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Abstract

Mice lacking either T-cell intracellular antigen 1 (TIA1) or TIA1 related/like protein (TIAR/TIAL1) show high rates of embryonic
lethality, suggesting a relevant role for these proteins during embryonic development. However, intrinsic molecular and
cellular consequences of either TIA1 or TIAR deficiency remain poorly defined. By using genome-wide expression profiling
approach, we demonstrate that either TIA1 or TIAR inactivation broadly alter normal development-associated signalling
pathways in murine embryonic fibroblasts (MEF). Indeed, these analyses highlighted alterations of cytokine-cytokine and
ECM-receptor interactions and Wnt, MAPK, TGF-beta dependent signalling pathways. Consistent with these results, TIA1 and
TIAR knockout (KO) MEF show reduced rates of cell proliferation, cell cycle progression delay and increased cell size.
Furthermore, TIA-proteins deficiency also caused metabolic deficiencies, increased ROS levels and DNA damage, promoting
a gentle rise of cell death. Concomitantly, high rates of autophagy were detected in both TIA1 and TIAR KO MEF with
induction of the formation of autophagosomes, as evidenced by the up-regulation of the LC3B protein, and autolysosomes,
measured by colocalization of LC3B and LAMP1, as a survival mechanism attempt. Taken together, these observations
support that TIA proteins orchestrate a transcriptome programme to activate specific developmental decisions. This
program is likely to contribute to mouse physiology starting at early stages of the embryonic development. TIA1/TIAR might
function as cell sensors to maintain homeostasis and promote adaptation/survival responses to developmental stress.
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Introduction

The T-cell intracellular antigen 1 (TIA1) and TIA1 related/like

(TIAR/TIAL1) proteins were initially identified associated to

nucleolysins and polyadenylate binding proteins localized to the

granules of cytolytic lymphocytes and involved in apoptosis by

DNA fragmentation [1], [2]. These proteins are RNA-binding

proteins highly conserved in mammals with structural and

functional homologs in other eukaryotic organisms, thus revealing

the ancestral importance of these functional regulators across the

evolution [3–5].

TIA1 and TIAR are multifunctional proteins that modulate

many aspects of RNA metabolism -both in the nucleus and

cytoplasm- at different regulatory levels of gene expression. For

example, they modulate DNA-dependent transcription by inter-

acting with DNA and RNA polymerase II [6–9], they control

alternative splicing of pre-mRNA (around 10% of splicing events

in human) by facilitating the selection of atypical 59 spliced sites

[10–13] and they also regulate stability and/or translation of

eukaryotic mRNAs by binding to the 59 and/or 39 untranslatable

regions [13–22].

TIA proteins are known to target genes with relevant biological

implications in apoptosis, inflammation, cell responses to stress,

viral infections and oncogenesis [1], [2], [18], [20–24]. Further,

these proteins seem to have an important role during embryo-

genesis. For example, mice lacking either TIA1 or TIAR, as well

as ectopically over-expressing TIAR, show higher rates of

embryonic lethality [18], [25], [26].

Although the role of TIA proteins in key cellular processes

involving inflammatory and the stress responses are well estab-

lished, their roles on developmental and patho-physiological

programs have not been elucidated yet. In this work, we approach

the characterization of molecular and cellular phenoypes associ-

ated to the TIA1 or TIAR knocked-out murine embryonic

fibroblast (MEF) cells. Our results point out that TIA proteins

control cell cycle and proliferation and provide evidence

suggesting that they function as cellular sensors controlling

autophagy and cell death responses.

Materials and Methods

Cell cultures and reagents
Immortalized murine embryonic fibroblast wild type knock-out

for either TIA1 or TIAR [18], [25] were maintained as described

previously [27]. For protein labelling, MEF cells incubated with

methionine-cysteine free DMEM supplemented with 5 ml Easy

TagTM EXPRESS [35S] Protein Labeling mix, [35S]-Met-Cys

(11 mCi/ml, 37.0 Tbq/mmol; Perkin Elmer) for 30 min. To
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inhibit autophagy, MEFs were treated with 10 mM chloroquine

(CQ) (Sigma) for 96 h. For hydrogen peroxide (H2O2) treatment,

MEF cells were incubated with the indicated H2O2 concentrations

in normal medium for 6 hours or 3 days.

Preparation of cell extracts and western blot analysis
Whole-MEF cell extracts were performed and processed as

described previously [27]. Immunoblots were carried out using the

following antibodies: anti-TIA1 and anti-TIAR (Santa Cruz

Biotechnology), anti-a-tubulin (Sigma), anti-U2AF65 (kindly

provided by J. Valcárcel), anti-Cdc-2 and anti-Cdc2-P (Y15) (Cell

Signaling), anti-Cyclin B1 (BD Pharmingen), anti-LC3B (Sigma),

anti-p62 (Sigma) and anti-LAMP1 (DSHB).

DNA purification, RNA isolation, semiquantitative and
quantitative RT-PCR analysis

DNA purification was performed using DNeasy Blood and

Tissues kit (Qiagen). Total RNA isolation, semiquantitative RT-

PCR and quantitative PCR analysis were carried out as described

previously [20], [27].

Transcriptome analysis
RNA quality check, amplification, labelling, hybridization with

Array SurePrint Mouse G3 8660 (Agilent, G4852A) and initial

data extraction were performed at the Genomic Service Facility at

the Centro Nacional de Biotecnologı́a (CNB-CSIC). Comparison

of multiple cDNA array images (two independent experiments per

biological condition tested) was carried out by using an average of

all of the gene signals on the array (global normalization) to

normalize the signal between arrays. Local background was

corrected by normexp method with an offset of 50. Background

corrected intensities were transformed to log scale (base 2) and

normalized by loess for each array [28]. Finally, to have similar

intensity distribution across all arrays, loess-normalized-intensity

values were scaled by adjusting their quantiles [29]. After data

processing each probe was tested for changes in expression over

replicates using an empirical Bayes moderated t statistic [30]. To

control the false discovery rate (FDR), P values were corrected

using the method of Benjamini and Hochberg (1995) [31].

FIESTA viewer (http://bioinfogp.cnb.csic.es/tools/ FIESTA) was

used to visualize all microarray results and to evaluate the

numerical thresholds (22.Fold change.2; FDR LIMMA,0.05)

applied for selecting differentially expressed genes [32]. Micro-

array data discussed in this publication have been deposited in the

NCBI Gene Expression Omnibus database (http://www.ncbi.

nlm.nih.gov/ geo/info/linking.html) and are accessible through

the GEO Series accession number GSE43077. The Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) database analyses were conducted using software

programmes provided by GenCodis3 (http://genecodis.cnb.

csic.es) [33], [34].

