
Socio-economic, epidemiological and geographic
features based on GIS-integrated mapping to
identify malarial hotspots
Qayum et al.

Qayum et al. Malaria Journal  (2015) 14:192 
DOI 10.1186/s12936-015-0685-4



Qayum et al. Malaria Journal  (2015) 14:192 
DOI 10.1186/s12936-015-0685-4
RESEARCH Open Access
Socio-economic, epidemiological and geographic
features based on GIS-integrated mapping to
identify malarial hotspots
Abdul Qayum1,2, Rakesh Arya3, Pawan Kumar4* and Andrew M Lynn1
Abstract

Background: Malaria is a major health problem in the tropical and subtropical world. In India, 95% of the
population resides in malaria endemic regions and it is major public health problem in most parts of the country.
The present work has developed malaria maps by integrating socio-economic, epidemiology and geographical
dimensions of three eastern districts of Uttar Pradesh, India. The area has been studied in each dimension
separately, and later integrated to find a list of vulnerable pockets/villages, called as malarial hotspots.

Methods: The study has been done at village level. Seasonal variation of malaria, comparison of epidemiology
indices and progress of the medical facility were studied. Ten independent geographical information system (GIS)
maps of socio-economic aspects (population, child population, literacy, and work force participation), epidemiology
(annual parasitic index (API) and slides collected and examined) and geographical features (settlement, forest cover,
water bodies, rainfall, relative humidity, and temperature) were drawn and studied. These maps were overlaid based
on computed weight matrix to find malarial hotspot.

Results: It was found that the studied dimensions were inter-weaving factors for malaria epidemic and closely
affected malaria situations as evidenced from the obtained correlation matrix. The regions with water logging, high
rainfall and proximity to forest, along with poor socio-economic conditions, are primarily hotspot regions. The work
is presented through a series of GIS maps, tables, figures and graphs. A total of 2,054 out of 8,973 villages studied
were found to be malarial hotspots and consequently suggestions were made to the concerned government
malaria offices.

Conclusion: With developing technology, information tools such as GIS, have captured almost every field of
scientific research especially of vector-borne diseases, such as malaria. Malarial mapping enables easy update of
information and effortless accessibility of geo-referenced data to policy makers to produce cost-effective measures
for malaria control in endemic regions.
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Background
Malaria is a parasitic protozoal disease caused by para-
sites of Plasmodium genus. The parasite belongs to the
diverse group of unicellular eukaryotes called protozoa.
The genus has 250 Plasmodium species, but Plasmo-
dium falciparum and Plasmodium vivax [1] are two key
species found in the Indian sub-region. Falciparum mal-
aria is the most severe form worldwide [2-4], but P.
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vivax is the most important species in the study area of
the present work [5]. Malaria is a major health problem
in the tropical and subtropical world. Around 2.5 million
malaria cases are reported annually from Southeast Asia,
of which India alone contributes 76% in malaria inci-
dence [6].
Eighty-nine percent of the Indian population resides in

malaria-endemic regions. It is a public health problem in
most part of the country. Various actions, including passive
surveillance of malaria by primary health centres (PHCs),
community health centres (CHCs), malaria clinics, use of
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artemisinin-based combination therapy (ACT), and intro-
duction of intervention such as rapid diagnostic tests
(RDTs) for malaria cases, have been taken under the direct-
orship of the National Vector Borne Disease Control
Programme (NVBDCP), New Delhi [7]. Mathematical ana-
lysis has established the progress and achievement of these
action plans (Figure 1 (1.1 and 1.2)). In India, the number
of malaria cases reported has decreased from 2.93 million
(1995) to 1.08 million (2012), while the number of malarial
deaths has decreased from 1,151 (1995) to 519 (2012).
From year 2003 to 2012 total malarial cases, annual para-
sitic index (API) and number of deaths due to malaria has
persistently decreased (Figure 1 (1.3)).
Around 27% of Indians live in high-transmission zones

where malarial cases are above one per 1,000 persons
[7]. Researchers working in the malaria field appreciate
that it is a focal disease and the topography of the land
is an important consideration in understanding the local
epidemiological situation [8]. Such high malaria inci-
dence is primarily because of the drug resistance of its
parasites [9]. There are various other reasons, including
excessive deforestation [10], indiscriminate use of pesti-
cides in agriculture, demographic shifts, for this enhanced
rate of spread of this deadly disease. For vector-borne dis-
eases, factors such as proportion of infectious mosquitoes,
Figure 1 Malaria situation in India and annual deaths. 1.1 Year wise malari
in India.
vector population density, infecting rates after biting,
vicinity of breeding grounds, climatic factors particularly
rainfall and relative humidity (RH), are known to have a
strong influence on the biology of mosquitoes. To estab-
lish seasonal variation and annual variation, geographical
information system (GIS) mapping was carried out [11].
In the terai region of Eastern Uttar Pradesh the spread of
vector-borne diseases has become uncontrolled especially
during the rainy seasons [5].
To find malarial hotspot sites, various works was done

at macroscopic level by Srivastava et al. for tribal states
of India [12], by Nath et al. for Sonitpur District Assam,
by Daasha et al. for Koraput District in Orissa [13], by
Srivastava et al. for Mewat region, Haryana [14], by
Agarwal et al. for Gwalior City, by Srivastava et al. for
Kheda District in Gujrat [15], Yadav et al. for Udalguri
District in Assam. However, much work has to be done
by widening the horizon of inclusion of malaria causing
factors and there has to be work at village level.
Malaria control action plans are dying out due to im-

