
The evolutionary origins and consequences of
self-fertility in nematodes
Ronald E. Ellis* and Shin-Yi Lin

Address: Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, USA

*Corresponding author: Ronald E. Ellis (ellis@rowan.edu)

F1000Prime Reports 2014, 6:62 (doi:10.12703/P6-62)

All F1000Prime Reports articles are distributed under the terms of the Creative Commons Attribution-Non Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/legalcode), which permits non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

The electronic version of this article is the complete one and can be found at: http://f1000.com/prime/reports/b/6/62

Abstract

Self-fertile hermaphrodites have evolved frommale/female ancestors in many nematode species, and this
transition occurred on three independent occasions in the genus Caenorhabditis. Genetic analyses in
Caenorhabditis show that the origin of hermaphrodites required two types of changes: alterations to the
sex-determination pathway that allowed otherwise female animals to make sperm during larval
development, and the production of signals from the gonad that caused these sperm to activate and
fertilize oocytes. Comparisons of C. elegans and C. briggsae hermaphrodites show that the ancestral sex-
determination pathway has been altered in multiple unique ways. Some of these changes must have
precipitated the production of sperm in XX animals, and others were modifying mutations that increased
the efficiency of hermaphroditic reproduction. Reverse genetic experiments show that XX animals
acquired the ability to activate sperm by co-opting one of the two redundant pathways that normally
work in males. Finally, the adoption of a hermaphroditic lifestyle had profound effects on ecological and
sexual interactions and genomic organization. Thus, nematodemating systems are ideal for elucidating the
origin of novel traits, and studying the influence of developmental processes on evolutionary change.

Introduction
Darwin published “On the Origin of Species” 155 years
ago [1], but his theory of natural selection remained
incomplete until its integration with genetics in the
modern synthesis [2]. The past 30 years have seen the
beginnings of a second major integration, fusing evolu-
tionary theory with new research in development
(reviewed in [3,4]). This field of evolutionary develop-
mental biology is best known for the discovery of
orthologous genes that pattern the early embryo, but it is
now branching out into many other areas.

Here, we review the evolution of self-fertility in
Caenorhabditis nematodes. The convergent evolution of
hermaphrodites in this genus provides an ideal way to
explore both evolutionary change and the use of alter-
native reproductive strategies (reviewed in [5,6]). Phylo-
genetic analysis implies that mating systems changed
recently, which makes it easier to reconstruct many of

the underlying genetic events (Figure 1). Furthermore,
technical considerations make this genus ideal for study.
C. elegans is one of the leading models for studying
sex-determination, and decades of research provide
the background information needed to characterize its
relatives. This task is simplified by the genome sequences
of C. elegans [7] and C. briggsae [8], and the partial
sequences of seven related species (Figure 1). Finally,
orthologous genes can be characterized by powerful
reverse genetic techniques, including RNA interference
and gene-editing with transcription activator-like effector
nucleases (TALENs) or clustered regularly interspaced
short palindromic repeats (CRISPRs) [9-13], which allow
the control of mating systems to be dissected in all
species.

Our discussion will focus on three major questions. First,
a change in mating system requires the coordination of
many genes and regulatory pathways, so we will explore
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how complex traits originate. Second, hermaphrodites
are common in some phyla but rare in others, so we will
consider whether the rules of development influence the
evolution of self-fertility. Third, mating systems are
central to sexual reproduction, so we will ask how self-
fertility affects the evolutionary process.

How did androdioecy evolve in nematodes?
Most nematode species have males and females, just like
other animals.However, some species display a raremating
system known as androdioecy, which uses males and self-
fertile hermaphrodites. In androdioecious nematodes, the
XO animals are normal males but XX animals are
hermaphrodites (Figure 2). These hermaphrodites look
like females, but the first germ cells to differentiate become
sperm, which are stored in the spermathecae and used later
for self-fertilization. Subsequent germ cells become
oocytes. Because hermaphrodites are anatomically female,
they cannot mate with each other, but do produce cross
progeny if mated with males.

Self-fertile hermaphrodites have arisen independently
many times during evolution [14]. Even within a
subgroup of the genus Caenorhabditis, hermaphroditic
reproduction evolved in three different species —

C. elegans, C. tropicalis (formerly C. sp. 11 [15]) and
C. briggsae (Figure 1) [16-18]. Comparative studies,
particularly between C. elegans and C. briggsae, have
elucidated the genetic control of self-fertility.