The validation of microarray analysis for TIA1/TIAR-regulat-

ed genes was carried out by quantitative PCR (QPCR) using

SYBR green method. Reverse transcriptase (RT) reactions and

real-time PCR (PCR) were performed according to manufacturer

protocols at the Genomic PCR Core Facility at the Centro de

Biologı́a Molecular Severo Ochoa (CBMSO-CSIC). Analysis were

performed in two independent samples by triplicate, including no-

template and RT-minus controls. GAPDH expression was used as

endogenous reference control. Relative mRNA expression was

calculated using the comparative cycle threshold method.

Cell and growth proliferation
For cell proliferation analysis, wild-type MEF and TIA1 or

TIAR knocked-MEF were seeded (1.5 104/well) in six-well plates

and collected for counting at the indicated time points. Cell

growth was quantified by measuring the conversion of methyl

thiazolyl tetrazolium (MTT) (Sigma) into DMSO-soluble forma-

zan by living cells, with absorbance measured at 570 nm using a

spectrophotometer [23].

Analysis of the cell-cycle in not-synchronized and
synchronized MEFs

Cell-cycle analysis was carried out by flow cytometry after

fixation in 70% Ethanol for 24 h and propidium iodide staining

(BD Pharmingen). MEFs were synchronized by serum starvation

for 48–96 h or by serum starvation for 24 h followed by

incubation with 1 mM Hydroxyurea (Sigma) for 16–24 h or

200 ng/ml Nocodazole (Sigma) for 24–30 h.

Fluorescence microscopy
MEF cells were grown for 24 h on coverslips, washed with

phosphate-buffered saline (PBS), fixed in Formalin (Sigma) at

room temperature for 10 min, washed with PBS, and processed.

For immunofluorescence, the coverslips were incubated for

45 min at room temperature with the primary antibody diluted

in PBS solution (Phalloidin (Sigma [1:500]), anti-LAMP1 (DSHB

[1:50]) or LC3B (Sigma [1:100]). The samples were then washed

with PBS and incubated for 45 min with the corresponding

secondary antibody (Invitrogen [dilution 1:500]) plus To-Pro-3

(Invitrogen [1:1000]). The samples were then washed in PBS and

mounted with Mowiol (Calbiochem). Manders’ colocalization

coefficients (identified as M1 and M2) were calculated using the

intensity correlation analysis plugin for ImageJ software. After

background subtraction, threshold was determined by Huang’s

algorithm [35]. Immunodetection of oxidative damage within

nuclear DNA was carried using a mouse monoclonal antibody

identified as anti-8-oxo-dG (Clone 2E2), which specifically binds to

8-hydroxy-29-deoxyguanosine, according to the manufacturer’s

instructions (Trevigen). The mitochondrial populations were

illustrated by using 500 nM Mito Tracker Green FM (Invitrogen)

for 30 min before fixation. The microscopic observations were

carried out by using a confocal microscope.

Electron microscopy
MEFs were grown for 24 h and fixed in situ with 4%

paraformaldehyde and 0.1% glutaraldehyde in Sörensen phos-

phate buffer (pH 7.4) for 90 min at room temperature. Fixed cells

were washed three times in phosphate Na/K buffer (pH 7.4),

removed from the dishes and transferred to eppendorf tubes. After

centrifugation, cells were processed for embedding in Epoxy,

TAAB 812 Resin (TAAB Laboratories, Berkshire, England)

according to standard procedures. Postfixation of cells was done

with a mixture 1% osmium tetroxide and 0.8% potassium

ferrocyanide in bidistilled water for 1 h at 4uC. After three washes

with bidistilled water samples were incubated with 0.15% tanic

acid in buffer for 1 min at room temperature. After several washes

with buffer and bidistilled water, cells were incubated with 2%

uranyl acetate for 1 h at room temperature, washed again and

dehydrated in increasing concentrations of ethanol (50, 70, 90, 95

and 100%) for 5 min each at 4uC. Infiltration of the resin was

accomplished in increasing concentrations of Epon-ethanol

(1:2.1:1.2:1 and 100% Epon) at room temperature for 1 day.

Polymerization of infiltrated samples was done at 60uC during 2

days. Ultrathin sections of the samples were stained with saturated
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uranyl acetate and lead citrate by standard procedures and

examined at 80 Kv in a Jeol JEM-1010 (Tokyo) electron

microscope.

SA-b-galactosidase staining
The expression of senescence-associated b-galactosidase (SA-b-

gal) in MEF cells was determined by using a SA-b-gal staining kit

(Senescence cells histochemical staining kit (Sigma) according to

manufacturer’s instructions.

FACS analysis
Cell death rates were quantified by using Annexin V: PE

apoptosis detection kit (BD Pharmingen) according to manufac-

turer’s protocol. Mitochondrial parameters were determined using

the following probes: 100 nM Mito Tracker Green FM (Invitro-

gen) for 25 min, 100 nM tetramethylrhodamine methylester

(TMRM) (Sigma) for 15 min, and 5 mM 29, 79-dichlorodihydro-

fluorescein diacetate (H2DCFDA) (Invitrogen) for 30 min.

Estimation of the mitochondrial DNA (mtDNA) copy
number

We performed quantitative PCR by using SYBR green and

total DNA template. We used the following primers (Sigma):

mtCO1 primers, 5-CCCAATCTCTACCAGCATC-3 and 5-GG

CTCATAGTATAGCTGGAG-3; mtND1 primers, 5-AATCGC-

CATAGCCTTCCTAACAT-3 and 5-GGCGTCTGCAAATGG

TTGTAA-3; nTNF primers, 5-TCCCTCTCATCAGTTCTAT

GGCCCA-3 and 5-CAGCAAGCATCTATGCACTTAGACC

CC-3; nH19 primers: 5-GTACCCACCTGTCGTCC-3 and 5-G

TCCACGAGACCAATGACTG-3 [36]. We normalized the

amount of mtDNA to the amount of the nuclear DNA (nDNA).

Statistical analysis
Represented values are shown as means + standard error of the

mean (SEM). Differences were tested for significance by means of

the Student’s t-test. A probability level P,0.05 was considered

significant.

Results

High-throughput gene expression profiling of either TIA1
or TIAR-knocked murine embryonic fibroblasts

To get new insights into the role of TIA1 and TIAR proteins

during embryonic development we decided to test the transcrip-

tome of murine embryonic fibroblasts (MEF) lacking either TIA1

(TIA1 KO MEF) or TIAR (TIAR KO MEF) proteins [18], [25].

The absence of TIA1 and TIAR mRNAs and proteins in the

TIA1 and TIAR KO MEFs is illustrated by western blotting

(Fig. 1A) and semiquantitative and quantitative RT-PCR analyses

(Fig. 1B and C), confirming previous results [18], [25], [27].