proper implementation, inadequate surveillance and lack of
geo-referenced information to pinpoint the trouble spots
for timely preventive actions [3]. The present work empha-
sizes the analysing of the malaria epidemic situation and at-
taches various dimensions of socio-economic situations,
al cases. 1.2 Year wise total malarial deaths. 1.3 Malaria situation
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epidemiological circumstances and geographic conditions
to develop an integrated map based on the application of
GIS (Figure 2). GIS has been widely accepted as a mapping
device for anti-malarial plants to develop geo-referenced
attributes of all such plants with anti-plasmodic actions
[16]. Studies have already been done for geographic asso-
ciation with malaria prevalence and have established that
a positive correlation for malaria exists with proximity to
water bodies [17]. In Huang-Huai, China it was found that
74% of malaria cases were located within 60 m of water
bodies and the risk rate among the people living there
was significantly higher than elsewhere [18]. The socio-
economic data, as well as quantitative and qualitative in-
formation on health facilities, have spatial basis and can
be integrated [3]. GIS mapping has already been done for
the study area [5] at PHC/CHC level but the aim here was
to extend this up to the villages. Socio-economic and
physico-chemical factors could also be important causes
of malaria endemicity in the study region. The data in this
work have been acquired from Landsat Thematic Mapper,
from Census India 2011 and epidemiological data were
collected from district malaria offices (DMO).
With developing technology, the role of tools such as

GIS has captured almost every field of scientific re-
search, be it vector-borne diseases [5], forest fire man-
agement [11], water harvesting, hydrology, flood prone
areas or climate change issues. It has become a principal
tool in malarial mapping [2,3,13-15,19,20], and helps
with quick retrieval of information and map generation
to highlight hotspots of malaria incidence. . Hotspot re-
fers to an area or geographical region of relatively higher
importance which is based on parameters such as symp-
tomatic cases and asymptomatic cases. It signifies for
the region of focused intervention by the authorities to
Figure 2 Major segments in the work.
utilize the limited resources optimally for combating the
malaria. The present work is an amalgamation of ten pa-
rameters, of which socio-economic (workforce participa-
tion (WFP), population, child population and literacy),
geographical features (settlement, forest cover, water body,
rainfall, RH and temperature) and epidemiology (API and
number of slides collected and examined) are the three di-
mensions (Figures 2 and 3). After overlaying all these pa-
rameters, the most vulnerable villages were selected.
The objective of the current study was to develop

socio-economic and climatic factors, geographical pa-
rameters, and clinical-data based GIS-integrated databank.
It includes finding a list of all those villages/pockets (so-
called malarial hotspots) where preferential allotments of
government anti-malarial policies are required, which is
GIS-integrated output based on the factors directly affecting
malaria dynamics. These maps will help the authorities in
reducing malarial risk in the area and hotspots will help in
devising and designing strategic malaria control measures.

Methods
Study area
The Indian Council of Agricultural Research (ICAR)
study area (Figure 4) falls in the agro-ecological sub-
region of ‘eastern plain, hot, sub-humid (moist) eco-
region’. The area comprises three eastern Uttar Pradesh
(UP) districts Gorakhpur (26°13′N to 27°29′N, 83°05′E
to 83°56′E and altitude 69 m), Kushinagar (26°39′N to
27°15′N, 83°38′E to 84°15′E and altitude 75 m) and
Maharajganj (26°59′N to 27°19′N, 83°09′E to 83°45′E
and altitude 66 m). Major soil types found are sandy
loam, clay loam and alluvial loam soil, with a total area
of 9,291 sq km of which 3.82% is the State area. It lies in
the north eastern corner of the most populous state and



Figure 3 Dimensions in GIS-integrated mapping approach.
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comprises a large stretch lying to the north of River
Rapti, which is a tributary of the Gandak River, and is
also surrounded by River Rohini on the northern side,
which is its major source of water. There is an inter-
national border with Nepal. The study area is a highly
dense region of UP State (average population density
1210/sq km) and is home to more than 10.67 million
people [21]. It is evident from GIS map (Figure 5) that
the villages are settled at a distance of less than a km,
Figure 4 Location of study area.
densely populated and thus of concern for the malaria
epidemic study.

Socio-economics
Socio-economic and demographic data are collected based
on recent Census 2011 [21] and Economics and Statistics
Division, Government of Uttar Pradesh, India. Various fac-
tors such as population, income per capita, total house-
hold, number of workers, population living below poverty



