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Abstract

Background—Craniosynostosis (CS), the premature fusion of one or more neurocranial sutures, 

is associated with approximately 200 syndromes; however, about 65%−85% of patients present 

with no additional major birth defects.

Methods—We conducted targeted next-generation sequencing of 60 known syndromic and other 

candidate genes in patients with sagittal nonsyndromic CS (sNCS, n=40) and coronal 

nonsyndromic CS (cNCS, n=19).

Results—We identified 18 previously published and five novel pathogenic variants, including 

three de novo variants. Novel variants included a paternally-inherited c.2209C>G:p.(Leu737Val) 

variant in BBS9 of a patient with cNCS. Common variants in BBS9, a gene required for 

ciliogenesis during cranial suture development, have been associated with sNCS risk in a previous 

genome-wide association study. We also identified c.313G>T:p.(Glu105*) variant in EFNB1 and 

c.435G>C:p.(Lys145Asn) variant in TWIST1, both in patients with cNCS. Mutations in EFNB1 
and TWIST1 have been linked to craniofrontonasal and Saethre-Chotzen syndrome, respectively; 

both present with coronal CS.
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Conclusions—We provide additional evidence that variants in genes implicated in syndromic 

CS play a role in isolated CS, supporting their inclusion in genetic panels for screening patients 

with NCS. We also identified a novel BBS9 variant that further shows the potential involvement of 

BBS9 in the pathogenesis of CS.

INTRODUCTION

Craniosynostosis (CS, MIM #123100) is the second most common craniofacial birth defect 

after orofacial cleft defects [1] and affects as many as 1 in 1400 live births [2]. Children with 

CS may experience significant medical problems such as increased intracranial pressure, 

vision and hearing impairments, breathing and dentition problems, and developmental 

disabilities [3]. There is no pharmacological treatment available and surgical treatments such 

as open calvarial reconstruction, strip craniectomy, and cranial distraction or surgical suture 

opening are frequently used [4].

CS is known to have a complex etiology with both environmental and genetic risk factors 

[4]. Although CS may occur as part of approximately 200 syndromes (Table S1), about 65% 

- 85% of the patients present with nonsyndromic craniosynostosis (NCS), i.e. no other 

related major birth defect or recognized syndrome [1,5]. Sagittal NCS (sNCS, 40% of all 

NCS patients) [2,5] and coronal NCS (cNCS, 18% - 30% of all NCS patients) [5–7] are two 

of the most common NCS subtypes. sNCS is three times more prevalent in males relative to 

females, whereas unilateral cNCS is two times more common in females relative to males 

[8].

A positive family history of CS has been reported for approximately 6% of sNCS [9], and 

8%−15% of cNCS patients [6,7]. Also, twin studies of sNCS report a higher concordance 

rate in monozygotic (30%) than dizygotic (0%) twins [3,10]. Additionally, a recent study 

reported that 3% of patients with no clinical evidence of a syndrome had mutations in genes 

that are commonly associated with syndromic CS [5].

In a genome-wide association study (GWAS), our group identified regions downstream of 

BMP2 and in introns of BBS9 gene that were associated with an increased risk of sNCS. 

However, no functionally significant coding variants within the GWAS association peaks 

were identified [11]. Despite the evidence supporting the role of genetics in the pathogenesis 

of NCS and recent studies reporting pathogenic variants in known syndromic genes among 

patients with NCS [12–14], our understanding of the role of functionally relevant mutations 

in the genes associated with syndromic CS, as well as within additional NCS susceptibility 

loci, in NCS development remains limited.

The goal of this study was to identify variants associated with sNCS and cNCS by 

conducting targeted next-generation sequencing (NGS) of previously known syndromic CS 

genes, as well as the susceptibility loci linked to sNCS in our previous GWAS [11].
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MATERIALS AND METHODS

Study samples

Patients were live-born children with sagittal or coronal (unilateral or bilateral) CS 

enumerated from the Iowa Registry for Congenital and Inherited Disorders, the New York 

State Congenital Malformations Registry [15], and the Hospital Sant Joan de Déu in 

Barcelona, Spain. The patients with CS that had any other major birth defect or had a 

monogenic or chromosomal abnormality were excluded. Saliva specimens were collected 

from the patient and available parents from all sites, except patients from Barcelona for 

which blood samples were collected during preoperative tests. The patient diagnosis was 

confirmed by clinicians and clinical geneticists at each institution through review of clinical 

and imaging records. Overall, 59 NCS specimens from 28 patients (19 sNCS and 9 cNCS) 

from Iowa/New York State and 31 patients (21 sNCS and 10 cNCS) from Spain were 

selected for further study (Table 1). The study was performed with the approval of the 

Institutional Review Boards at Icahn School of Medicine at Mount Sinai and the University 

of Iowa, and the Helsinki Committee at Hospital Sant Joan de Déu, Barcelona, Spain. All 

participants provided signed informed consent.