Global RNA expression patterns in either TIA1 KO MEF or

TIAR KO MEF compared to wild-type (WT) MEF were made

using a mouse genome-wide microarray (Agilent SurePrint Mouse

G3 8660, version G4852A) from two different biological samples

for each experimental condition tested (Fig. 1D-F). To identify

cohorts of mouse RNAs regulated by TIA proteins, the gene

expression array dataset was analyzed using an appropriate

statistical test analysis, which was made using a linear model (as

implemented in the limma R/Biocounductor package) to compare

RNA expression patterns. In these analysis, only RNAs showing at

least a 22.fold change.2 (FDR,0.05) in expression compared

to the WT MEF were considered. As shown in Figure 1D, TIA1-

and TIAR-deficiency resulted in a marked alteration in gene

expression compared to the normal expression patterns of wild-

type MEFs (FIESTA viewer software in http:// bioinfogp.

cnb.csic.es/tools/FIESTA). To address the functional relevance

of differentially expressed RNAs in TIA1 and TIAR KO MEF

cells versus wild-type MEF cells, the long intergenic non-coding

RNA (lincRNA), non-coding RNA, miscellaneous RNA (mis-

cRNA) and protein encoding-RNA (mRNA) are shown (Fig. 1E

and Fig. S1 and S2). While similar gene expression patterns were

observed when TIA and TIAR KO MEF samples were compared,

it is noteworthy the increase in up-regulated lincRNAs that is

associated to TIA1-deficiency. A total of 1243 (of which 820 and

423 were up- and down-regulated, respectively) and 2736 (of

which 1625 and 1111 were up- and down-regulated, respectively)

RNAs were differentially expressed (FDRlimma,0.05) in TIA1

and TIAR KO MEF cells, respectively (Fig. 1F and Fig. S1 and

S2). Of them, 342 up- and 206 down-regulated RNAs were

common in both TIA1- and TIAR-deficient MEFs (Fig. 1F and

Fig. S3). Additionally, we have found 13 down-regulated RNAs in

TIA1 KO MEF cells which were up-regulated in TIAR KO MEF

cells, whereas 40 up-regulated RNAs in TIA1 KO MEF cells were

down-regulated in TIAR KO MEF cells (Fig. S3). Collectively,

these results indicate that TIA1 and TIAR regulate both specific

and overlapping aspects of the mouse embryonic transcriptome,

suggesting that their functional roles can be either redundant,

additive and/or independent, in agreement with previous findings

[20].

As a first attempt to understand the functional relevance of

differentially expressed up- and down-regulated genes in TIA and

TIAR KO MEF cells, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) database analysis

were performed. GO analysis was able to identify the main

categories of biological processes of differentially expressed RNAs

controlled by TIA proteins (P,0.05) (Fig. 2A and B and Fig. S4).

GO categories related to multicellular organismal development,

positive/negative regulation of transcription, cell adhesion, trans-

port, cell differentiation, negative/positive regulation of cell

proliferation, negative regulation of apoptotic process, nervous

system development, angiogenesis and protein phosphorylation

were among the enriched categories in up-regulated genes by the

absence of TIA1 (Fig. 2A and Fig. S4). In contrast, GO categories

associated with metabolic process, proteolysis, multicellular

organismal development, negative regulation from RNA polymer-

ase II promoter, inflammatory response, negative regulation of cell

proliferation, angiogenesis, innate immune response, chemotaxis

and response to virus were especially prevalent among down-

regulated genes (Fig. 2B and Fig. S4).

KEGG database analysis integrating individual components

into unified pathways was used to identify the enrichment of

specific pathways in functionally regulated gene groups (Fig. 2C

and D and Fig. S4). The results show that several KEGG pathways

were significantly enriched (P,0.05) in up-regulated genes,

including pathways involved in cancer, focal adhesion, cytokine-

cytokine receptor interaction, EMC-receptor interaction, axon

guidance, Wnt signalling pathway, amoebiasis, MAPK signalling

pathway and regulation of actin cytoskeleton (Fig. 2C and Fig. S4).

The top ten of KEGG pathways significantly enriched (P,0.05) in

down-regulated genes include phagosome function, chemokine

signalling pathways, cell adhesion molecules, tuberculosis, systemic

lupus erythematosus, amoebiasis, Toll-like receptor signalling

pathway, pyrimidine metabolism, gluthatione metabolism and

Staphylococcus aureus infection (Fig. 2D and Fig. S4). From a cellular

viewpoint, the cell components associated to the up- and down-

regulated genes in TIA KO MEF were located on cellular

compartments connected to membrane, cytoplasm and nucleus

TIA Proteins and Autophagy-Mediated Cell Survival
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(Fig. 2E and F and Fig. S4). Taken together, these results suggest

the existence of severe alterations in programs controlling

multicellular organism development and in signal transduction

pathways, followed by pathways regulating specific cellular,

inflammatory, immune and metabolic responses that might be

counteracting/contributing to the embryonic phenotype associat-

ed to the TIA1 KO MEF.

GO biological process categories and KEGG pathway analyses

of differentially expressed genes were also performed in TIAR KO

MEF (Fig. 3 and Fig. S5). GO categories (P,0.05) associated to

up-regulated genes were related with transcriptional regulation,

metabolic processes, signal transduction, multicellular organism

development, cell adhesion, transport, cell differentiation, oxida-

tive pathways, protein phosphorylation and regulation of cell

proliferation (Fig. 3A and Fig. S5). In contrast, GO categories

(P,0.05) of down-regulated genes associated with the absence of

TIAR in MEF were linked to genes involved in metabolic

processes, transcriptional regulation, phosphorylation, cell differ-

entiation, cell cycle, oxidative pathways, proteolysis, protein

transport, cell adhesion and apoptosis (Fig. 3B and Fig. S5).

KEGG data (P,0.05) for up-regulated genes in TIAR KO MEF

cells were associated with genes related to focal adhesion,

tumorigenesis, cytokine-cytokine receptor interaction, ECM-re-

ceptor interaction, amoebiasis, axon guidance, MAPK signalling

pathway, endocytosis, protein digestion and absorption, and

calcium signalling pathway (Fig. 3C and Fig. S5). KEGG

categories for down-regulated genes in TIAR-depleted MEF cells

were related to pathways in cancer, cytokine-cytokine receptor

interaction, MAPK signalling pathway, purine metabolism,

regulation of actin cytoskeleton, antigen processing and presenta-

tion, hepatitis C, lysosome biology, pyrimidine metabolism and

ErbB signalling pathway (Fig. 3D and Fig. S5). From a cellular

viewpoint, the cell components associated to the up- and down-

regulated genes in TIAR KO MEF cells were located on cellular

compartments connected to membrane, cytoplasm and nucleus

(Fig. 3E and F and Fig. S5). Thus, these results suggest that both in

TIAR and TIA1 regulate both specific and overlapping aspects of

the mouse embryonic transcriptome related to the developmental

program of multicellular organisms and signal transduction

pathways that contribute to the embryonic phenotypes associated

to the MEF cells.

