Table) indicated sequence coverage was sufficient. The
richness and diversity (estimated by Simpson’s Index) of the communities in the CDI soils did
not change significantly until the final stage (Advanced III), when a significant increase in both
richness and diversity was observed (Fig 3). The communities from the control soil samples
did not undergo any significant changes in richness or diversity compared to each other or the
initial pre-placement soil samples (Fig 3, light grey bars).

Fig 2. Microbial biomass production rates in soils below decomposing cadavers. Leucine incorporation
rates expressed as mean difference between cadaver decomposition island (CDI) soils and their respective
control soils (n = 4 cadavers); error bars are standard deviations. Means with the same letter are not
significantly different (p < 0.05, mixed model ranked ANOVA, Tukey-Kramer post-hoc).

doi:10.1371/journal.pone.0130201.g002
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Beta diversity of the microbial communities was analyzed using hierarchical agglomerative
clustering of group mean Bray Curtis distances. As expected, the gut communities were com-
positionally quite different from the soil communities: gut microflora samples clustered togeth-
er at 80.3% similarity and were only 65.4% similar to the soil samples (data not shown); CDI
soil samples had 73.2% similarity with each other. NMDS visualization of Bray Curtis distances
revealed shifts in CDI bacterial community composition as decomposition progressed (Fig
4A). For 3 of the 4 cadavers (A3, C5 and D6) the shifts during decomposition were similar
(progressing from the upper left to lower right in Fig 4A). A shift in communities was also ap-
parent the fourth cadaver (B4) (Fig 4A, diamonds) but the trajectory was slightly different
from the other three, indicating that there may be some inter-individual variability in the suc-
cession of communities. A second stage clustering of decomposition stages for all four cadavers
revealed that communities from the early stages (Bloat and Bloat-Active) are more similar to
those taken prior to placement (Fig 4B). Then there was a noticeable change in community
structure between the Bloat-Active and Active stages corresponding to when decomposition
fluids enter the soil. Interestingly, the last stage (Advanced III) clusters with the early samples,
suggesting a possible return toward the original community structure (Fig 4B).

Unsurprisingly, the gut samples were dominated by Bacteroidetes (57%) and Firmicutes
(32%) sequences, and showed little variability between the four cadavers. We observed a de-
crease in compositional variability in the soils below the four cadavers as decomposition pro-
gressed (Fig 5), indicating that the communities responded in a similar manner towards a
common decomposer community. In these bacterial communities, the majority of the se-
quences assigned to Proteobacteria (ranging from 30 to 40% mean relative abundance for the 4
cadavers), Actinobacteria (15 to 23%) or Firmicutes (13 to 26%). Although the relative abun-
dance of Proteobacteria as a phylum remained constant throughout the study, relative abun-
dances of several Proteobacteria OTUs were significantly altered as decomposition progressed
(Fig 6): Alphaproteobacteria and Gammaproteobacteria tended to increase (orders Enterobac-
teriales, Xanthomonadales, Rhizobiales, and Sphingomonadales), while Betaproteobacteria had

Fig 3. Richness and diversity of soil microbial communities below decomposing cadavers. A. Chao1 richness estimate, and B. Inverse of the Simpson
diversity index, both calculated on libraries of equal size (121,340 sequences). Gut samples were also included for comparison. Mean and standard deviation
of n = 4 cadavers are presented for each stage; means with the same letter are not significantly different (p < 0.05, mixed model ANOVA, Tukey-Kramer post-
hoc). The light grey bar is the mean and standard deviation of the control (no cadaver) soil libraries throughout the duration of the study (n = 8).

doi:10.1371/journal.pone.0130201.g003
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a mixed response with some OTUs increasing (Shinella, Paenalcaligenes, Pseudorhodoferax)
and others decreasing (Naxibacter andMassilia). The mean relative abundance of eleven other
major phyla changed significantly between decomposition stages (Fig 5) (p< 0.05, ANOVA,
Tukey-Kramer post hoc): Acidobacteria, Nitrospira, Verrucomicrobia and Armatimonadetes
sequences were abundant before cadavers were introduced and during the early stages of ca-
daver decomposition, but declined to less than 15% of their original abundance during later
stages. Within these phyla, several OTUs that were abundant in control and initial soils de-
clined to< 0.1% in late Advanced Decay stages (Fig 6). Of note, several OTUs had slight in-
creases in abundance in the final Advanced Decay III stage (Fig 6), likely contributing to the
increased richness observed (Fig 3A), and return towards the original community composition
(Fig 4B). Actinobacteria sequence abundances increased throughout decomposition, with the
phyla increasing from 3.9% to 12.9%. Planctomycetes decreased during Bloat-Active through
Advanced Decay II, but then returned to their original relative abundance in Advanced III. Fir-
micutes followed an opposite pattern to Planctomycetes, increasing during decay, with the
phylum relative abundance reaching a maximum of 50.9% during Advanced I and declining to
23% by Advanced III. This was driven by several Firmicutes OTUs. An exception was Pasteuria
spp. (Order Bacillialies), an obligate parasite of invertebrates, which was abundant initially and
declined through decomposition. Phylum Bacteroidetes relative abundances peaked during
Bloat-Active (7.4%) due in part to the proliferation of Terrimonas, and again in Advanced III
(10.7%), due in part to proliferation of Niabella and Nubsella.