Targeted next-generation sequencing

A custom-designed NGS panel included genes previously reported in association with 

syndromic CS, NCS, and top susceptibility loci identified in our previous sNCS GWAS [11]. 

The regions we targeted were selected based on extensive literature review (Table S1). In 

total, we analyzed 60 genes, 54 sequenced at the genome level, including 1000 bases 

upstream and downstream of each gene (Table S1), and 6 sequenced for exons, including 

100 bases upstream and downstream regions of each exon (Table S2). Our custom capture 

array, covering approximately 7 million bases, was designed using NimbleGen Seqcap EZ 

Choice kit (Roche®, Basel, Switzerland). NGS was done at the DNA Core, Icahn School of 

Medicine at Mount Sinai, New York, using the HiSeq 2500 high-throughput sequencing 

platform (Illumina®, San Diego, California) (Supplementary Methods).

Data analysis

Alignment and variant calling using raw paired-end sequence reads was completed using the 

inhouse ‘GATK Best Practices’ based pipeline (Supplementary Methods). Variants were 

filtered to keep only high-quality single nucleotide variants (SNVs) that are either novel, that 

is, not previously reported in public databases (gnomAD, Bravo, 1000 Human Genomes 

Project, Exome Sequencing Project or dbSNP; Table S3) or known but rare variants (minor 

allele frequency, MAF < 1% in the gnomAD non-Finnish Europeans database). Functional 

annotation of these variants was performed using SnpEff version 3.5 [16], SIFT [17], 

Polyphen2 [18] and Combined Annotation Dependent Depletion (CADD) [19]. SNVs were 

considered pathogenic, if they met all of the following criteria: CADD phred-scaled score 

>20, SnpEff ‘moderate’ or ‘high’ functional impact prediction, ‘deleterious’ according to 

SIFT and ‘damaging’ or ‘probably damaging’ according to Polyphen2. We sorted all novel 

SNVs by predicted impact on protein function, using evolutionary conservation patterns 

through integration of the functional predictions and variant distribution statistics as 

implemented in Mutation Assessor [20].
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Sanger sequencing analysis

Novel SNVs were further validated in probands and available parents using Sanger 

sequencing. The primers were designed using PrimerQuest Tool (Integrated DNA 

Technologies®, Skokie, Illinois) (Table S4). Standard methods were used to prepare the 

samples before sending them for Sanger sequencing (Genewiz®, South Plainfield, New 

Jersey) (Supplementary Methods). Analysis was done through Sequencher® v5.4.6 DNA 

sequence analysis software (Gene Codes Corporation, Ann Arbor, Michigan) where 

assembly parameters were kept as default and SNPs were called with a 20% secondary peak 

height and confirmed through the UCSC Genome Browser (https://genome.ucsc.edu/). All 

novel SNVs identified and validated in our study have been submitted to the Leiden Open 

Variation Database (http://www.lovd.nl)

RESULTS

Of the 59 patients in our study, 32.5% sNCS and 73.7% cNCS patients were females, and 

the cohort was predominantly Caucasian (Table 1). Targeted NGS was performed on 60 

genes including their regulatory regions (total 6,858,924 bases) spanning across autosomes 

and the X-chromosome (Figure S1, Table S1, and Table S2). There were 96.1% paired-end 

reads that aligned successfully and the mean depth of coverage was 90x across all targeted 

bases and specimens. After performing standard quality control procedures, 30,571 high 

quality SNVs were functionally annotated.

A total of 23 rare SNVs (novel or known) predicted to be pathogenic were identified in 17 

genes. Seven of 19 cNCS patients and 17 of 40 sNCS patients had at least one of these 

pathogenic novel or known SNVs.

Novel variants

We identified five novel, heterozygous coding SNVs predicted to be pathogenic (Table 2). 