Figure 5 Geographical location of villages of the study area.
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line, etc., (Table 1) are taken into consideration and added
as new fields to the spatial databank of the area in ArcGIS
10 environment to generate socio-economic indicator
maps (Figure 6) for population (Figure 6 (6.1)), child
population (Figure 6 (6.2)), WFP (Figure 6 (6.3)) and liter-
acy (Figure 6 (6.4)).
Epidemiology and clinical data
Epidemiological indices [10] API = (total positive cases for
infection/population size) × 1,000 and SPR = (total posi-
tive cases/ total slides examined) ×100, are obtained for
Kushinagar and Maharajganj and have been plotted to
study monthly variation of API for year 2013, while a
comparative annual plot of SPR vis-à-vis API was done
for Gorakhpur. This makes a better picture towards estab-
lishing how API and SPR are inter-related. On a monthly
basis, malaria incidence in terms of positive cases of
P. vivax and P. falciparum and number of slides examined
and collected was obtained from DMO for years 2012 and
2013 at PHC and CHC level. A spatial databank was cre-
ated in ArcGIS 10 using geo-referenced data of study area
obtained through satellite imagery. Inverse distance
weightage (IDW) spatial analysis was conducted on clin-
ical data to develop epidemiology maps (Figure 7) includ-
ing API (Figure 7 (7.1)) and number of slides collected
and examined map during year 2013 (Figure 7 (7.2)).
Geographical features and climatic data
The features conducive for malarial mosquito prolifera-
tion, such as water bodies, annual rainfall, RH [22], forest
cover, temperature [23], and settlements [24], are collected
for the study area using satellite imagery technique. Cli-
mate information variable was obtained from the Climate
Research Unit (CRU), UK. Shape files of temperature, RH
and rainfall were obtained from using ArcMap six discrete
GIS maps (Figure 6 (6.1-6.6)).
Data generation
For the socio-economic parameters, such as population,
child population, WFP and literacy, data have been gener-
ated at PHC level and settlement map (Figure 5) was pro-
duced. The rationale used was to first find percentage
settlement in any PHC and percentage settlement of district
containing that PHC and then dividing former by latter and
multiplying with WFP of that district to generate WFP of
PHC. All PHCs, all other districts were similarly calculated
for the remaining three socio-economic indicators.
GIS-integrated mapping
A range of geographical features comprising six layers was
imported to ArcMap 10 environment. The entire study area,
including all CHCs/PHCs, was geo-referenced through
numerous GPS coordinates, adjusting the corresponding



Table 1 Socio-Economical Features of the study area

Agro-Ecological
Sub-Regions

Eastern Plain, Hot Sub-humid
(moist) Eco-Region 13.1, 13.2
& 13.10

Total Irrigated Area (‘000 ha) 1. Gross irrigated area: 678.6

2. Rain-fed Area: 95.0

Total Area 917,340 hc Land use pattern Figure 6-attached

Total House Holdsa, d 1. Rural: 1264192 (87.98%) Production of major crops (‘000 tons) 1. Rice: 964.764

2. Urban: 172686 (12.02%) 2. Wheat: 1019.363

Health Facility 1. No of PHC: 43 Livestock/Animal husbandry 1. Number of cattle: 1,935,250

2. No of CHC: 15 2. Number of dairy form: 1,033

Populationd 1. Total: 10,690,142 Geographical Profilef 1. Average No of days precipitation: 44.88

2. Male/Female: 5,477,586/5,212,556 2. Average Relative Humidity: 68.33%

3. Density: 998 People/Sq Km 3. Average high Temperature: 30.92°C

4. Rural: 8,102,663 4. Average low Temperature: 19.58°C

5. Urban: 1,049,437 5. Average Mean Temperature: 25.25°C

6. Rural Population: 88.53%

7. Urban/Semi-Urban: 11.47%

Rainfall (annual) 1. Maharajganj: 1364.1 mm Literacyb 1. Male: 3,659,286 (60.24%)

2. Kushinagar: 1145.1 mm 2. Female: 2,415,006 (39.76%)

3. Gorakhpur: 1364.1 mm 3. Total: 6,074,292 (52.17%)

Forest Land 1. Area: 56,840 ha Area is prone to 1. Regular: Drought, Pests-Disease

2. % of total land: 6.20% 2. Others: Flood, cyclone, Hot-cold waves

Work Participation: 1. Total work participation: 3,462,855 Economyg 1. Agriculture Labors: 494,943

2. Female total work: 28.3% 2. Main Cultivator: 502,920

3. Main work participation: 1,708,932 3. Main HH Industry working: 87,400

4. Female Main Work: 19.1% 4. Monthly Income: 70.3 USD

5. Marginal Worker: 1,753,923 (16.4%) 5. Rural households: 87.98%
a:Calculated on Arithmetic Mean %, b:Calculated on Weighted Mean d:Based on India Census 2011, f:Based on satellite imagery and Climate Research Unit (CRU)
UK, g:Economics and Statistics Division, Govt. of Uttar Pradesh, India.
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points in the software environment. Through ArcGIS 10
this set of information was used to develop maps for all
the villages in the study area. The analysis was done using
ArcMap™ GIS to describe primary risk factors associated
with malaria endemicity. Later, the registered sub-centres
with their GPS co-ordinates were imported in to ArcGIS
environment and spatial data was linked with their attri-
butes. Similarly, various other GIS maps were developed
based on socio-economic parameters as well as geograph-
ical features as per the schematic flowchart (Figure 8). API
value of year 2013 was interpolated using the IDW
method to map vulnerable zones in the study area. False
colour composite (FCC) imagery (MIR-Red, NIR-Green
and Green-Blue) were used to locate general land use in
the study area. Vulnerable zones were overlaid on general
land to analyse possible malaria causes.
GIS-integrated mapping involves following steps

1. GIS layers for 12 malaria factors (Figure 3) were
created individually based on natural breaks classes.
2. These individual layers were integrated in to three
categories (Figure 9. (91-9.3)) as per Table 2, using
standard weights and mathematical equation:

MHS ¼ HSse �HSe �HSgf

HS ¼
Yn

1

n ¼ factor1ð Þ factor2ð Þ… :: factor nð Þ

where, MHS =Malaria Hotspot, HSse = Hotspot for
socio-economic, HSe = Hotspot for epidemiology, HSgf =
Hotspot for geographical features.

3. To obtain integrated malarial hotspot (Figure 9
(9.4)), all 12 individual layers are combined using
multiplicative function (above equation) and weights
and output was categorized using natural breaks.
Multiplicative function is used to optimize the
respective ranks (Table 2) of each malaria factor or
GIS layers.