Caenorhabditis nematodes share a core set of
sex-determination genes
Decades of research with C. elegans have defined a signal
transduction pathway that regulates sexual
development in both the somatic tissues and the
germ line (Figure 3; reviewed in [19,20]). In
signaling cells, the ratio of X chromosomes to
autosomes controls xol-1, a gene that specifies male
development. Next, XOL-1 acts through the syndecan
(SDC) proteins to control the production of a
hormone, HER-1 (human epidermal growth factor
receptor-1), that causes cells throughout the body to
adopt male fates. The ultimate target of this pathway is
TRA-1, a transcription factor related to the Gli
proteins [21].

In males, HER-1 binds to and inactivates its receptor,
TRA-2 (Figure 3A). This interaction allows the FEM
proteins and the ubiquitin ligase CUL-2 to mark TRA-1
for degradation [22] (shown as TRA-1ubi in Figure 3).
However, some full-length TRA-1 remains [23] and is
likely to work with the Tip60 histone acetyltransferase
(HAT) complex to promote the expression of genes
needed for spermatogenesis [24]. These genes include
fog-1 and fog-3, which have TRA-1 binding sites in their
promoters [25,26] and are required for germ cells to
become sperm rather than oocytes [27,28]. FOG-1 and
FOG-3 are likely to work by regulating the translation of
messenger RNAs (mRNAs) [26,29,30].

In hermaphrodites, TRA-1 is cleaved to produce a
repressor (TRA-1100 in Figure 3) [23], which turns off
male genes like mab-3, egl-1, fog-3 and numerous other
targets (Figure 3B) [25,31-33]. These repressive interac-
tions appear to be the predominant method by which
tra-1 controls somatic sex. The fact that the full-length
isoform appears to activate sperm genes, whereas the
cleaved form represses them, makes TRA-1 bipotential, a
trait shared with many other Gli proteins [24].

Orthologs of these genes have been shown to function in
the sex-determination pathway in both hermaphroditic
and male/female species of Caenorhabditis. Analysis of
mutants in the hermaphroditic species C. briggsae
confirms that sexual development is controlled by tra-1
[34,35], tra-2 [35,36], tra-3 [35], trr-1 [24], fem-2 [37],
fem-3 [37] and fog-3 [25]. Furthermore, RNA
interference shows that tra-2 [38], fem-3 [39] and fog-3
[40] regulate sexual development in the male/female
species
C. remanei. Thus, it appears that core genes of the sex-
determination pathway have been conserved throughout
Caenorhabditis (reviewed in [5]). This conservation
could extend farther, since an ortholog of tra-1 controls
sexual development in the distant relative Pristionchus
pacificus [41].

Figure 1. Hermaphrodites evolved on three independent
occasions in Caenorhabditis

Only species with sequenced genomes are shown. Androdioecious species
with males and hermaphrodites are marked with a red symbol, and the others
are male/female. The species in blue are able to interbreed and produce fertile
offspring, and two outgroup species are orange. Modified from Kiontke
et al. [18] and Felix et al. [15].
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Hermaphrodites evolved through independent changes
in the sex-determination pathway
Because hermaphroditism arose independently in
C. elegans and C. briggsae, comparing their sex-determi-
nation pathways can reveal what types of genetic changes
led to self-fertility. To date, all known mutations that
allow XX larvae to produce sperm fall into one of three
separate categories: the generation of novel genes by
duplication, the recruitment of known germline genes to
the sex-determination pathway, and the modification of
core genes within the pathway (compare Figure 3C/3D
with 3A/3B).

First, new genes have been created by duplication and
recruited to the pathway. For example, C. elegans
hermaphrodites require fog-2 to produce sperm during
larval development [42]. The FOG-2 protein works with
GLD-1 to block the translation of tra-2 mRNAs in the XX
germline [43,44] that allows the expression of male genes

needed for spermatogenesis. This system is unique to
C. elegans, since fog-2 was created by a recent duplication
event [44] and has no ortholog in C. briggsae [45].

A different gene, she-1, is required for C. briggsae
hermaphrodites to make sperm [46]. Although SHE-1
also regulates the activity of tra-2, it does not associate
with GLD-1 and its molecular function remains
unknown. As with fog-2, the she-1 gene was produced
by a recent duplication event. Surprisingly, both genes are
distant members of the large F-box family [47]. Perhaps
the adaptive radiation of this family provided opportu-
nities for novel functions to arise.