All SNVs were singletons whereby each variant was observed in only one proband in our 

cohort and had a CADD-phred scaled score >25. After Sanger sequencing of probands and 

available parents, we determined that three novel SNVs were de novo and two were 

paternally transmitted to probands. No craniofacial defects were reported in these parents. A 

novel paternally transmitted c.2209C>G:p.(Leu737Val) variant was identified in BBS9 
(Figure S2) in a patient with right cNCS. This variant lies 121kb away from the BBS9 peak 

identified in our previous sNCS GWAS [11]. Another novel paternally inherited c.

126G>C:p.(Lys42Asn) variant was identified in ALX4 in a patient with sNCS. In EFNB1 
we detected a novel, de novo c.313G>T:p.(Glu105*) nonsense variant in a patient with left 

cNCS, whereas two novel de novo SNVs were identified in TWIST1 (c.435G>C:p.

(Lys145Asn) and c.421G>C:p.(Asp141His)) (Table 2). We predicted that all novel missense 

variants had functional impact and the amino acid substitutions were evolutionarily 

conserved across several species according to Mutation Assessor (Figure 1).

Known variants

We identified 18 previously observed, heterozygous, rare SNVs (including 12 singletons) 

predicted to be pathogenic (Table 2). Thirteen SNVs were present in patients with sNCS, 
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three SNVs in patients with cNCS, and two SNVs were present in both sNCS and cNCS. 

The top gene with the largest number of SNVs identified was RECQL4 with five different 

variants identified, one in each of five different patients with sNCS patients. A known SNV 

in NOTCH1 was detected in three patients with sNCS, whereas another SNV in NOTCH2 
was detected in two patients with sNCS (Table 2).

In patients with sNCS, we identified pathogenic mutations in genes that were selected in the 

custom panel based on our previous sNCS GWAS [11], namely c.1663C>T:p.(Arg555Trp) 

variant in BMPER of two patients with sNCS, c.467C>T:p.(Thr156Met) variant in ADCK1 
of a patient with sNCS, c.1810A>G:p.(Ile604Val) variant in SHC4 of a patient with cNCS, 

and c.1243C>T:p.(Pro415Ser) variant in PDILT of two patients with sNCS (Table 2).

DISCUSSION

Through targeted sequencing of patients with sNCS and cNCS, we identified several rare 

(MAF<1%), novel, and previously observed variants, predicted to be functionally 

pathogenic, within the loci detected in our previous sNCS GWAS [11] or in the genes 

previously associated with syndromic CS (Table S1).

BBS9 was included in our sequencing panel based on findings from our previous sNCS 

GWAS [11] showing associations with three intronic SNVs (rs10262453, rs1420154, and 

rs17724206) spanning a 167kb region within BBS9 introns 4 and 15 on chromosome 7p14.3 

(Figure S2) [11]. Resequencing of BBS9 in patients with NCS led to identification of a 

paternally transmitted novel pathogenic c.2209C>G variant in a female patient with right 

cNCS; the variant is located approximately 121kb from another GWAS peak at rs17724206 

(Figure S2) [11]. BBS9 is essential for proper BBSome complex assembly which is required 

for ciliogenesis [21] a process involved in cranial suture pathophysiology [22]. Analysis 

showed that the c.2209C>G variant affects a site that is well-conserved across several 

species (Figure 1c) suggesting the role of this locus in key biological functions. Despite the 

role of BBS9 in ciliogenesis, no coding variants in this gene have been linked to CS 

previously.

Our study also included genes near or containing additional loci that showed suggestive 

evidence of an association (p<10−5) in the sNCS GWAS [11]. We identified several rare 

previously observed variants predicted to be pathogenic in SHC4, ADCK1, and PDILT in 

four patients with both cNCS and sNCS (Table 2; Figure S3). Further replication in an 

independent cohort and experimental validation are needed to confirm the association 

between NCS and these variants.

There are numerous genes reported over the last several decades with mutations linked to 

syndromic forms of CS, as reviewed by Flaherty et al [1] and Wilkie et al [5]. Although 

recent studies have established a link between some of these genes and NCS [12,23,24], 

systematic screening of these genes in patients with NCS is still lacking. We report a novel, 

de novo c.313G>T, nonsense variant in EFNB1 of a female patient with left cNCS. EFNB1 
encodes a type-I membrane protein which is a ligand of Eph-related receptor tyrosine 

kinases. EFNB1 has been linked to craniofrontonasal syndrome (MIM #304110), an X-
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linked inherited syndrome with a coronal CS phenotype. A mouse study identified multiple 

defects in ephrinB1-deficient mice including shortening of skull and cleft palate [25]. 