Figure 1. Characterization of the transcriptomes associated to the knockout (KO) of TIA1 or TIAR in murine embryonic fibroblast
(MEF) cells. (A) Western blot analysis of wild-type (WT), TIA1 KO and TIAR KO MEF cell extracts (10 mg of total protein). The blot was probed with
antibodies against TIA1, TIAR and a-tubulin proteins, as indicated. Molecular weight markers and the identities of protein bands are shown. (B)
Cytoplasmic mRNAs from above MEF cells were analyzed by semiquantitative RT-PCR. Positions of size markers and the predicted alternatively spliced
products are indicated. (C) Quantification of relative levels of TIA1, TIAR and GAPDH mRNAs in the above MEF cells by real time RT-PCR. The
represented values were normalized and expressed relative to GAPDH. (D) MA plot representation of the distribution of up- (spots in red) and down-
regulated (spots in green) RNAs (22.fold-change,2; FDR,0.05) in either TIA1 or TIAR KO MEF versus WT MEF by using Array SurePrint Mouse G3
8660 (Agilent, G4852A). (E) Graphic representations of the distribution of up- and down-regulated target genes in TIA1 or TIAR KO MEF versus WT
MEF. In all cases, percentages shown reflect the portion of total genes that are associated with the RNA categories corresponding to long non-coding
RNAs (lncRNA), non-coding RNAs, miscellaneous RNAs (miscRNA) and messenger RNAs (mRNA). (F) Venn diagram depicting the numbers of genes
that were up- (red) and down-regulated (green) as well as shared between both categories of TIA1 or TIAR knocked out MEF.
doi:10.1371/journal.pone.0075127.g001
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To know whether knocked-down expression of TIA proteins is

associated with the regulation of common gene clusters, we tested

by GO and KEGG database analysis all genes that were identified

to be up or down regulated by both TIA1 and TIAR deficiency

(Fig. S3). The results indicate that TIA1 and TIAR shared targets

that are related with multicellular organism development,

transcriptional regulation, cell adhesion, signal transduction,

metabolism processes, proteolysis inflammation and angiogenesis.

Validation of microarray-predicted changes in gene
expression

The effects on steady-state RNA levels detected by the array

analysis were validated using quantitative PCR assays for 11

different RNAs. Figure S6 shows validation of predicted up-

regulated (FBN2, MEST, SFRP1, SFRP2 and XIST) and down-

regulated (ARG2, EREG and HMGA2) RNAs in TIA1 and

TIAR KO MEFs, respectively, as well as the sequences of the

primers used in the amplification. As expected, the results

confirmed the array data (Fig. S6). GAPDH expression level was

used as normalizer in this study of validation.

TIA1 or TIAR-knocked MEF cells show reduced rates of
cell proliferation and morphological transformation

GO and KEGG analysis suggest that the absence of TIA1 and

TIAR proteins has a repercussion on cell proliferation rates in

MEF (Fig. 2 and 3 and Fig. S3–S5). Thus, we examined the

proliferation potential of MEF with knocked down expression of

either TIA1 or TIAR. As shown in Figure 4A, the absence of

TIA1 or TIAR expression in MEF resulted in decreased cell

proliferation compared to control MEF. Indeed, total cell numbers

as well as measurement of de novo synthesized proteins by [35S]-

methionine and -cystein incorporation support an individual role

for each of these TIA proteins in the negative control of MEF

proliferation (Fig. 4A and B). Given that the rates of TIA1 and

TIAR KO MEF proliferation were reduced, we analyzed the

morphology and size of these cells by optical and electronic

microscopy. The results illustrate that TIA1 and TIAR KO MEF

have a significant morphological alteration compared to normal

MEFs, showing a larger cellular size (3-4 fold) and a more complex

cytoplasm than WT MEF (Fig. 4C and D and Fig. S7).

Figure 2. Top-twenty categories of biological processes, pathways and cellular components associated to the TIA1 KO MEF. (A and
B) Histograms of the distribution of up- (A) and down-regulated (B) genes using the Gene Ontology (GO) biological category (P,0.05). (C and D)
Histograms of the distribution of up- (C) and down-regulated (D) genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database (P,0.05). (E and F) Histograms of the distribution of up- (E) and down-regulated (F) genes using the cellular component (CC) database
(P,0.05).
doi:10.1371/journal.pone.0075127.g002
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TIA1 or TIAR-knocked MEF cells show anomalies affecting
mitochondrial biology

To expand previous results and to determine the cellular

processes underlying the biological features associated to TIA1

and TIAR deficiency, we measured the metabolic activity of MEFs

by methyl thiazolyl tetrazolium (MTT) assay. The results suggest

that TIA1 and TIAR KO MEFs have higher metabolic rates (2-3-

fold) than WT MEFs associated with cell reductase activity

(Fig. 5A). As the MTT assay reflects indirectly the cell growth

capacity of cells as function of the mitochondria metabolism, we

decided to quantify several mitochondrial parameters such as

mitochondrial mass/distribution, activity and morphology of WT,

TIA1 KO, and TIAR KO MEFs. The relative mitochondrial

mass as well as mitochondria cell distribution were determined by

Mito Tracker Green TM staining of WT, TIA1 KO and TIAR

KO MEFs either by flow cytometry or by fluorescence micros-

copy, respectively. The results indicated that TIA1 and TIAR KO

MEF had more abundance (2-3-fold) of mitochondria than WT

MEF (Fig. 5B and C). In addition, we estimated the relative

mitochondria number as the ratio between the amount of

mitochondrial DNA (mtDNA) and nuclear DNA (nDNA),

measured by quantitative PCR using specific primers against

two mitochondrial DNA-encoded genes (ND1 and CO1) and

nuclear DNA-encoded genes (TNF and H19) [36]. The results

suggest that TIA1 and TIAR KO MEFs had 2-3-fold more

mitochondria that WT MEFs (Fig. 4D). Taken together, these

observations are consistent with the existence of a more abundant

mitochondrial population in TIA1 and TIAR KO MEF which is

consistent with the larger cellular size found in these murine

embryonic cells.