6.1: 6.2:

6.3: 6.4:

Figure 6 Socio-economic indicator maps. 6.1 General population distribution. 6.2 Child population (up to six years old). 6.3 Work force
participation. 6.4 Literacy.

7.1: 7.2:

Figure 7 GIS maps for epidemiology. 7.1 API 2013. 7.2 Slide collected and examined 2013.
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Figure 8 Schematic flowchart: GIS-integrated mapping of socio-economic, geographical features and epidemiology.
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Weight matrix was used to produce three layers (L13,
L14 and L15) initially and later these layers were inte-
grated to produce malaria hotspot (Layer L16). The de-
tailed process followed:

1. PHC wise layers of all 12 factors (Figure 2) L1, L2.....
L12 was created.

2. All layers were integrated using Boolean operator
‘Union’ to get layer L13.

L13 ¼ ∪2i¼1 BEð Þ∈ all Li

BE stands for epidemiology for all layers from L1-L2

Thus, layer L13 = {BE: BE ∈ Layers Li; i = 1, 2}
(Figure 9 (9.1))

3. Similarly, for Socio-economic factors (BS)

L14 ¼ ∪6i¼3 Bsð Þ∈ all Li
Thus, layer L14 = {BS: BS ∈ Layers Li; i = 3, 6} (Figure 9
(9.2))

4. And for geographical/climatic factors (BG)
L15 ¼ ∪12i¼7 BGð Þ∈ all Li

Thus, layer L15 = {BG: BG ∈ Layers Li; i = 7, 12} (Figure 9
(9.3))

5. Malaria hotspot was obtained by integrating layers
L13, L14 and L15 using Boolean operator ‘Union’ to
get layer L16

L16 ¼ ∪15k¼13 BE;S;G
� �

∈ all Lk;

BE,S,G stand for epidemiology, socio-economic and geo-
graphical factors. Thus, required malaria hotspot is
Layer L16 = {BE,S,G: BE,S,G ∈ each layers Lk; k = 13, 14, 15
(Figure 9 (9.4)).

Rationale behind weight matrix
It was found in general that malaria incidence was related
to land use pattern, water use, higher than average rainfall,
greater forest coverage, presence of abandoned water res-
ervoirs, and poor socio-economic status [25]. Weight
matrix (Table 2) was constructed based on inputs from



9.1:

9.3: 9.4:

9.2:

Figure 9 Overlays of epidemiology, socio-economic and geographical features. 9.1 GIS-integrated epidemiology. 9.2 GIS-integrated socio-economic.
9.3 GIS-integrated geographical features. 9.4 GIS-integrated malarial hotspot.
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experts (Table 3), research findings of related study re-
gions and different regions as well [22,23,25-30], and
evidence-based weighting method [26]. Experts were
asked to write extent of impact of land-use pattern on all
malaria factors in terms of high, moderate, low and nega-
tive impact. Evidence-based weighting method was
adopted which specifies the malaria relationship with se-
lected factors through weights. However, selected factors
were decided based on scrutiny of a series of journals and
research articles. Experts suggested vulnerable factors in
malaria incidence in response to feedback form. Weight
system was derived based on a response of a questionnaire
sent to malaria experts familiar with geo-graphics of the
study region. The information from journals was com-
bined with the expert opinions based on the relative
weighting for a particular malaria factor and its frequency
of repetition in various research publications with the sug-
gestion made by the experts. A score out of 100 corre-
sponding to these observations was assigned each malaria
factor to constitute weight factors.

Malarial hotspot identification
A malarial risk map was prepared by overlaying ten
basic maps (Figure 7 (7.1 and 7.2), Figures 6 (6.1-6.4), 13



Table 2 Integrated factors for malaria hotspot identification (Weight Matrix)
Factors Standard * weight (%) Class interval # Ranks Degrees of Vulnerability

Socio-economics

Population 8 0 – 130,000 1 Low

130,001 – 300,000 2 Moderate

300,001 – 450,000 3 High

450,001 – 1,019,383 4 Very high

Child Population (0-6 years) 6 0 – 25,000 1 Low

25,001 – 60,000 3 High

60,001 – 154,532 4 Very high

Work Force Participation 3 0 – 45,000 4 Very high

45,001 – 80,000 2 Moderate

80,001 – 330,209 1 Low

Literacy 4 0 – 100,000 4 Very high

100,001 – 150,000 2 Moderate

150,001 – 579,2280 1 Low

Epidemiology

API 12 0.00 – 0.06 1 Low

0.07 – 0.10 2 Moderate

0.11 – 0.22 3 High

0.23 – 1.05 4 Very high

Slides Collected & Examined 8 397 – 2,326 1 Low

2,327 – 2,541 2 Moderate

2,542 – 2,862 3 High

2,863 – 7,203 4 Very high

Geographical Features

Forest Cover 11 Non Forested Area 1 Low

Plantation/Grass lands 2 Moderate

Wet Tarai Swamp 3 High

Moist deciduous 4 Very high

Settlements (%) 5 Low (1.2-1.93) 1 Low

Moderate (1.94-3.25) 2 Moderate

High (3.26-8.08) 3 High

Very high (8.09-38.51) 4 Very high

Temperature (°C) 8 23.5 – 25.2 3 High

25.3 – 25.8 2 Moderate

25.9 – 26.7 1 Low

Rainfall (mm) 13 61.9 – 73.9 1 Moderate

74.0 – 85.3 2 Very High

85.4 – 105.4 3 High

105.5 – 119.7 4 Low

Water Bodies 12 Water logged 4 Very high

River/canals etc 3 High

Other Regions 1 Low

Relative Humidity (%) 10 <60 1 Low

61-70 3 High

>70 4 Very High
*Based on empirical observations guided by expert’s opinion.
#Natural breaks method based.
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Table 3 Correlation matrix

