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Abstract: Gelatin, due to its gelling and stabilizing properties, is one of the widely used biopolymers
in biotechnology, medicine, pharmaceuticals, and the food industry. One way to modify the char-
acteristics of gelatin is molecular modification by forming non-covalent polyelectrolyte complexes
with polysaccharides based on the self-organization of supramolecular structures. This review sum-
marizes recent advances in the study of various types and the role of intermolecular interactions
in the formation of polysaccharide-gelatin complexes, and conformational changes in gelatin, with
the main focus on data obtained by spectroscopic methods: UV, FT-IR, and 1H NMR spectroscopy.
In the discussion, the main focus is on the complexing polysaccharides of marine origin-sodium
alginate, κ-carrageenan, and chitosan. The prospects for creating polysaccharide-gelatin complexes
with desired physicochemical properties are outlined.

Keywords: gelatin; polysaccharide; polyelectrolyte complexes; UV spectroscopy; FT-IR spectroscopy;
1H NMR spectroscopy

1. Introduction

The protein-polysaccharide polyelectrolyte complexes that are formed during biopoly-
mer interaction are considered to be the basis for the creation of new materials in biotechnol-
ogy, medicine, pharmaceuticals, the food industry, and other industries related to human
health and nutrition [1–3]. The creation of materials is based on the self-organization
principles of the complexes in the bulk of the aqueous phase [4]. The combined use of
proteins and polysaccharides in the composition of the complexes contributes to the mutual
enhancement of their physicochemical properties: their stabilizing ability and resistance to
changes in external factors (pH, the presence of salts, changes in temperature) [5].

Nowadays, proteins and polysaccharides are widely used in the food industry [3,6]
to encapsulate bioactive ingredients in functional food products [7,8]. These biomacro-
molecules as well as their complexes are used for protection and as delivery systems for
bioactive food additives that can control their release and regulate their bioavailability [9,10].

Gelatin, a degradation product of the fibrillar protein collagen, is one of the biopoly-
mers that is widely used in the food industry [11–13]. Gelatin has a unique thermoreversible
gelation ability, which is accompanied by the macromolecule undergoing a conforma-
tional transition: coil↔collagen-like helix [14,15]. This property, along with the ability
to interact with polysaccharides, is widely used to create various food systems based on
polysaccharide-gelatin complexes that have the desired physicochemical properties [16,17].
Recently, new information on the structure and properties of various polysaccharide-gelatin
systems (hydrogels [18–21] and composites [16], colloidal particles [22], emulsions [23–26],
films [27], etc.) has come to light, expanding their range of applications in food technologies
and products.

The interactions that take place between gelatin and polysaccharides play an important
role in the development of new food systems. It is known that intermolecular interactions
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can lead to the formation of noncovalent polysaccharide-gelatin complexes, incompatibility,
or covalent complexes [9,28]. Soluble (or insoluble) non-covalent complexes can be formed
upon the physical mixing of gelatin and polysaccharide solutions, which is largely deter-
mined by the chemical nature of the biopolymers, pH, ionic strength, and mass ratio of
biopolymers [29,30].

The driving force behind the formation of non-covalent complexes is the intermolecu-
lar interactions that take place between gelatin and polysaccharides, including electrostatic
interactions, hydrogen bonds, and hydrophobic interactions. As a rule, electrostatic inter-
actions between the oppositely charged functional groups of biopolymers play a decisive
role [1]. Obviously, pH is the most important factor in the formation of soluble or insoluble
polysaccharide-protein complexes [6,31]. The composition and properties of non-covalent
complexes also depend on the polysaccharide/protein mass ratio and ionic strength since
salts can weaken the electrostatic interactions of macromolecules [32].

This review analyzes the contribution of various polysaccharide-gelatin intermolecular
interactions in the bulk of the aqueous phase during the formation of a non-covalent poly-
electrolyte complex; attention is paid to the influence of polysaccharides on the secondary
structure of gelatin. Polysaccharides from marine hydrobionts (algae and crustaceans) are
mainly considered. The results of studies obtained by UV, FTIR, and 1H NMR spectroscopy
are considered. Spectroscopic methods are among the most informative in the study of
biopolymer systems since they not only allow for individual biopolymers to be identified
and their structures to be analyzed, but they also provide information on the participation
of individual segments of macromolecular chains in intermolecular interactions [33–35].