Second, existing germline genes have been indepen-
dently recruited to the sex-determination pathway. In
C. elegans, the fbf genes encode conserved RNA-binding
proteins that block spermatogenesis by preventing
the translation of fem-3 mRNAs in the germ line [48].

Figure 2. Self-fertile hermaphrodites are modified females that make and use sperm

A. Comparison of virgin female and hermaphrodite nematodes. Ventral up, anterior to the left. Oocytes are pink and sperm are blue. In the soma, the gonad is
gray, the pharynx is light green, the intestine is dark green, the sex muscles are orange, the distal tip cells are yellow and the vulva purple.
B. Male nematode. Primary spermatocytes are light blue hexagons, residual bodies are light blue circles, and spermatids are dark blue circles.
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Figure 3. Modifications to the sex-determination pathway allow XX larvae to make sperm

Proteins promoting spermatogenesis are blue, and those promoting oogenesis are pink. Positive interactions are shown as solid lines with arrowheads, negative
ones as lines with bars, and nuclear import by dashed lines. Line thickness and font size represent the strength of each interaction. The TRA-2 receptor can be
cleaved by the calpain protease TRA-3 to form the intracellular form TRA-2ic [111,112]. The target of the Caenorhabditis briggsae puf-1.2, puf-2, gld-1 and puf-8
pathway is not yet known, but it is likely that PUF-8 represses a gene needed for oogenesis [49,52]. Likewise, the secondary role that the three fem genes play
downstream of tra-1 in C. elegans [56] and possibly in C. briggsae [113] is not shown because their targets remain unclear. Finally, additional genetic interactions
are needed for adult hermaphrodites to switch back to oogenesis, which are reviewed elsewhere [20]. For other details, see the text.
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By contrast, two other PUF proteins promote spermato-
genesis in C. briggsae hermaphrodites by blocking the
translation of gld-1 mRNAs [49]. Thus, different mem-
bers of the PUF family of proteins, which normally
function in the germ line, were independently recruited
to the sex-determination pathway in order to control
self-fertility.

The gld-1 gene also belongs to this class. GLD-1 plays
numerous roles in the XX germ line [50-52]. In C. elegans,
it also promotes hermaphrodite spermatogenesis by
working with FOG-2 to block the translation of tra-2
mRNAs, and its physical interaction with this target is
stronger than in other nematodes [43,44]. By contrast,
C. briggsae GLD-1 blocks hermaphrodite spermatogen-
esis [45,52], in part by regulating puf-8 [52]. The ultimate
target of this pathway is not yet known, but it is likely
that PUF-8 represses a gene needed for oogenesis in
C. briggsae [49,52]. Thus, these species recruited GLD-1
for opposing roles in sex determination.

Also, the nucleasome remodeling factor complex regulates
gene expression by moving histones [53] and controls
germ cell proliferation in many animals, including
C. elegans [54]. In C. briggsae, it was recruited for a unique
role — the control of spermatogenesis [55] . It appears to
carry out this function by allowing TRA-1 access to the
fog-1 and fog-3 promoters.

Third, the core pathway itself has been modified,
changing the relative importance of different factors.
We know that the FEM proteins and the Tip60 HAT
complex are core members of the pathway, since they
both influence germ cell fates in sensitive genetic back-
grounds, and double mutants in either species cause
synthetic feminization [24]. However, the three FEM
proteins are required for spermatogenesis in C. elegans
hermaphrodites [56] but dispensable in C. briggsae ones
[37]. By contrast, the Tip60 HAT complex is required for
spermatogenesis inC. briggsae but plays only aminor role
in C. elegans [24].

One explanation for these results is that the sperm/
oocyte decision might be controlled by a balance
between activating and repressing activities of TRA-1
(Figure 3). In hermaphrodites, upstream regulators of the
sex-determination pathway, like those described here,
could alter this balance, so that larvae make sperm and
adults make oocytes. Several lines of evidence support
this idea. First, the analysis of mutations in the C. elegans
fog-3 promoter suggests that TRA-1 both promotes and
represses the expression of fog-3 [25]. Second, adult
hermaphrodites normally accumulate far more of the
TRA-1100 isoform than adult males [22,23]. However,

C. elegans cul-2 or fem mutations create similar propor-
tions of TRA-1100 in XO animals [22], leading to
oogenesis [57]. Third, some mutations in accessory
genes appear to favor activation or repression by TRA-1.
For example, the Tip60 HAT complex requires TRA-1 to
promote the expression of fog-3 [24]. By contrast, two
WDR-5 proteins are needed for TRA-1100 to repress fog-3,
and appear to work by controlling its import to the
nucleus [58]. Finally, the relative importance of the FEM
proteins and the Tip60 HAT complex in C. elegans and
C. briggsae differ dramatically [24,37], which shows that
different types of changes in the regulation of TRA-1
could lead to self-fertility.