Multiple heterozygous variants have been identified in association with coronal CS 

phenotype in another ligand of Eph receptor, ephrin-A4 (EFNA4) in humans [26] and mice 

[27]. However, variants in EFNB1 have not been reported previously in patients with NCS.

We also identified novel variants in the extensively studied syndromic CS gene, TWIST1. 
TWIST1 is a transcriptional regulator that helps maintain coronal suture integrity and 

interacts downstream with ephrin receptors [26]. TWIST1 haploinsufficiency is associated 

with Saethre-Chotzen syndrome (MIM #101400) that is characterized by coronal CS as one 

of the phenotypes [28]. Also, TWIST1 has been reported in association with sNCS and 

cNCS previously [5,15,29]. The two novel TWIST1 SNVs (c.435G>C and c.421G>C) we 

identified were in two male patients with bilateral cNCS. During surgery, the proband with 

c.435G>C mutation was also identified as having sagittal suture closure. However, despite a 

multi-suture phenotype, no known clinical syndrome could be determined in this patient. 

Analysis with Mutation Assessor showed that p.(Lys145Asn) amino acid change affects the 

evolutionarily conserved residue and one of the key binding site residues (Figure 1a), 

whereas p.(Asp141His) amino acid change affects one of the high-scoring specificity 

residues (i.e. residues conserved within protein subfamilies) (Figure 1b) [20].

Our sequencing also identified a novel c.126G>C variant in ALX4 of a male patient with 

sNCS. This gene encodes a paired-like homeodomain transcription factor expressed in the 

mesenchyme of developing bones [30] and the mutation affects the evolutionarily conserved 

residue (Figure 1d). Mutations in ALX4 cause a form of frontonasal dysplasia (MIM 

#613451) with alopecia and hypogonadism [30] suggesting a role for this gene in 

craniofacial development and mesenchymal-epithelial communication. Deletion of a 

segment of chromosome 11 containing ALX4, del(11)(p11p12), causes Potocki-Shaffer 

syndrome (MIM #601224); a syndrome characterized by craniofacial anomalies [31]. ALX4 
has not been previously reported in patients with NCS.

Given the evidence for familial recurrence of NCS [6,7,9], chromosomal microarray testing 

has been recommended in patients with birth defects particularly if syndromic CS is 

suspected [5]. Recently, targeted NGS of known disease susceptibility genes has become a 

useful tool to identify novel variants in patients with NCS [32]. Several of our genes, 

including ALPL, RECQL4, SH3PXD2B, TGFBR2 and ephrin family of genes (EFNA4 and 

EFNB1) have been implicated in NCS in previous DNA resequencing [12] and RNA 

sequencing studies [14]. Of note, while the same genes have been identified in multiple 

studies, often associated with the same affected cranial sutures, the individual mutations 

were unique. This suggests that chromosomal microarray testing panels might not fully 

capture all susceptibility loci and DNA resequencing should be recommended for genetic 

testing of patients when NCS is suspected.

Moreover, craniofacial surgery currently remains the only option to repair abnormally closed 

sutures with no preventive measures yet available. Pharmacologic strategies are being tested 

in model systems to alter cranial suture fate at the biomolecular level and prevent CS. These 

experiments target known genes such as FGFR2, mutations in which cause several 
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syndromes with a CS phenotype. Several in vivo and in vitro studies using MEK1/2 or p38 

inhibitors ameliorated the CS phenotype in Fgfr2+/S252W, Fgfr2+/Y394C, and Fgfr2P253R/+ 

mice [33–36]. Two similar studies observed that treatment with FGFR signaling inhibitors in 

organ culture of calvaria derived from Fgfr2C342Y/+ Crouzon syndrome mouse prevented 

premature suture fusion [37,38]. These approaches have yet to be clinically translated in 

humans; nonetheless, they emphasize the importance of detecting genes and biological 

pathways involved in CS as potential avenues for development of future early diagnostic 

tools and therapeutics.