2. Properties of Gelatin and Polysaccharides

Because it is a polyampholyte, gelatin (G) is able to interact with both negatively and
positively charged polyelectrolytes, forming non-covalent polyelectrolyte complexes in
the aqueous phase. Fundamental studies on the formation conditions and physicochem-
ical properties of complexes from synthetic [36–39] and natural polyelectrolytes [1,4,40],
including polysaccharides [1,9,10], have been the subject of many works. As a rule, most
attention is paid to the electrostatic interactions between oppositely charged groups of
macromolecules, and to a lesser extent, to hydrogen bonds and hydrophobic interactions,
which also need to be taken into account when forming biopolymer complexes. Gelatin
consists of linear polypeptide built from series of up to 18 different α-amino acids [41,42],
the names and structural formulas of which, as well as the amount per α-chain, are pro-
vided in Table 1. Glycine, proline, and hydroxyproline are the most abundant. Amino
acids such as alanine, valine, isoleucine, leucine, phenylalanine, and proline, which are all
a part of gelatin, contain hydrophobic radicals. The composition of gelatin includes polar
groups: acidic (glutamic, aspartic acids) and basic (lysine, arginine, tyrosine, histidine).
Amino acids such as hydroxyproline, hydroxylysine, and serine are capable of dissociating
hydroxyl groups. Cysteine and tryptophan are not found in gelatin.

Table 1. Amino acid composition of gelatin.

Amino
Acid Residue

Chemical
Designation

Structure
Formula

Number of Amino Acid Residues per 1000

Mammalian Gelatin Fish Gelatin

[41] [14] [15] [43]

Glycine Gly
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Amino
Acid Residue

Chemical
Designation

Structure
Formula

Number of Amino Acid Residues per 1000

Mammalian Gelatin Fish Gelatin

[41] [14] [15] [43]
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Table 1. Cont.

Amino
Acid Residue

Chemical
Designation

Structure
Formula

Number of Amino Acid Residues per 1000

Mammalian Gelatin Fish Gelatin

[41] [14] [15] [43]
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The presence of positively and negatively charged groups provides the possibility
of electrostatic interaction with ionic polysaccharides. In this case, the positive groups
are concentrated at the ends of the gelatin chains, and the negatively charged groups are
distributed relatively evenly [14,41], which may be the reason for the different availabilities
of polar groups upon complex formation with anionic and cationic polysaccharides [44–46].
Table 2 shows the experimental methods that are used to study the complex formation of
gelatin with polysaccharides.

Table 2. Gelatin sources, polysaccharide types, and methods for study of polysaccharide-gelatin
complex formation.

Gelatin Type and Sources Polysaccharides Study Methods Ref.

Cold water fish skin (cod, pollock,
and haddock) Sodium alginate

Interfacial Tensiometry;
Electrophoresis combined with Phase Analysis
Light Scattering;
Dynamic Light Scattering

[47]

Tilapia skin Sodium alginate

Confocal Laser Scanning Microscopy;
Atomic Force Microscopy;
Dynamic Light Scattering;
Phase Analysis Light Scattering;
FT-IR Spectroscopy

[48]

Cold water fish skin (cod, pollock,
and haddock) Sodium alginate

Turbidimetric acid titration;
Laser Doppler Electrophoresis combined with Phase
Analysis Light Scattering; Dynamic Light Scattering;
Confocal Scanning Laser Microscopy

[31]

Tilapia skin
(260–270 Bloom) Sodium alginate FT-IR Spectroscopy [49]

Bovine skin
(Mw = 5 × 104 Da) Sodium alginate

FT-IR Spectroscopy;
Wide-angle X-ray Diffraction; Scanning Electron Microscopy;
Thermogravimetric Analysis; Differential Thermal Analysis

[50]

Porcine skin
(Type A, 300 Bloom) Sodium alginate

Scanning Electron Microscope;
FT-IR spectroscopy; X-ray Diffraction;
Differential Scanning Calorimetry; Positron Annihilation
Lifetime Spectroscopy

[51]

Cold-water fish
(pI 7.6, Mw = 13 × 104 Da) Sodium alginate UV spectroscopy; Rheology [43]

Bovine skin
(Type B, 225 Bloom) Sodium alginate FT-IR spectroscopy; UV spectroscopy [52]

Cold water fish skin
(Mw = 6 × 104 Da) Chitosan (90% deacetylated) FT-IR Spectroscopy; X-ray Diffraction;

Scanning Electron Microscopy [53]

Grass carp Chitosan (95% deacetylated) FT-IR Spectroscopy;
Scanning Electron Microscopy [54]
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Table 2. Cont.

Gelatin Type and Sources Polysaccharides Study Methods Ref.