The large number of alterations found in the sex-
determination pathway (compare Figures 3C and 3D)
suggests that self-fertility has been refined by selection
for additional modifiers. These mutations might influ-
ence the precise amount and timing of spermatogenesis,
since the analysis of weak tra-3 mutants implies that the
number of sperm made by each hermaphrodite is under
intense selection [59]. Thus, mutations that affect when
the germ line switches to oogenesis could maximize the
number of self progeny, while minimizing the delay in
oogenesis.

Hermaphrodites also required changes in a sperm
activation pathway
Based on these results, it seemed possible that a single
mutation that altered the sexual fates of germ cells would
be sufficient to make self-fertile hermaphrodites. This
mutationwould have to allow XX animals tomake sperm
as well as oocytes, perhaps by decreasing tra-2 activity. To
test this hypothesis, RNA interference was used to target
tra-2 in C. remanei females [60]. Some of the Cre-tra-
2(RNAi) XX animals did indeed produce sperm and
oocytes in a female body. Surprisingly, their spermatids
failed to activate and fertilize oocytes, so they did not
make progeny. Thus, alteration of the sex-determination
pathway is not sufficient for self-fertility.

How is sperm activation controlled? C. elegans males use
two redundant pathways, one dependent on SPE-8 and
the other dependent on TRY-5, whereas hermaphrodites
use only the SPE-8 pathway (Figure 4, reviewed in [61]).
The five genes of the spe-8 group encode sperm proteins
[62-66] that appear to respond to labile zinc [67]. By
contrast, TRY-5 is a protease that activates sperm by
cleaving unknown targets [68]. Prior to ejaculation, TRY-5
activity is kept in check by the inhibitor SWM-1 (Figure 4A)
[69]. Because C. elegans hermaphrodites normally use the
spe-8 pathway to activate sperm, mutants in these genes
are not self-fertile. However, their spermatids can be
activated by exposure to male seminal fluid in a process
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called transactivation [70]. This is done experimentally by
mating sterile spe-8 hermaphrodites with males, resulting
in the activation of some hermaphrodite sperm and the
production of self-progeny. Transactivation implies that
TRY-5 targets remain functional in hermaphrodite sperm,
even if they are not normally used.

To see if the spermatids in C. remanei tra-2(RNAi) XX
animals could be activated and fertilize oocytes, they were
crossedwith sterilemales. This resulted in theproductionof
self-progeny, so the XX sperm functioned normally after
transactivation by male seminal fluid. Likewise,

simultaneous knockdown of both Cre-tra-2 and Cre-swm-1
also produced self-fertile hermaphrodites [60]. Thus, two
coordinated changes are sufficient to produce self-fertility:
one in the sex-determination pathway that allows XX
animals to make sperm and another that causes these
sperm to activate and fertilize oocytes [60].

All of the sperm activation genes from both pathways are
conserved throughout Caenorhabditis (Wei et al., unpub-
lished data). Since both pathways operate in C. briggsae
males, they must have controlled sperm activation in the
male/female ancestor.However,C. elegans andC. briggsae

Figure 4. Hermaphrodites have co-opted one of two redundant sperm activation pathways

A. Studies of Caenorhabditis elegans and C. briggsae males show that two redundant pathways control sperm activation. One pathway uses the SPE-8 group of
sperm proteins to respond to an unknown signal (denoted “S8 signal”). The other pathway uses an unknown receptor (denoted “?”) to respond to the TRY-5
protease. Males defective for both pathways are sterile.
B. C. briggsae and C. elegans hermaphrodites rely on the SPE-8 pathway to activate sperm, whereas C. tropicalis hermaphrodites rely on the TRY-5 pathway. For
details, see the text (Wei et al., unpublished data).
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hermaphrodites use the SPE-8 pathway to control sperm
activation, but C. tropicalis hermaphrodites use TRY-5
(Figure 4B) (Wei et al., unpublished data). Thus, newly
evolving hermaphrodites appear to have co-opted either
one system or the other, probably by expressing the
appropriate signal in the somatic gonad.