We specifically examined the OTUs which explained the greatest variability between succes-
sional communities using SIMPER analysis in Primer. In particular, we examined the differ-
ence between communities in Bloat-Active and Active (stage 3 and 4) which had the biggest
compositional change (Fig 4B), as well as a comparison of communities from Active (stage 4)

Fig 4. Microbial community structure in soils below decomposing cadavers. A. NMDS ordination of
Bray Curtis dissimilarities between the relative abundance of bacterial OTUs. Shapes denote the 4 cadavers:
A3 (square), B4 (diamond), C5 (hex), D6 (circle). Crossed symbols are control (no cadaver) samples. B.
Second stage NMDS comparing the stages of decomposition, with arrows denoting order of stages
through time.

doi:10.1371/journal.pone.0130201.g004
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and Advanced I (stage 6) since these were the communities exhibiting the highest rates of respi-
ration. In both cases, the analysis revealed that the differences in communities were due to
changes in many taxa with relatively small contributions, the highest contribution being 0.36%
(data not shown).

Tracking human-associated bacteria in soil
To test the hypothesis that human-associated microbes entered the soil, and to determine their
persistence throughout decomposition, we examined the relative abundance of human-specific
OTUs that appeared in the soils during decomposition (Fig 7). OTUs were selected that had
relative abundances of> 0.05% in gut communities, < 0.02% in the initial and control soils,
and> 0.02% in CDI soils. We found several that met these criteria: Bacteroides, Staphylococcus,
and Enterococcus OTUs peaked in abundance during Active Decay. Lactobacillus, Phascolarc-
tobacterium, and EggerthellaOTUs peaked during early Advanced Decay (Fig 7). In addition,
we specifically quantified human-associated Bacteroides, one of the most common gut bacteria,
using a highly sensitive qPCR assay targeting its 16S rRNA genes [45] for 3 of the 4 cadavers
(C5 was not included in this analysis due to early removal of remains). During decomposition,
there was a significant increase in human Bacteroides genes after Bloat-Active when decompo-
sition fluids enter the soil (p< 0.05, Wilcoxon Rank Sum test) (Fig 8), with quantities remain-
ing elevated through Advanced Decay III. Total bacterial 16S rRNA counts measured via qPCR
in the CDI soils were not significantly different than their respective controls (data not shown,
mixed model ranked ANOVA), so changes in Bacteroides abundances were not due to changes
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Fig 5. Bacterial phyla in soils below cadavers at different stages of decomposition. The data are the mean relative abundances of the 12 most
abundance phyla from four cadavers.

doi:10.1371/journal.pone.0130201.g005
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Fig 6. Bacterial OTUs that significantly change between stages of decomposition.Mean relative abundances (n = 4) of OTUs that are significantly
different between stages (p < 0.05, ANOVA, Tukey-Kramer post-hoc). Only OTUs with more than 0.001%mean relative abundance in at least one stage and
an effect size of 0.50 or larger are included here.

doi:10.1371/journal.pone.0130201.g006
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in total bacterial abundances. Because of the unexpected persistence of Bacteroides, we addi-
tionally examined their persistence in soils after the cadaver remnants were removed from the
surface for 3 cadavers (removal occurred at 340, 303, and 219 days after placement for A3, B4
and D6 respectively). Bacteroides gene copies remained high 4 days after removal, decreased by
126 days, and were not detected at 204 days after removal.

Discussion
Cadavers decomposing on the soil surface caused significant changes to the soils and soil mi-
crobial communities below. As would be expected upon the introduction of a complex mixture
of substrates from cadaver decomposition products, there were changes in many taxa contrib-
uting to the succession of microbial community structure. We documented both functional
and compositional shifts in microbial communities. In particular, the major changes seem to
correspond to two distinct times in the decay process: first, when the body integrity was com-
promised and decomposition fluids first enter the soil (Bloat to Active Decay stages) and sec-
ond, once most tissue was decomposed and mass loss rates of the cadaver slowed (Active to
Advanced Decay stages).