Bovine skin
(Type B, 225 Bloom);
Salmon skin

Chitosan High Performance Liquid Chromatography;
Differential Scanning Calorimetry [44]

Cold water fish skin Chitosan
(75–85% deacetylated)

Differential Scanning Calorimetry;
FT-IR Spectroscopy [55]

Baltic cod skin Chitosan (73% deacetylated) Attenuated Total Reflectance Fourier Transformation Infrared
(ATR FT-IR) Spectroscopy [56]

Bovine skin
(pI 4.9) Chitosan (85% deacetylated) Rheology;

Small-angle Neutron Scattering [57]

Fish skin
(Type A, 240 Bloom) β-chitin FT-IR spectroscopy;

Scanning Electron Microscopy [58]

Cold water fish skin
(Type B, pI 4.81) Gum arabic Rheology;

Confocal Scanning Laser Microscopy [23,59]

Bovine skin
(Type A, 150 Bloom)
Cold water fish skin (Type A)

Gum arabic;
κ-Carrageenan

Electrophoresis;
Rheology [60]

Grass carp scales Gum arabic Intrinsic Fluorescence;
UV-Visible Absorption Spectroscopy [61]

Piramutaba skin Gum arabic

High Performance Liquid Chromatograph;
FT-IR Spectroscopy;
Gel Electrophoresis SDS-PAGE;
Scanning Electron Microscopy

[62]

Cold water fish skin Gum arabic
Laser Doppler Electrophoresis
combined with Phase Analysis Light Scattering; Turbidity;
Dynamic Light Scattering

[63]

Bovine skin
(Type B, 225 Bloom) κ-Carrageenan Turbidimetric Titration [25]

Bovine skin
(Type B, 225 Bloom) κ-Carrageenan ATR-FTIR Spectroscopy; Rheology [21]

Pig skin
(Type B) κ-Carrageenan

Turbidity;
Differential Scanning Calorimetry;
Confocal Scanning Laser Microscopy;
Phase Analysis Light Scattering

[29,30]

Tilapia skin
(180 Bloom) κ-Carrageenan

UV Spectroscopy;
Dynamic Light Scattering;
Atomic Force Microscopy;
Confocal Laser Scanning Microscopy;
FT-IR Spectroscopy

[64]

Bovine skin
(240 Bloom)

κ-Carrageenan;
Konjac glucomannan

Scanning Electron Microscopy;
X-ray Diffraction;
FTIR Spectroscopy; Rheology;
Differential Scanning Calorimetry; Texture Profile Analysis

[65]

Tilapia fish skin
(200 Bloom) κ-Carrageenan; Gellan

Scanning Electron Microscopy;
FT-IR Spectroscopy;
Differential Scanning Calorimetry

[66]

Bovine skin
(Type B, 225 Bloom) κ-Carrageenan

UV spectroscopy; Rheology;
FT-IR Spectroscopy;
1H NMR Spectroscopy

[21,67,68]

Cold water fish skin Agar

UV Spectroscopy;
FT-IR Spectroscopy with Attenuated Total
Reflection (FTIR-ATR);
Atomic Force Microscopy;
Scanning Electron Microscopy

[69]

Grey triggerfish skin Pectin
FT-IR Spectroscopy;
Differential Scanning Calorimetry; Scanning
Electron Microscopy

[70]
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Table 2. Cont.

Gelatin Type and Sources Polysaccharides Study Methods Ref.

Tilapia fish skin
(pI 9.58, 260–270 Bloom)

Pectin
(low-methoxyl)

Spectrophotometry; Rheology;
FT-IR Spectroscopy;
Scanning Electron Microscopy

[71]

Tilapia skin
(180 Bloom)

Gellan
(low acyl)

Dynamic Light Scattering;
Phase Analysis Light Scattering; Confocal Laser
Scanning Microscopy;
Rheology; FT-IR Spectroscopy

[72]

Tilapia skin
(240 Bloom)

Gellan
(low acyl)

Scanning Electron Microscopy;
Rheology [73]

Tilapia scale,
(250 Bloom) Konjac glucomannan FT-IR Spectroscopy;

Scanning Electron Microscopy; Rheology [74]

Among the polysaccharides that form complexes with gelatin, a significant place is oc-
cupied by polysaccharides from marine hydrobionts, which can increase the nutritional and
biological value of food products. Below is a description of some of these polysaccharides.

κ-Carrageenan (C) is obtained from red seaweed (Rhodophyta) [75]. This high molecu-
lar weight polysaccharide exhibits the properties of a gelling agent and is characterized
by antiviral properties [76]. The polysaccharide molecules consist of repeating carra-
biose units—alternating blocks of 3-O-substituted 4-sulfo-β-D-galactopyranose (G4S) and
4-O-substituted 3,6-anhydro-α-D-galactopyranose (DA), sulfonated and nonsulfonated
(Figure 1a). The blocks of the carrabios unit are connected by alternating (beta-1-4 and
alpha-1-3) glycosidic bonds [77,78].
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(b) alginate, and (c) chitosan.