What are the consequences of androdioecy in
nematodes?
Once self-fertility has been acquired, it has far-reaching
consequences as organisms adapt to and refine the
hermaphroditic lifestyle. Work in Caenorhabditis and
other androdioecious species has begun to shed light on
how changes in mating systems can affect the ecology,
fitness, and genomic organization of these hermaphroditic
species (reviewed in [6]).

Hermaphrodites facilitate the colonization of new habitats
Although we are beginning to learn about the natural
ecology of Caenorhabditis [18], we do not know what
selective pressures favored the origin of self-fertility.
However, the idea that hermaphrodites are better suited
for colonization [71] is supported by studies of the
European tadpole shrimp [72]. This species has male/
female, male/hermaphrodite and hermaphrodite popu-
lations. As glaciers retreated north following the end of
the last ice age, new habitats were preferentially filled by
hermaphrodites. This advantage in colonization could
be due to the ability of single animals to open up new
territories without needing to find mates. Ecological
studies with Pristionchus nematodes, which also include
male/female and male/hermaphrodite species, should
help test this hypothesis (reviewed in [73]).

Hermaphroditism alters the genetic structure of
populations
Population structure plays a critical role in evolution,
since it determines what allelic combinations will be
available for selection. In large sexual populations, new
mutations will most likely be present within the popu-
lation in heterozygous form, so the production of
favorable combinations within the same individual
would be rare. However, newly evolving hermaphrodites
can escape these sexual dynamics by selfing, which
should make it easier to produce homozygotes with new
allele combinations. This feature of self-fertile popula-
tions might accelerate the evolution of androdioecy, and
also influence how alleles controlling other traits
propagate within the population.

However, selfing does come at a cost. Self-fertile popula-
tions can show inbreeding depression, a decrease in fitness
caused by progeny that are homozygous for harmful
mutations. There is a huge reservoir of genetic diversity in

male/female Caenorhabditis species [74], so when the
ancestor of C. elegans began to self-fertilize, it would have
faced a crisis until lethal mutations were purged from the
gene pool. Many incipient hermaphrodite populations
might have died out during this stage. However, once
inbreeding depression was overcome, hermaphrodites
should have been well adapted to their environments.
Indeed, modern isolates of C. elegans actually show
outbreeding depression for some traits, presumably because
beneficial allele combinations have become fixed in the
population [75].

Despite the impact of selfing, the existence of males in
androdioecious species suggests that some out-crossing
still occurs. This conclusion is bolstered by the direct
observation of heterozygosity among C. elegans isolated
from the wild [76,77]. Indeed, some out-crossing might
be necessary for the long-term survival of the species. The
existence of populations with both out-crossing and
selfing animals has made Caenorhabditis ideal for
exploring the role of sexual reproduction, the importance
of Muller’s ratchet and other mechanisms for eliminating
deleterious mutations [78,79].

Androdioecious males show a decline in male fitness
In male/female species, each sex is under selective
pressure to find and mate with the other. By contrast,
hermaphrodites do not needmales to reproduce. Indeed,
wild C. elegans populations are highly skewed towards
XX animals [76,77]. Consequently, many traits involved
in mating have degraded from their state in the male/
female ancestor. For example, C. elegans hermaphrodites
no longer secrete a pheromone to attract males [80], and
do not remain immobile during copulation [81].
Furthermore, males from numerous wild isolates of
C. elegans have lost the ability to produce a mating plug
[82]. Finally, sperm from androdioecious males are less
aggressive than those from gonochoristic males, and
interactions between sperm and the XX gonad have
changed significantly [83]. All of these changes make
C. elegans males less effective than their counterparts
from gonochoristic species [80,81]. Genetic studies
suggest that hermaphroditic nematodes evolved recently
[84], so it is not clear if this trend will eventually result in
the elimination of males altogether.

Androdioecious species show decreased sperm size
The evolution of hermaphroditism also involved two
different reductions in sperm size. First, all hermaphro-
dites make smaller sperm than males of the same species
[85,86]. This difference is probably due to a develop-
mental bias, since sperm made by XX females following
genetic manipulation are also smaller than male sperm
[86]. Genetic analyses in C. elegans suggest that this bias
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could be due to the unsuitability of the hermaphrodite
gonad and germ line for the development of large sperm.