Prior to placement of the cadavers, the initial (and control soil) bacterial communities were
typical of a forest soil: Proteobacteria, Acidobacteria, Verrucomicrobia, Bacteroidetes, Actino-
bacteria and Planctomycetes dominated [49]. Once the body integrity was compromised (Bloat
and Bloat-Active stages), a rapid flush of decomposition fluids entered the soil, increasing ex-
tractable carbon and nitrogen (particularly ammonia), and elevating respiration rates. As total

Fig 7. Human-associated bacterial OTUs detected in soils below decomposing cadavers.Mean relative abundances (n = 4) by decomposition stage.
These OTUs were selected because they were present at > 0.05% in gut communities < 0.02% in the initial and control soils and > 0.02% in soils below
cadavers during decomposition. uc = unclassifiable with at least 80% confidence using the RDP classifier.

doi:10.1371/journal.pone.0130201.g007
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bacterial abundances were not significantly different from control soils, this increase in activity
was due to changes in metabolism and/or community structure. Indeed, biomass production
rates were elevated, resulting in microbial growth efficiencies similar to control soils. In addi-
tion, the input of new N-rich substrates resulted in elevated N mineralization. This enhanced
microbial N turnover has been documented during carcass decomposition [8] as would be ex-
pected for a N-limited forest soil community [50].

The Active Decay bacterial communities were different from the original soil community:
this community was dominated by Proteobacteria and Firmicutes, with decreased relative
abundances of Verrucomicrobia, Planctomycetes, and Acidobacteria compared to the initial
communities. Verrucomicrobia and Planctomycetes generally have high metabolic require-
ments [51], they were likely outcompeted by fast-growing organisms (e.g. Proteobacteria) re-
sponding to the initial input of new, labile substrates. Acidobacteria abundances are often
correlated to soil pH [52], however the pH ranges observed in our study (pH 5.5 to 7.5) were
too small to explain the changes. Instead, their decline could be due to the fact that Acidobac-
teria often exhibit oligotrophic attributes: Fierer et al. [53] found this phylum most abundant
in soils with low resource availability and least abundant in high organic carbon- amended
soils. In addition to the selection of soil flora imposed by the newly introduced substrates, we
also observed human-associated bacteria in the soils that were absent or rare in the initial soil

Fig 8. Abundance of human-associatedBacteroides in soils below decomposing cadavers.Mean and standard deviation (n = 3 cadavers)
abundances for each decomposition stage; means with the same letter are not significantly different (p < 0.05, mixed model ANOVA, Tukey-Kramer post-
hoc).

doi:10.1371/journal.pone.0130201.g008
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communities. Interestingly, the relative abundance of Bacteroidetes, another common gut phy-
lum, did not significantly change; this was due to a concurrent increase in human-associated
genera (e.g. human-associated Bacteroides) and decrease in soil genera (e.g. Terrimonas). Met-
calf et al. [23] observed similar changes in phyla in soils below decomposing mice in a con-
trolled lab study: Firmicutes increased, Acidobacteria decreased, and Bacteroidetes did not
change.

The second major transition occurred when decay rates begin to slow (Active-Advanced
stage). Soil carbon and nutrients were still elevated, but there was a change in microbial activi-
ty. Respiration rates exhibited a second spike in early Advanced Decay, however unlike Active
Decay, this was accompanied by a dramatic decrease in biomass production rates and ammo-
nia accumulation. Since the leucine incorporation method has been shown to work equally
well in oxic and anoxic environments [54], these low rates are indicative of a functionally dis-
tinct community compared to that of Active Decay: one with low growth efficiency and slow N
mineralization. Again, total bacterial abundances had not changed significantly, so activity
changes were due to changes in metabolic strategies and/or community composition.

Indeed, the microbial community structure during Advance Decay was different from that
of the Active Decay communities. This bacterial community was dominated by Firmicutes,
representing over half of the community. Within Firmicutes, we observed decreased abun-
dances of aerobic Bacillales, and increased abundances of anaerobic Clostridiales (Tissierella
and Anaerosphaera) and Lactobacillales (Lactobacillus and Phascolarctobacterium). We also
observed increases in the anerobic Paenalcaligenes and Eggerthella. Lactobacillales and
Eggerthella were present in the guts of these cadavers, indicating a likely human origin. Tissier-
ella and Anaerosphaera have been identified in other anoxic environments (e.g. [55,56]). Pae-
nalcaligenes spp. have been isolated from several environments, including Hermetia illucens
(Black Soldier Fly) larvae [57], an insect frequently found on cadavers during late stages of
decay [58], suggesting a possible entomological origin. Regardless of origin, the proliferation of
these anaerobes and low microbial growth efficiency at this stage of decay indicates that oxygen
had become limited in these soils and anaerobic metabolisms more prevalent.