Alginates (SA) are obtained mainly from brown algae (Phaeophyceae) [79], including
fucus algae (Fucaceae) [80,81]. Sodium alginate binds the atoms of heavy metals and
radionuclides in the gastrointestinal tract and removes them from the human body [82].
Alginate molecules contain carboxyl groups and are linear binary copolymers that consist
of 4-O-substituted β-D-mannuronate (M) and 4-O-substituted α-L-guluronate (G) residues
linked by (1-4) glycosidic bonds [79,83] (Figure 1b).

Chitosan (Ch) is obtained by deacetylation from the natural polysaccharide chitin,
the main component of the cuticle of arthropods (Arthropoda) [84,85]. Linear chains of
chitin consist of chitobiose units linked by (β-1-4) glycosidic bonds (2-deoxy-2-acetamide-
β-D-glucan residues). The chitosan molecule contains free amino groups in the compo-
sition of monomer units—deacetylated chitobiose units (residues of 2-deoxy-2-amino-β-
D-glucan [85] (Figure 1c). The biological activity and the properties of the thickener and
stabilizer determine widespread use of chitosan in the production of food and pharmaceu-
tical products [86,87].

The intermolecular interactions of biopolymers (electrostatic interactions, hydrogen
bonds, and hydrophobic interactions) leading to the formation of non-covalent polyelec-
trolyte polysaccharide-gelatin complexes can be studied using various methods (Table 2),
among which spectroscopic methods occupy a significant place.
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3. The Role of Electrostatic Interactions, Hydrogen Bonds and Hydrophobic Interactions

Analyses of the UV absorption spectra of gelatin solutions (Figure 2) show the presence
of a wide absorption band and a wavelength corresponding to the absorption maximum,
λmax = 233–234 nm. The chromophore carboxyl groups of the Asp and Glu residues,
hydroxyl groups, and unshared electron pairs of nitrogen conjugated with double bonds
in the His and Arg residues contribute significantly to the position of the band [33,34,88],
as do the conjugated double bonds in the benzene rings of Tyr [89,90]. The wavelengths
corresponding to the absorption maximum in polysaccharide solutions lie in the far UV
region compared to gelatin. For example, for κ-carrageenan, λmax < 200 nm [68]; for sodium
alginate, λmax = 213 nm [52]; and for chitosan, λmax = 224 nm [91]. This is explained by the
presence of chromophores that are absorbed in the UV region of the spectrum: hydroxo-
groups of polysaccharides, sulfo groups of κ-carrageenan [64], carboxyl groups of alginates,
and amino groups of chitosan.
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Figure 2. UV absorption spectra for native solutions of gelatin (CG = 1.0 wt %) (1), κ-carrageenan
(CC = 0.5 wt %) (2), sodium alginate (CSA = 0.5 wt %) (3), chitosan (CCh = 0.5 wt %) (4), and
aqueous mixtures of κ-carrageenan-gelatin (5), sodium alginate-gelatin (6), and chitosan-gelatin
(7). Polysaccharide/gelatin w/w ratio Z = 0.5 g polysaccharide/g gelatin, CG = 1.0 wt %, 23 ◦C.
Original figure.

When a polysaccharide is added into a gelatin solution, a bathochromic shift λmax from
233 to 237–240 nm occurs in the gelatin and is accompanied by an increase in the optical den-
sity and a significant broadening of the absorption band (Figure 2). The bathochromic shift
in the gelatin spectrum can be explained by the biopolymer interactions at the molecular
level with the formation of polyelectrolyte complexes, namely the electrostatic interactions
of the sulfo groups of κ-carrageenan and the carboxyl groups of alginates with the basic His
and Arg groups of gelatin, respectively. Protonated amino groups of chitosan interact with
negatively charged carboxyl groups Glu and Asp of gelatin. Changes in the UV spectra were
observed in the gum arabic-gelatin [61], and agar-gelatin [69] systems, which is associated
with the formation of polyelectrolyte complexes. Clear evidence of biopolymer interaction
is a pronounced general rise in the structureless absorption band (see Figure 2, right parts
of spectra 5–7), which can reasonably be attributed to light scattering on the relatively large
particles [52] of polysaccharide-gelatin polyelectrolyte complexes.