Second, males from androdioecious species make much
smaller sperm than males from gonochoristic ones
[85,86]. Since larger sperm are more likely to fertilize
oocytes in controlled experiments, intense sperm com-
petition in male/female species probably favors large
sperm [87,88]. Perhaps the smaller sperm in androdioe-
cious males is another example of decreasing male
effectiveness in populations that are largely composed
of hermaphrodites.

Androdioecious species show a decrease in genome size
The genomes of C. elegans and C. briggsae, as well as their
sets of all transcribed genes, are dramatically smaller than
those of their male/female counterparts [89]. Not unex-
pectedly, genes with sexually dimorphic patterns of
expression are most likely to have disappeared from the
hermaphroditic species. However, these changes are not
driven solely by selection. Crosses with C. elegans show a
transmission distortion, in which shorter chromosomes
are preferentially segregated to hermaphrodite progeny
[90]. Thus, deletions might accumulate in selfing lineages.

A model for the origin of self-fertile
hermaphrodites
Based on these studies, we propose that the evolution of
self-fertile hermaphrodites inCaenorhabditis required three
stages. In the first one, a small number of genetic changes
combined tomake self-fertile animals. The simplest possi-
bility is that this process started with a neutral mutation
causing XX animals to produce a sperm activation signal,
and was completed by a mutation that caused them to
make sperm as well as oocytes [60]. This sequence would
avoid a stage in which XX animals wasted resources by
making sperm they could not use. Even so, these incipient
hermaphrodites probably had small broods and severe
reproductive problems.

During the second stage, harmful recessive mutations
were purged, to avoid the consequences of inbreeding.
At the same time, selection would have favored modify-
ing mutations that increased the precision and effective-
ness of hermaphroditic reproduction. The impact of
selfing probably explains the rapid establishment of
these mutations in the population. Newly evolving
androdioecious species might have had three sexes
during this stage. One Rhabditis species currently makes
males, females and hermaphrodites [91]. Furthermore,
C. briggsae she-1 mutants are inherently temperature-
sensitive, so perhaps this species once made both females
and hermaphrodites too, depending on environmental
conditions [46]. Eventually, females were eliminated,

both because hermaphrodites are better at colonization,
and because opportunities to mate with males declined
as the population came to rely more on selfing.

The third stage would have been the longest, and may
still be going on. In it, all aspects of the animal’s behavior
and genome slowly adapted to the hermaphroditic
lifestyle. These changes have led to a dramatically smaller
genome and lower male effectiveness in the androdioe-
cious species of Caenorhabditis.

Given this reconstruction of events, how does the analysis
of nematodemating systems fit into the broader context of
evolutionary and developmental studies? Two topics are
of critical importance: the role of co-option in producing
new traits, and the importance of developmental biases.

Co-option plays a central role in the origin of
novel traits
Some of the most detailed studies of evolutionary change
involve the reduction or loss of traits. Examples include
the reduction of pigmentation in beach mice [92] and
pelvic reduction in stickleback fish [93]. Androdioecious
mating systems are common in plants, and are thought to
have arisen by a similar mechanism— the transformation
of some hermaphrodites into males through the loss of
female reproductive structures (reviewed in [94]).

By contrast, self-fertility in nematodes was caused by the
gain of new functions in XX animals. Hermaphrodites
acquired these traits by using genetic programs previously
restricted to males. They co-opted the spermatogenesis
program through changes in the sex-determination path-
way in germ cells, and appear to have co-opted one of the
sperm activation pathways by producing a male signal in
the somatic gonad. Darwin first proposed that existing
traits could be co-opted for new roles, based on his
observation that our lungs had evolved from the swim
bladder [1]. The origin of self-fertility provides molecular
examples of how co-option occurs.

Furthermore, self-fertile hermaphrodites provide a model
for the origin of complex traits, since their inception
requires changes in two signal transduction systems (the
sex-determination pathway and the sperm activation
pathways), involving at least two tissues (the germ line
and somatic gonad). Without co-option, this type of
coordinated change would have been impossible.