Next, we determined in vivo the mitochondrial membrane

potential (DY) using the fluorescence probe TMRM and flow

cytometry [37]. The results show that mitochondrial populations

of TIA1 and TIAR KO MEFs had 6-7-fold larger mitochondria

membrane potential compared to mitochondria in WT MEF cells

(Fig. 5E). This result suggests the existence of functional anomalies

in the mitochondria of TIA1 and TIAR deficient MEFs, since

considering that these MEFs have 2-3 fold more mitochondria

than control MEFs, the observed increase of mitochondrial

membrane potential is twice higher than that expected. To test

whether this increase in DY could be the consequence of

alterations in mitochondrial metabolism, for example an anom-

alous production of reactive oxygen species (ROS), we quantified

the levels of ROS using in vivo staining with the fluorescence

Figure 3. Top-twenty categories of biological processes, pathways and cellular components associated to the TIAR KO MEF cells. (A
and B) Histograms of the distribution of up- (A) and down-regulated (B) genes using the Gene Ontology (GO) biological category (P,0.05). (C and D)
Histograms of the distribution of up- (C) and down-regulated (D) genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database (P,0.05). (E and F) Histograms of the distribution of up- (E) and down-regulated (F) genes using the cellular component (CC) database
(P,0.05).
doi:10.1371/journal.pone.0075127.g003
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probe H2DCFDA followed by flow cytometry. The results

indicated that ROS levels were increased twice in TIA1 and

TIAR KO MEFs compared to WT MEF (Fig. 5F). These

observations suggest a malfunction of mitochondrial metabolism

as a result of either TIA1 or TIAR deficiency. To illustrate this

functional abnormality we visualized the mitochondrial morphol-

ogy and integrity by electron microscopy. The results show the

existence of mitochondria with atypical enlarged morphology as

well as many broken mitochondria in TIA1 and TIAR KO MEF

cells (Fig. 5G and Fig. S8). Collectively, this collection of

observations points out that TIA1 and TIAR KO MEF versus

WT MEF contain several abnormal mitochondrial parameters

such as increased mitochondrial mass and number, altered

morphology and integrity, increased membrane potential and

overproduction of ROS, all of them indicative of an altered

mitochondrial metabolism.

Extensive oxidative damage of nuclear DNA in TIA1 and
TIAR KO MEF cells

To evaluate the potential deleterious effect of the excess of ROS

production found in TIA1 and TIAR KO MEFs on the integrity

of nuclear DNA, we have carried out an experimental approach of

immunofluorescence microscopy using anti-8-oxo-dG antibody.

The 8-hydroxy-29-deoxyguanosine (8-oxo-dG) is a modified

nucleoside by-product commonly used to detect DNA damage

caused by oxidative radicals [38]. As shown in Figure 6A, labelling

of the nuclei of TIA1 and TIAR KO MEFs with the anti-8-oxo-

dG was readily observed, compared with WT MEFs. As a control,

we induced oxidative DNA damage with H2O2 of WT MEF

(Fig. 6A). These observations suggest that the nuclear DNA of

MEFs lacking either TIA1 or TIAR are massively damaged by the

cellular ROS and/or the inactivation of repairing pathways.

Figure 4. MEF cells knocked for TIA proteins show cell proliferation defects and rise cellular size and complexity. (A) Wild-type (WT),
TIA1 KO and TIAR KO MEF cells were grown and the number was counted on the days indicated. Each time point represents the means + standard
error of the mean (SEM; n = 6; *P,0.001). (B) Nascent translation of total proteins was determined by incubation of wild-type (WT), TIA1 KO and TIAR
KO MEF in the presence of 35S-methionine/cystein mix. The expression patterns of total proteins (15 mg) and newly translated proteins from above
MEF cells were visualized by staining with Coomassie Blue reagent and by 10% SDS-PAGE and autoradiography, respectively. (C) Representative
phase contrast photographs of WT, TIA1 KO and TIAR KO MEFs are shown. Scale bars represent 20 mm. The cellular size of WT, TIA1 KO and TIAR KO
MEFs was quantified using ImageJ software and represented as means + SEM (n = 15; *P,0.001). (D) Representative transmission electron
micrographs of WT, TIA1 KO and TIAR KO MEFs are exposed. Scale bars represent 3 mm.
doi:10.1371/journal.pone.0075127.g004
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Cell-cycle altered progression in TIA1 and TIAR KO MEF
cells