The 1H NMR spectroscopy method was used by [68,92] to study the structure of
the complex formed by the anionic polysaccharide κ-carrageenan and gelatin as well
as the mobility of individual functional groups. The one-dimensional nuclear magnetic
resonance on the 1H nuclei (1H NMR) high-resolution spectra [33–35] is characterized by
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the high sensitivity of the chemical shifts to structural details. Figure 3 shows the 1H NMR
spectra for a native κ-carrageenan solution, a native gelatin solution, and κ-carrageenan-
gelatin aqueous mixtures of different κ-carrageenan/gelatin w/w ratios. The identification
of 1H NMR lines was performed at the temperature (40 ◦C) when macromolecules of
κ-carrageenan [75,93] and gelatins [14,94] are a statistical coil, and the side chains of the
macromolecules are surrounded by solvent molecules.
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Figure 3. 1H NMR spectra for native κ-carrageenan solution (CC = 1.0 wt %), native gelatin solution
(CG = 2.0 wt %), and κ-carrageenan-gelatin aqueous mixtures of different κ-carrageenan/gelatin w/w
ratios Z, gC/gG, in 99.8% D2O at 40 ◦C. Original figure.

Lines in the 1H NMR spectra of the polysaccharide (Figure 3) are assigned to the
protons in the the carrabious block of κ-carrageenan according to the data in [95–97]. Lines
in the 1H NMR spectra of gelatin are assigned to specific types of protons included in the
certain amino acid residue in accordance with [35,98,99]. Spectrum analysis shows that the
ratio of the integrated intensities of the individual lines of the spectrum is consistent with
the content of amino acid residues in the gelatin macromolecule [100,101].

The study of the temperature effect on the integrated intensity of individual lines
showed the following. For κ-carrageenan solutions, the integrated intensity of signals
does not change with time at temperature 40 ◦C, and a similar picture is observed at 23
and 14 ◦C. For gelatin solutions, constant values of the integrated signal intensity are
observed at 40 and 23 ◦C. At a temperature below the coil→helix conformational transition
of the macromolecule, that is, at 14 ◦C, the intensity of the signals decreases, reaching a
constant (equilibrium) value after temperature controlling the sample for three hours. At
the same time, the noticeable (by about two times) decrease in signal intensity is observed
for amino acid residues Gly, Pro, and Hyp. A similar result was noted in [100]. This is due
to the fact that these amino acid residues play a significant role in the stabilization of triple
collagen-like helices [11,102,103].

It is well known that similar change patterns can be observed in the 1H NMR spectra
of aqueous solutions of gelatin over time at low temperatures (below the sol-gel transition
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temperature of ~20 ◦C) [98]. The coil→helix conformational transition of gelatin and the
subsequent association of the helices to form a gel reduce the mobility of proton-containing
groups in the helical fragments, leading to a significant decrease in the proton relaxation
time. This leads to the absence of signals of such protons in the NMR spectrum. The
gelation of gelatin is kinetic in nature since the macromolecular chains of gelatin in an
aqueous solution have much greater mobility and flexibility in contrast to the rigid chains
of κ-carrageenan [14,104]. The in-solution formation of a double helix in κ-carrageenan
with subsequent gelation (when the temperature drops below 40 ◦C) occurs quickly and
can be considered a first-order phase transition [93,105,106].

Analyses of the high-resolution 1H NMR spectra for κ-carrageenan-gelatin mixtures at
different biopolymer weight ratios (Z, gC/gG) show the following: The proton signals of the
Val, Leu, and Ile amino acid residues of gelatin are shifted ~0.01 ppm downfield at 40 ◦C (see
Figure 3). Such a change in the chemical shift (δ) of the amino acid protons with developed
hydrocarbon radicals (see Table 1) indicates a change in the hydrophobic interactions that
involve these groups. At 14 ◦C, no such shift is observed; however, there is a downfield
shift in the Lys proton signals by ~0.01 ppm and a high field shift of ~0.03 ppm for the Hyp
proton signals [68]. A change in the chemical shift in the spectrum for the protons of the
Lys amino acid residue containing a charged NH3+ group indicates a change in electrostatic
interactions; and a change in the chemical shift for the protons of the Hyp amino acid
residue containing a hydroxyl group indicates the breaking/formation of hydrogen bonds
involving this group.