Malarial
Hotspot

Epidemiology Geographics Socio-
Economy

Malarial Hotspot 1.00 0.31 0.31 0.12

Epidemiology 0.31 1.00 0.55 0.47

Geographics 0.31 0.55 1.00 0.54

Socio-Economy 0.12 0.47 0.54 1.00
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(13.1-13.6)). Overlay was done based on the weight
matrix. After collecting and evaluating expert response
and integrating it with findings of a variety of researches,
all the factors were divided into four categories, ranked
1-4. Factors ranked 1 were considered ‘low’, ranked 2
‘moderate’, ranked 3 ‘high’, and ranked 4 ‘very high’
(Table 2). The cut-off values of categories were decided
using natural breaks found within the final data in the
study area. Natural Breaks classes were used as it is
based on natural groupings inherent in the data. Class
breaks are identified that best group similar values and
that maximize the differences between classes. The fea-
tures are divided into classes whose boundaries are set
where there are relatively big differences in the data
values.

Results
Socio-economy
Socio-economic and geographical features
Factors such as socio-economic (work participation,
economy, urban-rural population, households etc) and
geographical features (land cover type, geographical pro-
file, rainfall, forests etc) have good impacts on malaria
situation and thus, tabulated (Table 1).

Land use pattern
The major use of land (Figure 10) is in open/current fal-
low (49.3%) and agriculture land (37.8%). Most of the
land is either for cultivation or is under forest area. Con-
sidering available rainfall intensity, the region is good for
rice cultivation. Rice fields [31] and forests provide ex-
cellent breeding space for mosquitoes. Land use pattern
indicates study region could be a malaria potent zone.

Epidemiology and rainfall
The study area was bifurcated and the API and SPR for
Gorakhpur plotted (Figure 11 (11.1)) to understand its
annual co-variation. It was observed that these malarial
indices were synchronous in general. For Maharajganj
and Kushinagar seasonal variation of malaria incidence,
slides collected and examined as well as monthly rainfall
was plotted for years 2012 and 2013. It was observed
during the rainy seasons (July-October) that malarial in-
cidence was relatively high for both districts in 2012 as
well as 2013 (Figure 12 (12.1,12.2)) indicating possible
strong correlation of rainfall with malaria. Seasonal vari-
ation of malaria during 2012 and 2013 (Figure 11 (11.2,
11.3)) was also similar in general. There was an increase
in number of slides collected and examined in 2013 over
2012 and also during rainy seasons more slides were col-
lected and examined (Figure 11 (11.4,11.5)) indicating
medical facilities in terms of slides collected and exam-
ined had increased to reduce early detection of malaria
incidence to reduce malarial deaths.
GIS based study
Land classification
Reveals 8,973 villages/settlement units in the study area
(Figure 5). (A list of all village pockets/settlements is
provided as Additional file).
GIS maps for epidemiology
Maps are produced for API 2013 (Figure 7 (7.1)) and health
facility indicator in terms of slides collected and examined
(Figure 7 (7.2)). These two maps were overlaid to produce
an integrated map for epidemiology (Figure 9 (9.1)).
Socio-economic indicator maps
Four socio-economic elementary maps on general popu-
lation distribution, child population (up to six years old),
WFP and literacy (Figure 5 (5.1-5.4)) were produced.
Elementary maps were overlaid in GIS environment to
produce an integrated map of socio-economic indicators
(Figure 9 (9.2)).
Geographical indicator maps
Six elementary maps (Figure 13 (13.1-13.6)) covering major
geographical malaria-related factors, including vegetation,
water bodies, rainfall, settlements, temperature, and RH
were developed to establish possible links between these in-
dicators and malaria. The elementary maps were basic units
in developing an GIS-integrated geographical indicator
map (Figure 9 (9.3)).
GIS-integrated maps
To understand spatial distribution of malaria aspects,
four layers of socio-economic factors, two layers of epi-
demiology (clinical) factors and six layers of environ-
ment and geographic factors were rated, weighted and
ranked (Table 2) on the basis of their importance on
malaria incidence. Overlaying of these layers using cal-
culated weights yielded malaria risk map in four classes
by natural breaks using ArcGIS 10 software (Figure 9
(9.4)). These classes were very high-risk (2,054), high-
risk (2,280), moderate-risk (1,981), and low-risk (2,658).
Very high-risk constitutes malarial hotspot and all vil-
lages in this class were extracted (Additional file 1).



Figure 10 Land use distribution.
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Correlation matrix
Matrix was drawn against various malarial factors to find
any inter-weaving nature and to establish any possible
relationship between these parameters (Table 4). The
matrix was computed by overlaying layers of malarial
hotspot, epidemiology, geographics and socio-economics
under the ArcGIS environment. It was observed that
epidemiology and geographic features were related to
malaria incidence by 55%, socio-economic factors were
also largely (54%) related to geographic features, while
socio-economics were not a major factor in determining
malaria incidence in a given locality; the major factors
remain epidemiology and geographic features.

Malarial hotspot classes
Overlay analysis revealed a total of 2,054 out of 8,973
villages studied were found to be malarial hotspots
(Figure 14) and a list of all such villages/pockets is
supplied as Additional file 1.