Given that the knockout of either TIA1 or TIAR results in

defects in cell proliferation, cell size and causes damage of nuclear

DNA, we next examined whether TIA1/TIAR-deficiency had

deleterious effects on cell-cycle progression that could account for

the cell proliferation defects observed for TIA1 and TIAR

knocking. Our results showed that not-synchronized TIA1 and

TIAR-deficient MEF cells already evidenced a modest impact on

the cell-cycle progression by increasing G0/G1 and diminishing S

and G2/M transitions, compared to WT MEFs, suggesting a

defect of the progression and through phases and/or the transition

from G1, S and/or G2/M (Fig. 6B). To further characterize this

phenotype, we analyzed the cell-cycle progression of cells released

from a cell cycle blockage at G0/G1 after 48–96 h of culture in

the absence of fetal calf serum. As shown in Figure 6C, TIA1 and

TIAR knocked-down MEF cells showed a significant increase in

cells at late S phase (see 18 h after release), suggesting a slower

transition through S phase. In addition, we analyzed the cell cycle

progression of cells released from a single blockage at G1/S with

Hydroxyurea (16–24 h) (Fig. 6D) or at G2/M with Nocodazole

(24–30 h) (Fig. 6E). In both cases, we observed a delay in S and G1

entries in both TIA1 and TIAR deficient MEF cells, indicative of a

defect in the transition from G1 to S and G2/M to G1,

respectively (Fig. 6D and E). Representative images of multinu-

cleated cells with impaired cytokinesis are shown in Figure 6F as

well as the quantification and cellular localization of Cdc-2 and

cyclin B1 protein markers illustrating the steady-state of G2/M

checkpoint (Fig. 6G). TIA1 and TIAR KO MEFs showed the

lower expression levels of these cell cycle regulators. Taken

together, these data suggest that either TIA1 or TIAR knockout in

Figure 5. MEF cells lacking TIA proteins show mitochondrial alterations. (A) Wild-type (WT), TIA1 KO and TIAR KO MEFs were grown for 4
days and monitored by methyl thiazolyl tetrazolium (MTT) assays. The represented values were normalized and expressed relative to WT, whose value
was fixed arbitrarily to 1, and are means + SEM (n = 4; *P,0.001). (B) Wild-type (WT), TIA1 KO and TIAR KO MEFs were stained with Mito Tracker Green
FM and monitored by FACS analysis. The represented values are means + SEM (n = 3; *P,0.01; **P,0.001). (C) Mitochondrial populations of wild-type
(WT), TIA1 KO and TIAR KO MEF were stained with Mito Tracker Green FM and visualized by confocal microscopy. Scale bars represent 10 mm. (D)
Mitochondrial DNA copy number was estimated by quantitative PCR (QPCR) using mitochondrial NADH subunit 1 (ND1) and cytochrome c oxidase
subunit 1 (CO1) and nuclear tumor necrosis factor (TNF) and H19 as markers for the copy numbers of mitochondrial DNA (mtDNA) and nuclear DNA
(nDNA), respectively. The represented values were normalized and expressed relative to WT, whose value was fixed arbitrarily to 1, and are means +
SEM (n = 4; *P,0.05). (E) Estimation of the mitochondrial membrane potential of wild-type (WT), TIA1 KO and TIAR KO MEFs by staining with TMRM
molecular probe and monitoring by FACS analysis. The represented values are means + SEM (n = 3; *P,0.001). (F) Estimation of reactive oxygen
species (ROS) of wild-type (WT), TIA1 KO and TIAR KO MEFs by staining with H2DCFDA molecular probe and monitoring by FACS analysis. The
represented values are means + SEM (n = 3; *P,0.01). (G) Transmission electron micrographs of cytoplasmic sections from wild-type (WT), TIA1 KO
and TIAR KO MEFs illustrating the mitochondrial morphology and integrity. Scale bars represent 400 nm.
doi:10.1371/journal.pone.0075127.g005
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MEFs have a mitosis defect leading to an accumulation of cells in

G2/M.

Immortalized TIA1 and TIAR knocked MEF cells show low
senescence

As shown above, TIA1 and TIAR-knocked-down MEF cells

were much larger in size and had a flattened shape (Fig. 4C), a

feature of cells in senescence. To determine whether TIA1 and

TIAR silencing causes cell senescence, we examined the expres-

sion of senescence-associated b-galactosidase (SA-b-GAL), a classic

biochemical marker for cellular senescence. We found that only

0.1% and 0.2% of TIA1 and TIAR knocked out MEF,

respectively, were positively stained (Fig. 7A), ruling out a

significant role of senescence in the altered size, shape and cell

cycle delay observed in TIA1 and TIAR deficient cells.

Increased cell death in TIA1 and TIAR knocked MEF cells
To investigate the mechanism underlying the cell proliferation

and growth defects observed in TIA1 and TIAR deficient MEFs,

as well as whether there is any effect on cell viability as a result of

the rise of mitochondrial ROS production and DNA damage seen

in these cells compared to WT MEFs, we assessed the rates of cell

death of the TIA1- and TIAR-knocked out MEFs by 7-amino-

actinomycin (7-AAD) and PE-Annexin V staining followed by

FACS analysis. The results show that there is a little increase in the

percentage of cell undergoing cell death in TIA1 and TIAR MEFs

Figure 6. MEF cells lacking TIA proteins show oxidized nuclear DNA and G2/M phase delay during cell-cycle progression. (A)
Visualization of genomic DNA oxidized in wild-type (WT), TIA1 KO and TIAR KO MEFs by indirect immunofluorescence using an anti-8-oxo-dG
antibody. WT MEFs were treated with 100 mM H2O2 for 20 min to promote genomic DNA oxidation as a positive control. Scale bars represent 15 mm.
(B) Analysis of cell-cycle phases by flow cytometry after propidium iodide staining. The data are means + SEM (n = 10; *P,0.05; **P,0.01;
***P,0.001). (C) MEF cells knocked for TIA proteins showed delayed entry into G1/S. The above MEF cells were synchronized at G0/G1 by serum
deprivation for 48–96 h. Samples were taken at 0, 16, 18 and 24 h after release, and the DNA content was measured by propidium iodide staining
and FACS analysis. (D) MEF cells knocked for TIA proteins showed delayed entry into S. The above MEF cells were synchronized at G1/S by
Hydroxyurea blockage for 16–24 h and then released. Samples were taken at 0, 19, 22 and 24 h after release, and the DNA content was measured by
propidium iodide staining and FACS analysis. (E) MEF cells knocked for TIA proteins showed delayed entry into G0/G1. The above MEF cells were
synchronized at G2/M by Nocodazole blockade for 24–30 h and then released. Samples were taken at 0, 3, 6, 17 and 24 h after release, and the DNA
content was measured by propidium iodide staining and FACS analysis. (F) Examples of MEF cells stained with To-Pro-3 (illustrated in green) and
phalloidin-TRITC showing impairment of cytokinesis events in TIA1 and TIAR KO MEF. Scale bars represent 20 mm. (G) Analysis of the G2/M DNA
damage checkpoint. Immunoblot of total (T), nuclear (N) and cytoplasmic (C) fractions (8 mg) from wild-type (WT), TIA1 KO and TIAR KO MEFs. The
blot was probed with antibodies against U2AF65, a-tubulin, Cdc2 (total), Cdc2-P (Y15) and cyclin B1 proteins, as indicated. Molecular weight markers
and the identities of protein bands are shown.
doi:10.1371/journal.pone.0075127.g006
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compared to WT MEF cells (Fig. 7B). Taken together, these

observations suggest the existence of a putative regulatory

mechanism to counteract cell death and promote survival

response. Given that H2O2 is the most common and stable form

of ROS, we decided to test its effects at short- and long-term on

WT, TIA1 KO and TIAR KO MEFs by analyzing cell death

and/or survival rates by flow cytometry. The observations

indicated that the rates of cell survival among WT, TIA1 KO

and TIAR KO MEFs were similar under lower doses (0.1–1 mM)

of hydrogen peroxide, whereas the high rates of cell death in

TIA1-knocked out MEFs versus WT MEFs were slightly lower

with highest doses (10–20 mM) of H2O2 used for 6 hours (Fig.

S9A). At long-term, the treatments of WT, TIA1 KO and TIAR

KO MEFs with low doses (0.1–1.0 mM H2O2) for 3 days had

inhibitory effects on cell proliferation (Fig. S9B), the incubation

with 1 mM H2O2 suggested again the existence of a protective/

adaptive survival mechanism associated prevalently to MEF cells

lacking TIA1 or TIAR proteins (Fig. S9C).