Figure 4 shows the equilibrium integral intensity (I) of proton signals of gelatin at the
various mass w/w ratio (Z) of biopolymers and at different temperatures. A decrease in
the integral intensity indicates the formation of rigid (slowly mobile) regions that do not
contribute to the NMR spectrum [100], which indicates the intermolecular interaction of
the biopolymer chains. A significant drop in the intensity of the Val, Leu, and Ile, Hyp, and
Lys signals is observed at 14 ◦C.
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Another important characteristic is the spin-spin relaxation time T2 (Figure 5) of
the gelatin amino acid protons that are capable of forming various types of bonds when
complexed with κ-carrageenan: electrostatic interactions (Arg, Lys, His), hydrogen bonds
(Hyp, Glu), hydrophobic interactions (Val, Leu, Ile). Pro, which takes part in the formation
of the triads Gly–Pro–Y and Gly–Pro–Hyp, is also of interest. Figure 5 shows the effect of
carrageenan concentration (mass ratio of carrageenan to gelatin, Z, gC/gG) on the spin-spin
relaxation time of gelatin protons at different temperatures. At 40 ◦C, in the low-value
range of the mass ratio of the biopolymers (Z = 0.03 gC/gG), there is a sharp drop in T2
for all of the considered amino acid residues. Then, as Z increases up to 0.75, T2 remains
practically unchanged [92].
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At 23 ◦C, an increase in the mass ratio of the biopolymers to Z = 0.75 gC/gG leads to
a gradual decrease in T2 for all of the amino acid residues (Figure 5). Finally, at 14 ◦C, an
increase in the κ-carrageenan content in the aqueous mixture causes a decrease in T2 for all
of the amino acid residues in gelatin, with the exception of Val, Leu, and Ile. It should be
noted that at 23 and 14 ◦C (but not at 40 ◦C), there is an especially strong decrease in T2 for
Lys, the basic groups of which are capable of electrostatic interactions with the sulfo groups
of κ-carrageenan.

Analyses of the high-resolution 1H NMR spectra and spin-spin relaxation times T2 of
gelatin protons at different temperatures [68,92] made it possible to determine the contri-
bution of various types of intermolecular interactions: electrostatic interactions, hydrogen
bonds, and hydrophobic interactions, in the formation of non-covalent complexes.

Under conditions where gelatin macromolecules are in the conformation of a statistical
coil (at 40 ◦C), hydrophobic interactions are mainly realized; in particular, they are realized
between the non-polar sites of κ-carrageenan (for example, the –CH3 radicals of the methy-
lated groups of the carrabious unit) and the hydrocarbon radicals of the residues Val, Leu,
and Ile. Under conditions in which the gelatin macromolecule is in a helix conformation
(at 14 ◦C), strong hydrogen bonds and electrostatic interactions are established between
κ-carrageenan and gelatin. As a result, the value of the hydrophobic interactions is reduced
to a minimum. These data are confirmed by the results obtained by UV spectroscopy and
Fourier transform IR spectroscopy.

Complexation with κ-carrageenan also leads to a change in the secondary structure of
gelatin and decreases the proportion of the ordered structures in gelatin (triple collagen-like
helices), which is expressed in a decrease in T2 Hyp, Glu, and Pro at 23 and 14 ◦C (Figure 5).

4. Changes in the Secondary Structure of Gelatin upon Complex Formation
with Polysaccharides

Fourier transform infrared (FT-IR) spectroscopy is widely used [107] to study the
interactions between gelatin with polysaccharides. This method is an informative one that
makes it possible to characterize the structural changes in biopolymer macromolecules
during complex formation.

A number of papers present the results of studies on gelatins carried out using FT-IR
spectroscopy. The influence of the nature of the sources [108–110] from which gelatins are
obtained on the characteristic absorption bands of Amide I, Amide II, and Amide III is
shown for various types of gelatins. The conformational changes in gelatin macromolecules
from the skin of animals that occur due to temperature change have been studied [111].
In recent years, a large number of publications devoted to the study of fish gelatins have
appeared, which is especially important for countries with a developed fishing industry.
For example, in [13,15,17,112], the physicochemical properties were investigated, and it was
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shown that gelatin obtained from the skin and bones of fish can serve as a good alternative
to the animal gelatin derived from the skin of bulls and pigs.

FT-IR spectroscopy is used to study the interactions between gelatin and polysaccha-
rides [56,66,113]. In a study on the polyelectrolyte complexes of κ-carrageenan with the
fish gelatin (Type A) used for the microencapsulation of Neem seed oil [114], shifts in the
main transmission bands of the gelatin amide groups were observed.

Attributing the absorption bands in the FT-IR spectra of biopolymers to vibrations in
the bonds of the corresponding functional groups and structural units is justified: for gelatin,
see [33,35,109,111]; for sodium alginate, see [35,115–117]; for chitosan, see [56,118,119]; and
for κ-carrageenan, see [120]. The absorption bands of the characteristic groups of gelatin
and polysaccharides are shown in Table 3.

Table 3. Location and assignment of the peaks identified in the FT-IR spectra of biopolymers.