Our study has several strengths. We used samples from patients with well-characterized 

phenotypes for CS. We also conducted a systematic screening of a large number of known 

genes associated with syndromic CS exclusively in patients with NCS using high-resolution 

NGS. We identified pathogenic missense variants in several genes that were previously 

reported only in association with syndromic CS. In addition, we identified novel coding 

variants predicted to be functionally pathogenic, in the previously reported sNCS GWAS 

loci, including BBS9 [11]. We validated novel findings through Sanger sequencing and 

further sequenced parental samples to identify whether the variants were de novo or 

transmitted through parents.

Our study has some limitations. We performed targeted sequencing of 60 candidate genes 

and genetic regions with previous evidence of involvement in calvarial development, 

syndromic CS, or NCS. However, several genes were reported in association with syndromic 

CS and NCS after we designed our custom panel and, therefore, were not examined in this 

study including CDC45, FLNA, PTH2R, SIX2, SMO, SMURF1, SPRY1, SPRY4 and ZIC1 
(Table S1). Screening panels need to be continuously and collaboratively updated to include 

newly identified CS-associated genes before genome-wide sequencing approaches become 

more affordable. Also, we have reported only those novel and known variants that were 

sequenced at high-quality and were rare across all reference populations (MAF<1%). 

Genome-wide screening of common and low frequency variants in large cohorts of NCS 

patients is warranted to confirm our findings and to capture the full spectrum of genes and 

variants involved in the pathogenesis of NCS. Detailed clinical information on CS status or 

skull shape was missing on the parents who transmitted high impact variants to patients with 

NCS, preventing the assessment of penetrance of variants, especially the novel SNVs. 

Moreover, the possibility of a syndrome in the recruited patients cannot be ruled out 

completely as there are certainly recorded instances of reduced penetrance and syndromic 

clinical manifestations becoming more obvious later in life [39,40]. However, as mentioned, 

the nonsyndromic diagnosis was confirmed by clinicians and clinical geneticists at each 

institution through review of clinical and imaging records. Lastly, our study subjects were 

predominantly of European descent and given the significant differences in the genetic 

architecture among various ancestries, especially for rare variants, the novel variants 

identified in our study could be population-specific, limiting the generalizability of our 

findings. Future studies in diverse racial and ethnic groups are needed to better understand 

the genetic risks for NCS.

In summary, we identified several previously unreported variants in genes linked to 

syndromic CS that may play a role in NCS and provide evidence supportive of findings from 
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recent NCS studies of syndromic genes as well as the sNCS GWAS. Given the locus 

heterogeneity of syndromic genes and increasing evidence of involvement of additional 

genes in NCS, we recommend targeted resequencing of candidate genes for genetic testing 

of patients suspected to have NCS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Functional consequences of novel mutations: (a) TWIST1 p.(Lys145Asn) acts as a 

transcriptional regulator for cranial suture patterning and fusion. The mutation affects the 

evolutionarily conserved residue and one of the key binding site residues. Functional impact 

predicted by Mutation Assessor is ‘Medium’. (b) TWIST1 p.(Asp141His) mutation affects 

one of the high-scoring specificity residues, i.e. residues conserved within protein 

subfamilies. Functional impact predicted by Mutation Assessor is ‘Medium’. (c) BBS9 p.
(Leu737Val) is required for proper BBSome complex assembly which is required for 

ciliogenesis. The mutation affects the evolutionarily conserved residue. Functional impact 

predicted by Mutation Assessor is ‘High’. (d) ALX4 p.(Lys42Asn) encodes a paired-like 

homeodomain transcription factor expressed in the mesenchyme of developing bones. The 

mutation affects the evolutionarily conserved residue.
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Table 1.

Description of selected characteristics of 59 sagittal (sNCS) and coronal (cNCS) nonsyndromic 

craniosynostosis patients.

sNCS (n=40) cNCS
a
 (n=19)

Gender

 Female 13 (32.5%) 14 (73.7%)

 Male 27 (67.5%) 5 (26.3%)

Race

 Caucasian 37 18

 Other or Unknown 3 1

Recruitment site

 Iowa, USA
b 14 1

 New York State, USA
c 5 8

 Barcelona, Spain
d 21 10

a
The counts include one white male patient with bilateral cNCS and one white male patient with multi-suture NCS (bilateral cNCS + sNCS); both 

patients were recruited from Barcelona.

b
The Iowa Registry for Congenital and Inherited Disorders, Iowa, USA.

c
The New York State Congenital Malformations Registry, New York, USA

d
Hospital Sant Joan de Déu, Barcelona, Spain..
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Table 2.