TIA1 and TIAR knocked MEF cells shows high rates of
autophagy

Autophagy is an adaptive pro-survival program under cellular

stresses [39], [40]. There is a growing evidence indicating that

autophagy is activated in cellular situation in which cell cycle is

delayed [39]. Therefore, we next investigated whether the

deficiency of TIA proteins triggers autophagy. During autophagy,

microtubule-associated proteins light chain 3-I (LC3-I) is convert-

ed to phosphatidylethanolamine-conjugated LC3-II, which asso-

ciates with autophagic vesicles. The fusion of autophagosomes

with lysosomes, classical hallmarks of autophagy, can be measured

Figure 7. TIA1 and TIAR KO MEFs show high rates of autophagy. (A) Senescence analysis with SA-b-gal staining. Wild-type (WT), TIA1 KO1
and TIAR KO MEF cells were subjected to SA-b-gal staining and quantified of positively stained cells. The represented values are means + SEM (n = 12
fields; *P,0.05). Scale bars represent 40 mm. (B) Analysis of cell death rates. Rates of apoptosis (early and late) and necrosis were quantified by using
7-AAD staining and PE Annexin V apoptosis detection kit followed by flow cytometry analysis. The graph shows the percentage of cells counted that
were in each stage of cell death. The represented values are means + SEM (n = 9; *P,0.001). (C) Visualization of autophagosomes and lysosomes in
wild-type (WT), TIA1 KO and TIAR KO MEFs cells by indirect immunofluorescence using anti-LC3B and anti-LAMP1 antibodies. The extended detail
illustrates the degree of cellular co-localization between both markers as evidence of autolysosomes. The overlapping degree between signals was
quantified using Manders’ M1 and M2 colocalization coefficients. We can therefore interpret, in these simple cases, the M coefficients as the
percentage of pixels in one channel that intersect with some signal in other channel. The represented values are means + SEM (n = 8 fields; *P,0.05;
**P,0.01; ***P,0.001). Scale bars represent 20 mm. (D) Analysis of molecular markers for autophagy and lysosomes. Western blot analysis of wild-
type (WT), TIA1 KO and TIAR KO MEFs cell extracts using 2 ml from 16107 cells/ml to quantify the expression levels of LC3B and LAMP1 proteins,
respectively. The blot was probed with antibodies against LC3B, LAMP1 and a-tubulin proteins, as indicated. Molecular weight markers and the
identities of protein bands are shown. (E) Autophagic flux analysis. Obvious double-membraned autophagosome and vacuoles with engulfed bulk
cytoplasm and cytoplasmic organelles (mitophagy) are shown. Please, see also Fig. S7 and S8. Scale bars represent 250 nm.
doi:10.1371/journal.pone.0075127.g007
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by assessing the colocalization of LC3B and LAMP1 (a lysosomal

marker) [39]. As shown in Figure 7C and D, LC3B-II expression

in TIA1 and TIAR KO MEFs was up-regulated compared to that

in WT MEFs. This increase in LC3B-II expression correlated with

the formation of autophagosomes, since colocalization between

autophagosomes (positive to LC3B labeling) and lysosomes

(positive to LAMP1 labeling) was increased in TIA1 and TIAR-

knocked MEF in agreement with Manders’ M1 and M2

colocalization coefficients, thus indicating the fusion between

autophagosomes and lysosomes to generate autolysosomes (Fig. 7C

and D). By transmission electron microscopy, we further observed

a representative enrichment of double-membrane autophago-

somes and vacuoles with engulfed bulk cytoplasm and cytoplasmic

organelles in MEF lacking TIA1 and TIAR versus WT MEF

(Fig. 7E and Fig. S7 and S8).

To test the contribution of autophagy to the cell survival

responses found in TIA1/TIAR-depleted MEFs versus WT

MEFs, these cells were treated with 10 mM chloroquine (CQ), a

drug that blocks the autophagic flux by inhibiting the fusion

between autophagosomes with lysosomes. Above CQ-treated cells

for 96 h were analyzed by Western blotting with anti-LC3B and

anti-p62/SQSTM1 antibodies [41]. As expected, a rise of LC3B-

II and p62 amounts was observed in the presence of the inhibitor

(Fig. 8A), according to the effects promoted by chloroquine on

autophagy. Interestingly, p62 protein didn’t decrease in TIA1 and

TIAR KO MEFs respect to WT MEFs (Fig. 8A), in agreement

with oxidative-stress found in these cells [42]. By using confocal

microscopy, cytoplasmic dense bodies were observed upon

treatment with chloroquine (Fig. 8B). Additionally, we evaluated

the rates of cell death associated to CQ-treated MEFs by staining

of with 7-AAD and PE-Annexin V and posterior flow cytometry

analysis. Early apoptosis (negative 7-AAD and positive PE-

Annexin V) was enhanced in TIA1 and TIAR KO MEFs respect

to WT MEFs, and late apoptosis (positive 7-AAD and positive PE-

Annexin V) and necrosis (positive 7-AAD and negative PE-

Annexin V) were enhanced in TIAR KO MEFs respect to WT

MEFs (Fig. 8C). Taken together, these observations suggest that

autophagy contributes to cell survival previously found in TIA1

and TIAR KO MEFs.

Discussion

In this study, we have characterized the gene expression

patterns and cellular phenotypes associated to the TIA1 and TIAR

knocked-out murine embryonic fibroblast cell lines. Our results

revealed an alteration of expression programs governing develop-

ment in agreement with high rates of lethality observed in TIA1 or

TIAR knocked-out mice [18], [25]. Comparison of the gene

expression profiles of TIA-deficient MEFs and WT MEFs allowed

the identification of RNAs whose expression was affected in both

TIA1 and TIAR KO MEFs and RNAs that were differentially

expressed in either TIA-deficient MEFs. Many of these non-

coding and protein-coding RNAs are involved in tissue morpho-

genesis and differentiation during embryogenesis, including bone

and cartilage formation, and heart, lung, muscle, skin, gonads, eye,

nervous system developing (Fig. 1–3 and Fig. S1–S5). These RNAs

can function as transcription factors, imprinting regulators,

membrane receptors and cellular signalling and transduction

kinases. Further, many of these regulated genes involved in

embryogenesis are also implicated in cancer progression and cell

adhesion, migration and angiogenesis. These observations are

consistent with alterations on the prototypical mesenchymal

characteristics that are associated to embryonic fibroblasts at

E11.5 or E13.5 developmental stages [18], [25]. These results

highlight a key role of TIA proteins in development.

However, the particular role of either TIA1 or TIAR in these

processes is complex because the phenotype of the deficiency and

its penetrance are strain dependent. For example, targeted

knockout of TIA1 results in embryonic lethality, but the

penetrance is less than 50% in both BALB/c and C57BL/6

founders [18]. Nonetheless, targeted disruption of TIAR leads to

100% embryonic lethality in the BALB/c background and 90% in

the C57BL/6 background [25]. Mice lacking both in TIA1 and

TIAR die before embryonic day 7, suggesting that one or both

proteins must be expressed for normal embryonic development.

These observations further support the independent role of either

TIA1 or TIAR in controlling some key developmental processes.