Wavenumber of
Absorption Band, cm−1 Absorption Band Band Assignment

Gelatin

3401 Amide A Stretching vibrations of N–H and O–H groups

1653 Amide I Stretching vibrations of C=O and C–N groups

1541 Amide II Deformation vibrations of N–H groups
and stretching vibrations of C–N groups

1238 Amide III Stretching vibrations of N–H and C–N groups

1165 Stretching vibrations of COOH groups of Glu and Asp in gelatin

Sodium alginate

3447 Amide A Stretching vibrations of O–H groups

1616 Asymmetric stretches of COOH groups

1418 Symmetric stretches of COOH groups

1300 Stretching vibrations of C=O groups

1092 Mannuronic units

1032 Guluronic units

820 α-Configuration of the guluronic units

κ-Carrageenan

3420 Amide A Stretching vibrations of O–H groups

1263 Vibration of ester sulfate groups

928 3,6-anhydro-α-D-galactopyranose units

848 4-sulfo-β-D-galactopyranose units

Chitosan

3439 Amide A Stretching vibrations of N–H and O–H groups

1653 Amide I Stretching vibrations of N–H and C=O groups

1560 Amide II Stretching vibrations of N–H, C–N and C–C groups

1408 Asymmetric and symmetric stretches of CH2 groups

1261 Amide III Stretching vibrations of N–H and C–N groups

1074 Skeletal C–O groups

1025 Skeletal C–O groups

854 β-Glycosidic bonds

Figure 6 shows FT-IR transmission spectra of sodium alginate-gelatin mixtures with
biopolymers at different mass ratios Z and gSA/gG. An analysis of the FT-IR spectra
shows a shift to the low-frequency region of the Amide A band of gelatin from 3401
to 3392 cm−1 under the influence of complexation with sodium alginate. At the same
time, the Amide A band of sodium alginate is shifted relative to gelatin towards higher
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wavenumbers, with values up to 3447 cm−1. In the case of chitosan, the Amide A band
shifts to 3439 cm−1 [88,91]. The data obtained by FT-IR spectroscopy in [49,51] indicated
the interactions that existed between gelatin-sodium alginate.
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The shift of the Amide A band in gelatin can be explained by the formation of hydro-
gen bonds with polysaccharide molecules. Another reason is the electrostatic interactions
between the carboxyl groups of sodium alginate and the basic Arg, Lys, Hyl, and His
groups in gelatin [52] or the interactions between the amino groups of chitosan and the
carboxyl groups Glu and Asp in gelatin [91,120]. This explanation is in good agreement
with the results obtained by UV spectroscopy (see Section 3). A similar effect was ob-
served in FT-IR spectroscopy studies on systems made of gelatin with chitosan [53,56,119],
κ-carrageenan [64–66], gum arabic [62], gellan [72], konjac glucomannan [74], agar [69],
pectin [70], and sodium alginate [48,49]. The structure analysis [50] indicated that there
is strong interaction between sodium alginate and gelatin molecules resulted from inter-
molecular hydrogen bonds and ionic interactions.

The data obtained by differential scanning calorimetry and FT-IR spectroscopy in [54,55]
indicated the interactions that existed between gelatin-chitosan. It was found [57] that the
complex formed between chitosan and gelatin was mainly through a hydrogen bond, but
the size of the structure was also affected by electrostatic repulsions. The local structure
(correlation length) and the global structure (large inhomogeneous structure size) in the
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composite solutions were found to be highly correlated to each other. The microscopy
and infrared spectroscopy showed [65] that gelatin and κ-carrageenan molecules could be
clustered in helices by electrostatic interactions and hydrogen bonding. Zeta potential and
FT-IR analyses (at the different concentrations of Ca2+) revealed pectin-gelatin complex
formation [71] through the electrostatic interactions and van der Waals forces that resulted
in significant changes in conformation of macromolecules and microstructure.

Complexation with sodium alginate leads to the Amide I band (1653 cm−1, see Table 3)
shifting in the gelatin spectrum towards lower wave numbers, sometimes shifting down to
1645 cm−1 at Z = 0.8 gSA/gG (Figure 6). This indicates that there are electrostatic interactions
that take place between the carboxyl groups of sodium alginate (1616 cm−1, see Table 3) and
the amide groups of gelatin, as well as hydrogen bonds between biopolymers. A similar
shift in the characteristic band has been shown in composite films [116] and complex
membranes [51] based on alginate-gelatin mixtures as well as in κ-carrageenan-gelatin [67]
and gellan-gelatin [66] films.

More evidence of interactions between oppositely charged groups of sodium alginate
and gelatin is the shift in the symmetric stretching vibration bands of the COO− groups in
the IR spectrum of sodium alginate (1418 cm−1, see Table 3) to the low-frequency region
(up to 1408 cm−1 at Z = 0.1 gSA/gG) (Figure 6). A similar result is shown in [50].