Decomposition products have been shown to remain in soils for months after carcasses
decay [21]. In our study, carbon and nutrients slowly declined as Advanced Decay progressed.
This was accompanied by a decline in respiration rates. Biomass production rates began to re-
cover. The anaerobic Firmicutes declined in the later stages and we observed blooms of a varie-
ty of taxa, including Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, and
Bacteroidetes, contributing to an increase in richness and diversity in the final stage. The late
appearance of these taxa suggest they may have been using more chemically complex decom-
position products, secondary metabolites, or recycling dead microbial cells. The clustering of
the final stage communities with the beginning communities (Fig 4B), suggests that these com-
munities may have been resilient to the perturbation (vis a vis [59]), however a longer time
scale would be needed to determine if this was the case. Certainly the persistence of human-as-
sociated taxa indicates that even after> 83 days, the communities remain altered.

Decomposition is a high variable process, and it was noted that one of the four cadavers
(B4) had a decomposition community structure distinct from the other three. The gut flora of
this cadaver was similar to the others, and the initial and control soil communities from the
plot clustered with the other plots, however the trajectory of the community during decay was
slightly different. This could have been due to environmental differences: the plot was on a
greater slope than the others and the cadaver was placed during an unusually hot time period
in the summer, experiencing the highest mean temperature through active decay stage (27.8°C,
compared with 22.4, 26, and 17.2°C for the other cadavers). Regardless of these inter-cadaver
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differences, the major trends in functional and structural succession described above held true
for all four cadavers, indicating a common decay community progression.

We specifically hypothesized that human-associated microbes would enter the soil but not
persist outside their host environment. As decomposition fluids entered the soil, we docu-
mented the appearance of several OTUs classified as known human commensals that were rare
or non-existent in initial and control soils. Surprisingly, signatures of the obligate anaerobe
Bacteroides persisted in high abundances in the CDI soils throughout the entire duration of the
experiment, up to 198 days after cadaver placement. Once the dry remains of the cadavers were
removed, abundances declined to below detection. While the presence of DNA sequences does
not reveal if the organisms were viable, this observation does suggest that the reduced oxygen
environment created by the tissue remnants was favorable for the anaerobic Bacteroides. The
fate of human-associated microbes in the environment has been examined for some pathogens,
e.g. Salmonella spp., Camplyobacter spp. and Escherichia coli O157 [60,61]. Survival rates var-
ied depending on environmental conditions, but in all cases, the organisms declined in the soil
environment, attributed largely to predation and competition from the indigenous soil com-
munity [62–65]. Due to the absence of comparable studies with Bacteroides, we can only specu-
late on the possible explanation for their persistence. It is likely that a combination of favorable
conditions allowed them to persevere in the soil environment: pH ranges between five and
eight, clayey soils with high water retention, anoxia, and an availability of SOM adsorption
sites all increased survival times of fecal bacteria in soil [60,66]. Anoxic soils have been shown
to share some species with vertebrate gut environments [37]. Now that we know these human-
associated microflora persist much longer than expected, it raises questions about the interac-
tions with indigenous soil microbes and their role in decomposition. The persistence of
human-associated taxa in soil also suggests that they may be useful as biomarkers of human de-
composition for forensic applications, since they are rare in natural soils and increase in abun-
dance during the later stage of decay. The relationship of human microflora to time since death
has been examined for bacterial communities on or inside human cadavers [25,26]; here we
demonstrate that soil communities, too, exhibit postmortem patterns. Using soil communities
as forensic evidence could prove useful in cases where body remains have been moved from
the original location of decomposition.

Conclusions
In summary, this study has revealed that microbial communities in soils below decomposing
cadavers undergo distinct functional and structural changes. In particular, we noted that dur-
ing Active Decay (period of most rapid mass loss), microbial growth efficiency was high and
communities are dominated by more opportunistic, aerobic decomposers. When decomposi-
tion rates slow at the onset of Advanced Decay, anaerobic taxa proliferate and microbial
growth efficiencies are low. We have additionally provided evidence that human-associated
microbes persist in the soils for surprisingly long periods of time, suggesting a possible role
in decomposition. Their low abundances in natural soils and significant increases during
decay render them good candidates as biomarkers for long-term postmortem interval
estimates.
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