Discussion
Socio-economic finding
It is necessary to identify population at risk, their eco-
nomic level and access to medical facilities for managing
an accurate malaria control programme. Since malaria
is an environment-dependent disease and hence, by
integration of these data with socio-economic and com-
munity health levels, it is possible to establish an early
warning system for malaria epidemics. The area has
32.4% as total work participation, including 16.4% as
marginal worker and has large population below the
poverty line (BPL). Literacy level is 52.17% while access
to the medical facility is poor, which is the major reason
for the poor health recovery due to malarial incidence.
The region belongs to low socio economic zones with
monthly income ~70.3 USD and 78% population agrarian.
The region has 1,436,878 total households in which
87.98% are rural, while 12.02% are urban; the demographic
divide lies with 51.25% males, 48.75% females and
3,462,855 works in the entire study area.

Analysis of epidemiology indices and maps
Malaria incidence in the selected study area is not very
prominent if compared with the prevalence in African
countries. Instead of API and SPR, 100API and 100SPR
was plotted annually for Gorakhpur to highlight numer-
ical values of these epidemiological indices (Figure 11
(11.1)). 100API is algebraic multiplication of API by 100
to magnify the existing API. This is highly useful for the
region where API is not so high and magnification eases
the study of API variation. These two are plotted on
common axis system to find any possible relationship
between API and SPR. Theoretically, these are directly
related, i.e., ‘sail, swim and sink together’, but observation
reveals peculiarity of ‘no proportionate relationship’.
However, a major section of the plot is in consistency
with the theory and the partial mismatch is because of
the error in data collection from the DMO.
Malaria incidence of year 2012 with 2013 was com-

pared and also seasonal and monthly variation of malaria
cases for Kushinagar and Maharajganj was plotted
(Figure 11 (11.2-11.5)). Epidemiology data for year 2012
was kept to verify the predictive model and results ob-
tained in the study confer with the malaria observed in
the villages of ‘very high’ or ‘high’ incidence. GIS map-
ping for year 2012 for same geographic region was done
by and result was compared with the predictive model
in the current study. In both districts malaria incidence
is relatively high during months July-September (rainy
season) in both the years. This establishes positive



Figure 11 Epidemiology study: Seasonal variation and health facility. 11.1 Variation of SPR and API for Gorakhpur. 11.2 Seasonality of malaria for
Kushinagar. 11.3 Seasonality of malaria for Maharajganj. 11.4 Progress of medical facility for Maharajganj. 11.5 Progress of medical facility
for Kushinagar.
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correlation of malaria cases with rainfall. In rainy seasons
the number of breeding sites increases (because of water
logging) leading to growth of malaria vectors. However,
from 2012 to 2013 there was no significant increase in
malaria eradication for the studied area. In general, it
remained unchanged and hence the study area demands
deeper investigation of the current malaria situation to
bring change and satisfactory health achievements.
For Maharajganj, the plot of the number of slides col-

lected and examined for year 2013 showed continuous



Figure 12 Rainfall vs. malaria cases plot. 12.1 Seasonality of malaria-rainfall, Kushinagar 12.2 Seasonality of malaria-rainfall, Maharajganj.
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increase, which is clear indicator of fine discharge of gov-
ernment medical facility. This further indicates the pene-
tration of health facilities to the public. A similar plot for
Kushinagar witnessed similar monthly increases in num-
ber of slides collected and examined in the same year.
This generates a ground for generalization of discharge of
health measures for the whole region. Both the districts of
the study area could be declared healthy against the health
facility available. It is important to note that the medical
facility profile of Maharajganj (Figure 11 (11.4)) and Kush-
inagar (Figure 11 (11.5)) is very similar and is indicative of
governmental schemes reinforcing the expansion of the
health infrastructure in the study area.
For the microscopic study of malaria incidence in a lo-

cality of less critical or malaria-vulnerable areas, a new
term of malaria part per million (MPPM) can be intro-
duced and conceptualized (since API for these areas re-
main in fraction). This is 1,000 times API and serves as
numerical convenience for study of malaria of vulnerable
localities, after magnifying the obtained API data by
1,000. Although there is no universally accepted defin-
ition of ‘malaria vulnerable zones’, it can be noted that
for these zones API is low, generally in fraction.
Malarial hotspot identification factors were studied

across land use pattern (Table 3). It was found that all types
of land use, except barren land, impacts malaria incidence
heavily considering epidemiology as one dimension while
barren land itself has almost no impact on any of the three
dimensions. It was further observed that settlement’s
aquatic ecosystems and forest/tree cover had good impact
on almost all malaria-affecting factors. Land-use pattern
plays crucial role in determining host-vector dynamics.

Geographical profile
Excess rainfall shows negative correlation [23] with mal-
aria incidence as rain can flush out mosquito larvae [27]
and positive correlation with temperature and RH [28].
The map helps identification of breeding places of mos-
quito larva. It was found that water bodies and forest
land nearby human habitation was the main breeding
site. Average monthly rainfall and temperature variation
were plotted (Figure 15) based on the data obtained
from CRU. All the districts reflected similar behaviour
(Figure 15 (15.1-15.6)). Temperature bands were plotted
with maximum, minimum for each point in a year,
which indicates variation of above 12°C in a given day
and ranging from 7°C to 41°C.