Developmental biases favor androdioecy in
nematodes
Darwin suspected that “laws of growth” helped shape the
pattern of evolutionary change [1]. These effects are now
known as developmental biases or constraints (reviewed
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in [95]). For example, a developmental bias caused
nematode sperm to have sexually dimorphic sizes [86].
Although the general significance of this process is still
being debated, it is striking that self-fertile hermaphro-
dites evolved independently in many species of nema-
todes [16-18] and branchiopod crustaceans [96-98] but
never in insects or mammals (reviewed in [99]). Three
factors suggest that this broad pattern of evolutionary
change is caused by developmental biases.

First, it should be difficult for XX hermaphrodites to
evolve in species that use a Y chromosome to specify
male development because the Y usually contains sperm
genes. Nematodes use an XX/XO system, so this is not a
problem. Studies from the branchiopod crustacean
Eulimnadia texana support this model, since it uses a
ZW/ZZ system to specify sex, which also ensures that
newly evolving hermaphrodites would not lack sperm
genes [100]. By contrast, fruit flies and mammals have Y
chromosomes that contain sperm genes (e.g. [101,102]),
so it should not be surprising that neither group has
produced self-fertile hermaphrodites. Instead, we note
that the only androdioecious vertebrates are fish of the
genus Kryptolebias [103]. In this group, males can be
induced by environmental perturbations, so they also lack
an XX/XY system [104]. Hence, we propose that a genetic
constraint prevents the evolution of self-fertile hermaph-
rodites in many taxa but does not affect nematodes.

Second, the structure of the sex-determination pathway
might facilitate the origin of self-fertility. All hermaph-
rodites in Caenorhabditis make sperm as larvae and
oocytes as adults; no other arrangement has been
observed. Furthermore, mutations that eliminate tra-1
cause younger animals to make sperm and older ones to
make oocytes [35,105,106]. These patterns suggest that
each androdioecious species has found a way to exploit a
predisposition towards male fates in the larval germ line.
Mutations that slightly altered the delicate balance
between the activating and repressing activities of TRA-1
might have led to the production of sperm and oocytes
in the same animal. Hence, the structure of the sex-
determination pathway could favor the evolution of
hermaphroditism in nematodes.

Finally, the presence of two redundant pathways to
activate male sperm might also favor the evolution of
self-fertility. Experiments using C. remanei suggest that
changes in both the sex-determination and sperm
activation pathways are necessary for the evolution of
self-fertility [60]. Furthermore, either the SPE-8 or TRY-5
pathway can be co-opted for use in newly evolving
hermaphrodites (Wei et al., unpublished data). Thus, the
existence of these redundant pathways might increase the

number of strategies that can produce hermaphrodites
without compromising male fertility.

Parallel evolution is a major topic of research [107], and
parallel changes in mating systems are common. For
example, asexual mating systems have arisen several
times in the fungal genus Neurospora [108]. Here, we
suggest that shared developmental constraints— the XX/
XO sex-determination system, the structure of the sex-
determination pathway, and redundancy in the sperm
activation pathways — could explain why the parallel
evolution of hermaphroditism is common in nematodes.

A bright future
Studies of the origin of self-fertile hermaphroditism in
Caenorhabditis have contributed significantly to our
understanding of the evolution of novel, complex traits.
In addition, new work is beginning to reveal the effects of
androdioecy on the ecology, sexual selection, and
genomes of these hermaphroditic species. Recent
developments suggest that the most exciting results are
yet to come. First, gene-editing techniques that use
TALENs [10-12] or CRISPRs [11,13] now allow
rapid and unrivaled precision in evolutionary
comparisons among nematode species [55] (Wei et
al., unpublished data). Second, the ability to study
hybrids between the male/female species C. nigoni
(formerly C. sp. 9 [15]) and the male/hermaphrodite
species C. briggsae should allow sophisticated tests of
evolutionary models [109]. And third, experimental
evolution with nematodes is now feasible [88,110],
so laboratory studies can explore how selection
pressures drive sexual reproduction and the choice
of specific mating systems. These technical
advances will allow us to compare Caenorhabditis species
with more sophistication, reconstruct ancestral and
intermediate stages in the path towards self-fertility,
and test population genetic theories in the laboratory.

Abbreviations
CRISPRs, clustered regularly interspaced short
palindromic repeats; HAT, histone acetyltransferase;
HER-1, human epidermal growth factor receptor-1;
mRNA, messenger RNA; TALENs, transcription
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