Similar changes in the FT-IR spectra were also shown for chitosan-gelatin systems [91].
Complexation with chitosan leads to a shift in the stretching vibration band of the carboxyl
groups of the gelatin amino acid residues Glu and Asp (1165 cm−1, see Table 3) to a
lower frequency region: 1157–1154 cm−1. A similar result was demonstrated in [56]. The
appearance of this shift indicates an electrostatic interaction between the charged COO−

groups of the Glu and Asp residues in gelatin and in the NH3
+ in the chitobiose units.

Polysaccharide interactions lead to a shift in the Amide III band in the gelatin spectrum,
from 1238 cm−1 in the high-frequency region up to 1242–1244 cm−1 in the case of sodium
alginate (at Z = 0.1–0.8 gSA/gG) [52] and up to 1243–1247 cm−1 in the case of chitosan (at
Z = 0.1–1.0 gCh/gG) [88]. This is associated with a decrease in the hydration of the gelatin
macromolecules [121] and a decrease in the intermolecular interaction between the gelatin
chains inside a collagen-like triple helix [108,122]. In other words, this effect characterizes a
change in the secondary structure of gelatin, i.e., a decrease in the share of the α-chain in
the triple helix conformation and an increase in the share of the α-chain in the conformation
of a random coil. Anionic polysaccharide κ-carrageenan affects the secondary structure of
gelatin in a similar way, as shown by FT-IR [21,67] and 1H NMR spectroscopy [68,92].

The results obtained by FT-IR spectroscopy suggest the following mechanism to
describe the effect of ionic polysaccharides on the secondary structure of gelatin. The
formation of non-covalent polyelectrolyte polysaccharide-gelatin complexes results in the
fixation of the gelatin’s amino acid residues on the polysaccharide macromolecular chain.
This partially blocks the mobility of gelatin macromolecules. In addition, although the
density of the negative charge on the alginate chains and the positive charge on the chitosan
chains decreases due to complex formation with gelatin, in general, polysaccharide-gelatin
complexes carry the same charge: negative in the case of alginate, due to the gelatin carboxyl
groups Asp and Glu, and positive in the case of chitosan, thanks to the basic groups Arg,
Lys, Hyl, and His. It should be noted that gelatin’s carboxyl groups are ionized in the pH
range of 5.2–5.6, which exceeds the pI (4.7) of gelatin, while the basic groups are ionized
in the pH range of 3.4–3.9, which lies below the pI. As a result, the mutual electrostatic
repulsion of polyelectrolyte complexes prevents the conformational coil→helix transition
and, accordingly, causes a decrease in the content of collagen-like gelatin triple helices.

The noted decrease in the degree of the gelatin helix upon complexation with polysac-
charides resembles a similar phenomenon found upon the association of gelatin with
ionic surfactants [123]. Similar to the case of anionic alginate and cationic chitosan, low-
molecular-weight ionic surfactants shield the opposite charges of gelatin, which causes the
electrostatic repulsion of similarly charged polypeptide macromolecules and, accordingly,
a decrease in the proportion of collagen-like triple helices.
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5. Conclusions

The driving force behind the formation of non-covalent polyelectrolyte polysaccharide-
gelatin complexes is the intermolecular interactions that take place between biopolymers,
including electrostatic interactions, hydrogen bonds, and hydrophobic interactions. An
analysis of the results of studies obtained by various spectroscopic methods (UV, FT-
IR, and 1H NMR spectroscopy) made it possible to draw a conclusion about the role
of intermolecular interactions under various conditions. Thus, it has been shown that
at temperatures above the point of the conformational helix→coil transition (~20 ◦C) in
gelatins, hydrophobic interactions play the main role in complex formation.

At temperatures below the conformational transition temperature, the main driving
force is the electrostatic interactions between the oppositely charged groups of the gelatin
polyampholyte and the polysaccharide (anionic or cationic). In this case, hydrogen bonds
also play a certain role. It has been shown that complex formation with polysaccharides
causes a change in the secondary structure of gelatin macromolecules, which manifests itself
as a decrease in the proportion of the α-chain regions in the conformation of a collagen-like
helix. An explanation is provided for the mechanism of such an effect.

The study of the intermolecular interactions in biopolymer systems containing gelatin
and polysaccharides and the formation processes of the supramolecular structures of
the complexes in the volume of the aqueous phase are relevant from the point of view
of characterizing the behavior of nanodispersed systems during the interaction of the
components that are capable of complex formation. Determining the principles for the
formation of polyelectrolyte complexes with an optimal composition is the key to creating
various systems with the desired technological and physicochemical properties that are in
demand in the food industry.
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