GIS analysis
GIS-integrated model possesses well mix of both symp-
tomatic and asymptomatic cases with larger emphasis
on the former. For symptomatic cases, slides were col-
lected for patients with malaria symptoms for years 2012
and 2013, and were examined for P. vivax and P. falcip-
arum positive cases. In GIS-integrated output (Figure 9
(9.4)), a suitable weight based on the matrix (Table 2) is
given to both cases to account for developing malaria
hotspot. While, indirect parameters including breeding
grounds for vectors such as water bodies, high settle-
ment areas and forests; factors for survival of larvae such
as rainfall, temperature and RH; other factors such as
capacity to afford medical facility indicated through
socio-economy parameters, are considered for asymp-
tomatic cases. Under GIS environment, spatial distinc-
tion can be easily seen in symptomatic cases (Figure 9
(9.1)) and asymptomatic cases (Figure 9 (9.2 and 9.2)).
Moreover, GIS as mapping tool is used to integrate these
two cases to bring out malaria hotspot (Figure 9 (9.4)) as
key element for early malaria warning system.
Although API of the region falls below the national

average, geographical characteristics, proximity to the
Himalayan region (major reason for heavy rainfall) and



13.1: 13.2:

13.4:13.3:

13.6:13.5:

Figure 13 Geographical indicator maps. 13.1 Forest land and other vegetation. 13.2 Water bodies. 13.3 Rainfall intensity. 13.4 Land settlements.
13.5 Annual average temperature. 13.6 Annual relative humidity.
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Table 4 Malarial hotspot identification: Classic case of
consistent stakeholders and land use pattern

Impact of land use pattern on malarial dimensions

Land
use

Epidemiology Socio-economic
factors

Geographical features

E1 E2 S1 S2 S3 S4 G1 G2 G3 G4 G5 G6

LU1 0 0 - - - 0 + 0 0 0 - 0

LU2 +++ +++ ++
+

++
+

++
+

+
+

++ ++
+

++ ++
+

++
+

++
+

LU3 ++ +++ ++ + + 0 + - + - ++ ++
+

LU4 +++ ++ + ++ ++ 0 + + ++
+

+ ++
+

-

LU5 +++ ++ ++
+

++
+

++
+

0 ++
+

++
+

++ ++
+

++
+

+

Extent of Impact: +++ = High, ++ = Medium, + = Low, 0 = None, - = Negative.
LU1 = Barren, LU2 = Settlements, LU3 = Terai, grasslands, LU4 = Aquatic
Ecosystem, LU5 = Forests/Trees; E1 = API, E2 = Slide examination; S1 = Work
Force, S2 = Population, S3 = Child Population, S4 = Literacy; G1 = Temperature,
G2 = Rainfall G3 = RH, G4 = Water Bodies, G5 = Forest, G6 = Settlements.
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poor socio-economic conditions make the region sensi-
tive to various vector borne diseases. The study region
has been epidemic for vector-borne diseases, such as
Japanese encephalitis, dengue and chikungunya. It is im-
portant to analyse the results to establish control mea-
sures against the deadly disease. It was found that the
region in the vicinity of Partawal, Fazil Nagar, Motichak,
Ramkola and Padrauna PHCs had higher API (Figure 7
(7.1)) over other regions and therefore demands strategic
monitoring of government malaria intervention. The
number of slides collected and examined was not from
the regions of high malaria incidence but from all the re-
gions and were collected uniformly (Figure 7 (7.2)).
There must be a spatial shift in slides collection and
examination to the region where the API index is high
and the additional collection of slides has to be done for
these regions of relatively high importance.
PHCs in Gorakhpur are highly populated in compari-

son to PHCs of other districts. Excess population poses
Figure 14 Number of villages in various malarial hotspot classes.
a threat to malaria incidence and hence it possesses rela-
tively higher weight. Regions in the vicinity of wet grass-
lands, fresh-water swamp forest and terai swampy grass
are superior breeding sites for mosquitoes and thus as-
sume more weight, constituting a malaria-sensitive zone.
Malaria incidence is likely to be high in eastern Nichlaul,
Mithaura and Laxmipur PHC region in times to come.
Water bodies play a pivotal role in malaria dynamics.

Vicinity to water bodies is very important for malaria in-
cidence. It varies inversely with distance from the water
body (Figure 13 (13.2)). Based on the distance, factor
weights are designed (Table 2). Most of the study area
falls within cultivable lands. Rice is one of the major
crops in the region requiring lots of water which makes
a virtual water reservoir and high chance of malaria
breeding sites. It was reported that mosquito breeding
in rice fields is inversely proportional to the distance
from village during a study in Madla District, Madhya
Pradesh [31]. However, the precise role of rice fields in
maintaining high malaria transmission could not be
established but the rice fields contributed significant vector
populations and thus high probability of malaria cases is
expected.
Moderate rainfall can provide the conditions for

breeding of Anopheles mosquito and enhances malaria
hazard. The soil of Maharajganj and Kushinagar is clay
and alluvial loam, which holds water and little additional
rain, leads to water logging. Thus, breeding sites are gen-
erated and this is the reason that this region has rela-
tively high malaria incidence (Figure 7 (7.1)). It was
found that Gorakhpur region has relatively low malaria in-
cidence, the prime reason being heavy rainfall as it is the
district with the highest annual rainfall in the whole state.
The rainfall flushes out the larvae and excess rainfall pos-
sesses lower weight while the moderate (74-95 mm) rain-
fall that falls in northern Gorakhpur and southern
Maharajganj and Kushinagar has high rank and these re-
gions are malaria sensitive with respect to rainfall criteria.
The study area is home to 10,690,142 people with a geo-

graphical area of 9,291 sq km and population density of
1,151 per sq km. This amount of land is home to the near
equivalent of countries such as Greece, Portugal and
Sweden, etc. Land settlement is very dense (Figures 5, 13
(13.4)) making the region highly vulnerable. Gorakhpur
City has maximum settlements but almost no malaria in-
cidence is observed, because of better socio-economics
and high rainfall.
Southern Gorakhpur City has the maximum of average

temperature (averaged annually) among various PHCs/
CHCs because of the presence of heavy industry and in-
dustrial effluents, while minimum average temperature
is found in northern Maharajganj as it has rich forest
cover which acts as a sink for warm gases. Temperatures
above 32°C have maximum impact on larvae growth but