There are additional unique features associated to these proteins

because TIA1-deficient mice are fully fertile, whereas TIAR-

deficient mice that survive to birth are sterile due to defective

germ-cell maturation [18], [25]. In this regard, we have identified

a greater number of up- and down-regulated RNAs associated to

TIAR KO MEFs cells than TIA1 KO MEFs as well as a set of

down-regulated RNAs in TIAR KO MEFs associated to the

gonadotrophin-releasing hormone (GnRH) signalling pathway

(Fig. S5), which is involved in reproductive function and fertility

[25]. Moreover, TIAR is solely required for normal germ-cell

maturation [25]. Thus, these results suggest that these regulators

are partially overlapping and redundant, but at the same time, can

also show unique functional features. Interestingly, a recent study

has provided new evidence on the role of TIAR during mouse

embryogenesis using an animal gain-of-function model. This

report showed that TIAR controls embryo late pre-implantation

stages and that its overexpression significantly impaired embryonic

development beyond implantation, thereby revealing the require-

ment of tightly controlled TIAR expression levels for normal

mouse embryo development [26]. The altered gene expression

patterns associated to processes such as cell adhesion, differenti-

ation, angiogenesis, apoptosis, proliferation and intracellular signal

transduction suggest that TIA1 and TIAR play, individually and

collectively, essential roles as master organizers of gene networks

controlling embryonic outgrowth and patterning. In fact, TIA

proteins are involved in anterior/posterior and dorsal/ventral

pattern formation (Fig. S1–S5). This idea might be consistent with

a role for these proteins in early and late stages of embryo

development and organ differentiation.

In molecular terms, the changes in expression levels of

modulated RNAs caused by TIA1 and TIAR-deficiency might

probably be mediated not by a unique mechanism, but rather by a

combination of transcriptional and post-transcriptional mecha-

nisms, including transcriptional rates, alternative and constitutive

splicing events, RNA stability/turnover and/or translational

efficiency of non-coding and protein-coding RNAs, given the

pleiotropic effects of TIA proteins in RNA biology [6–22]. So far,

only RNA maps associated to the TIA1 and TIAR proteins have

been established in HeLa cells [13]. However, it is interesting to

note that between human and mice only 10–20% of post-

transcriptional regulatory events are conserved [13]. Therefore,

TIA1 and TIAR knockout MEFs could be an interesting model to

get new insights into how transcriptional and post-transcriptional

activities of TIA proteins interplay to contribute to the regulation

of gene expression during development and evolution [3–5].

Our results have shown that either TIA1 or TIAR deficiency in

MEFs cause a significant reduction in cell proliferation, a delay in

cell-cycle progression, defective mitosis, and abnormal cell size and

shape. Moreover, these cells have altered mitochondria physiol-

ogy, including increase number of mitochondria, altered mor-
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phology and increased membrane potential. These cells also

produce excess cellular ROS and have massive DNA oxidative

damage although it seems not seems to significantly affect cell

viability (Fig. 4–7). Indeed, despite these cellular phenotypes

apparently so deleterious to the cell associated to the TIA1- and

TIAR-deficiency in MEFs, we have detected very modest rates of

apoptosis and necrosis but instead we have observed high rates of

autophagy, suggesting that autophagic responses might be able to

shape survival mechanisms. In fact, genome-wide expression

patterns show differentially expressed gene categories associated to

phagosomes and lysosomes both in TIA1 and TIAR knockout

MEFs (Fig. 1–3). Autophagy is a process by which normal and

stressed cells engulf and sequester into autophagosome some

cytosolic materials such as intracellular proteins and organelles

that are subsequently degraded. This phenomenon occurs

continuously under normal conditions to remove and recycle

damaged proteins and organelles as a method of quality control

[39–44]. Thus, mitophagy is a mechanism to limit ROS levels

[45]. Hence, mROS and mitophagy can form a feedback loop,

whereby mROS induce mitophagy, which limits further produc-

tion of ROS by reducing mitochondria quantity. However, recent

evidences indicate that autophagy response could also have a cell-

killing but not cell-protective role under some cellular stresses,

which leads to autophagic cell death. This method of controlled

cell death is different to apoptosis [39], [40], [44], [45]. Several

reports have pointed out the critical role of mROS production and

together with the effects of cumulative oxidative damage and

nuclear mitochondrial mutations leading to abnormalities of

organismal and cellular function, altering cell metabolism and

decreasing cell proliferation in yeast, mice and humans [45].

Therefore, it is tempting to speculate that this cellular scenario

would be operating in MEF lacking TIA1 and TIAR proteins

involving quantity of mitochondria and quantity of damaged

mitochondria that produce more ROS. Thus, mitochondrial

membrane potential appears to directly correlate with ROS

production; therefore, anomalous mitochondrial population in-

creases mitochondrial membrane potential, increase ROS levels,

triggers DNA oxidation and damaged DNA-associated G2/M

checkpoint promoting defective resolution of the cell cycle with

abortive cytokinesis events followed by a survival response

mediated by autophagy. The molecular and cellular details

underlying TIA’s effects on stress and/or survival potentially

phenotypes should be elucidated in future studies.

Conclusions

TIA1 and TIAR are two RNA binding proteins which have

been involved in the control of gene expression in humans and

mice. Mice lacking either TIA1 or TIAR proteins, as well as

ectopically over-expressing TIAR, show higher rates of embryonic

lethality [18], [25], [26]. The purpose of this study was to elucidate

the effects of TIA1 and TIAR knockout on murine embryonic

fibroblast (MEF) cells. The results illustrate that inactivation of

Figure 8. Autophagy inhibition by chloroquine increases the apoptotic rates in TIA1 and TIAR KO MEFs. (A) Analysis by Western blot of
LAMP1, LC3B, p62 and a-tubulin protein expression upon chloroquine treatment of WT, TIA1 KO and TIAR KO MEFs by using 2 ml from 16107 cells/ml.
(B) Representative micrographs by phase contrast of above chloroquine (CQ)-treated MEFs. Scale bar 20 mm. (C) Rates of cell death of chloroquine-
treated WT, TIA1 KO and TIAR KO MEFs by flow citometry analysis. The represented values are means + SEM (n = 3; *P,0.05; **P,0.001).
doi:10.1371/journal.pone.0075127.g008
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TIA-proteins is sufficient to alter normal developmental program

and signalling pathways in MEF cells. Our data indicate a broad

alteration in cellular physiology caused by TIA1 or TIAR

deficiency. Thus TIA1 and TIAR KO MEFs showed decreased

rates of cell proliferation, alterations in cell cycle, increased cellular

size and shape, abnormal mitochondrial populations, increased

levels of mitochondrial membrane potential and ROS production

and oxidative DNA damage, but low rates of cell death.

Additionally, we have observed increased rates of autophagy in

both TIA1 and TIAR KO MEFs, consistent with a severe cellular

stress caused by either TIA1 or TIAR deficiency, suggesting that

adaptive autophagy is induced as a survival mechanism.
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