Variants predicted to be pathogenic in 59 sagittal (sNCS) and coronal (cNCS) nonsyndromic craniosynostosis 

patients.

Gene Variant gnomAD MAF
a

CADD score
b

Inheritance/ Rs id
c

Gender
d

Affected suture
e

Novel variants

ALX4 NM_021926:c.126G>C; p.(Lys42Asn) . 29.9 Paternal M S

BBS9 NM_198428:c.2209C>G; p.(Leu737Val) . 25.9 Paternal F Right C

EFNB1 NM_004429:c.313G>T; p.(Glu105*) . 37.0 De Novo F Left C

TWIST1 NM_000474:c.435G>C; p.(Lys145Asn) . 29.3 De Novo M Bilateral C+S

TWIST1 NM_000474:c.421G>C; p.(Asp141His) . 27.7 De Novo M Bilateral C

Known variants

ADCK1 NM_020421:c.467C>T; p.(Thr156Met) 1.7E-03 33.0 rs144436820 F S

ALPL NM_000478:c.212G>C; p.(Arg71Pro) 3.64E-05 33.0 rs121918003 M S

BMPER NM_133468:c.1663C>T; p.(Arg555Trp) 8.0E-03 34.0 rs10249320 M (2) S (2)

FREM1 NM_144966:c.3819T>A; p.(Asp1273Glu) 3.3E-03 26.5 rs7025814 M, F S (1), C (1)

FREM1 NM_144966:c.1394G>C; p.(Gly465Ala) 8.3E-03 24.9 rs41298151 M, F S (1), C (1)

JAG1 NM_000214:c.2740G>A; p.(Gly914Arg) 3.00E-05 33.0 rs376630327 F C

NELL1 NM_006157:c.368A>G; p.(Asp123Gly) 1.51E-05 22.9 rs763010935 F Left C

NOTCH1 NM_017617:c.2734C>T; p.(Arg912Trp) 3.3E-03 31.0 rs201620358 F, M (2) S (3)

NOTCH2 NM_024408:c.7223T>A; p.(Leu2408His) 3.6E-03 25.5 rs35586704 F, M S (2)

PDILT NM_174924:c.1243C>T; p.(Pro415Ser) 6.5E-03 27.3 rs139748181 F, M S (2)

RECQL4 NM_004260:c.2435G>A; p.(Cys812Tyr) 6.71E-05 33.0 rs372372052 M S

RECQL4 NM_004260:c.2340G>T; p.(Pro780Pro) 6.76E-05 33.0 rs369488194 M S

RECQL4 NM_004260:c.2237C>T; p.(Ala746Val) 1.0E-04 26.8 rs201883228 M S

RECQL4 NM_004260:c.1565G>A; p.(Arg522His) 2.0E-04 24.6 rs35842750 M S

RECQL4 NM_004260:c.212A>G; p.(Glu71Gly) 8.0E-03 21.6 rs34642881 M S

SH3PXD2B NM_001017995:c.970C>T; p.(Arg324Trp) 6.68E-05 24.2 rs199739437 F S

SHC4 NM_203349:c.1810A>G; p.(Ile604Val) 0 25.3 rs145850141 F C

TGFBR2 NM_001024847:c.1732T>A; p.(Ser578Thr) 3.0E-04 23.6 rs112215250 M S

The gene names in bold text were within the genomic regions selected in our custom panel based on the previous GWAS (1).

a
Minor allele frequency (MAF) in the Genome Aggregation Database (gnomAD) non-Finnish European population. The Exome Aggregation 

Consortium (ExAC) non-Finnish European minor allele frequencies (italicized) are reported for the variants that were not reported in the gnomAD 
database

b
Combined Annotation-Dependent Depletion (CADD) phred-scaled score: 20=1% percentile highest scores, 30%=0.1% percentile highest scores

c
Inheritance status of novel variants and Reference SNP cluster ID (rsID) of known variants

d
Proband’s gender (M=Male, F=Female)

e
Affected cranial sutures (S=Sagittal, C=Coronal) in the proband with nonsyndromic craniosynostosis. The number in parenthesis refers to the 

number of patients in which a variant was present. All pathogenic variants were identified in white patients, except SHC4 and JAG1 pathogenic 
variants; both identified in one Asian patient.
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