15.1: 15.2:
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Figure 15 Rainfall and temperature monthly variation. 15.1 Monthly variation of rainfall and temperature - Kushinagar. 15.2 Monthly variation of
temperature - Kushinagar. 15.3 Monthly variation of rainfall and temperature- Gorakhpur. 15.4 Monthly variation of temperature - Gorakhpur.
15.5 Monthly variation of rainfall and temperature - Maharajganj. 15.6 Monthly variation of temperature - Maharajganj.
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the study region has 26.7°C as maximum average
temperature (Figure 13 (13.5)) and thus it is not a major
malaria factor, and thus weighted inferiorly.
In the entire study region, RH showed almost no vari-
ation (63-68%) and <60% is critical for mosquitoes [22];
thus, it had least impact on vector population and was



Qayum et al. Malaria Journal  (2015) 14:192 Page 18 of 19
weighted insignificantly and no significant geographical dis-
tinction could be made based on the RH in the study area.

Health facility hotspots and vulnerable villages
Considering 12-odd factors on the same piece of land for
its spatial distribution analysis is the biggest challenge that
GIS is capable for. At the same spatial coordinates there
might be many contradicting parameters, e.g., forest area,
vegetation and rainfall are positive (high rank) factors
while population and WFP are negative (less rank) factors.
Thus, the weight system (Table 2) has evolved to accom-
modate two conflicting factors in developing integrated
maps towards malarial hotspot identification. Net factor is
obtained by weighted multiplication of various malarial
factors (Figure 3).
Environmental and climatic factors play a crucial role

in influencing malaria incidence and transmission [29].
Sporogenic duration and mosquito survival is highly
dependent on temperature. It was claimed that parasitic
growth ceases at 16°C or less [30]. Temperatures above
32°C lead to high throughput of vector population.
Temperature-induced mosquito deaths occur between
40 and 42°C depending on species [32]. Rainfall does not
affect parasites directly but it provides the medium for
aquatic mosquito stages and increases RH, which is cru-
cial for mosquito incubation. Monthly average RH below
60% reduces the life of mosquitoes [22]. It was observed
that 80 mm average rainfall is crucial for the malarial
transmission [30].

Conclusion
This study could be useful in providing basic knowledge
of malaria risk factors and to focus control measures on
vulnerable populations alone, thus enabling optimal
utilization of resources available, which is essential for
developing countries with poor socio-economic indica-
tors. Malarial mapping enables easy update of informa-
tion and effortless accessibility of geo-referenced data to
policy makers to produce cost effective measures for
malaria control in endemic regions. The success of such
control measures mainly depends on the precise identifi-
cation and geographical reconnaissance of malarial hot-
spots. Malaria risks maps are a convenient tool for
discussing targeted and cost effective control measures
with government authorities. GIS enables the generation
of revised maps as soon as new data are available.
Malarial cases in the study region could be attributed

to rainfall intensity, temperature, forest cover and hu-
midity as malaria-causing factors, as well as a low socio-
economic profile of the population. This study has
established that there is a close relationship between
socio-economic factors, geographical description, demo-
graphic data and epidemiology depiction and malaria inci-
dence. It helps in understanding the malaria transmission
pattern based on anthropogenic and environmental fac-
tors. Health parameter alone may not be complete and re-
liable for malaria prediction and thus this integrated
approach could be a faultless endeavour to judge malarial
hotspots precisely and accurately.
Wide-ranging maps were effective in communicating

major findings to the local health authorities, district
health administrator and authorities of NVBDCP. With
improving socio-economic conditions and deeper pene-
tration of health infrastructure, the present hotspots of
malaria may drift and thus GIS mapping becomes much
crucial as it offers smooth data updating. As soon as
new data are entered, the correct map for the changed
scenario is ready, whereas this is a major drawback in
the current manual system. The hotspot identification
based on GIS mapping could be treated as a priority area
for monitoring and surveillance of malaria. It is sug-
gested that a databank of malaria incidence, demo-
graphic and socio-economic profile and access to health
facilities be established for malaria-endemic regions in
the country. Adding these factors to a malaria database
will identify hotspots for optimal utilization of resources
towards significant malaria control.

Future work
Using the extrapolation technique for current malaria inci-
dence as well as past, and the hotspot identification used
in this study, malaria occurrence could be predicted in fu-
ture and policy makers could be advised accordingly for ef-
fective and optimal distribution of governmental aid for
malaria control. Policies need to be streamlined. At
present, governmental health aid, such as insecticide-
treated mosquito nets and ACT are distributed randomly.
These aids have to be distributed in highly targeted fashion,
especially when the resources are very limited and need is
very high. Similar work has to be extended for the whole
land to design a comprehensive governmental plan for de-
veloping a ‘Malaria National Map’. The work could be inte-
grated with CSIR, New Delhi’s ongoing bio-prospecting
project of open source drug discovery (OSDDs), Malaria
Section, to host these malarial maps with a website which
is in development phase. It may be further extended to
various other vector-borne diseases such as dengue, filaria,
chikungunya, kala-azar and Japanese encephalitis to de-
velop similar maps for designing effective control measures
against these vector-borne diseases.
Additional file

Additional file 1: List of malaria hotspots on GIS-integrated approach.
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