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Background: According to statistics, colon adenocarcinoma (COAD) ranks third in global incidence and 
second in mortality. The role of N6-methyladenosine (m6A) modification-dependent ferroptosis in tumor 
development and progression is gaining attention. Therefore, it is meaningful to explore the biological 
functions mediated by m6A ferroptosis related genes (m6A-Ferr-RGs) in the prognosis and treatment of 
COAD. This study aimed to explore the regulatory mechanisms and prognostic features of m6A-Ferr-RGs 
in COAD based on the COAD transcriptome dataset.
Methods: The expression data of Ferr-RGs and the correlated analysis with prognosis related m6A 
regulators were conducted to obtain candidate m6A-Ferr-RGs. Then, the differentially expressed genes 
(DEGs) between COAD and normal samples were intersected with candidate m6A-Ferr-RGs to obtain 
differentially expressed m6A Ferr-RGs (DE-m6A-Ferr-RGs) in COAD. Cox regression analyses were 
performed to establish risk model and validated in the GSE17538 and GSE41258 datasets. The nomogram 
was constructed and verified by calibration curves. Moreover, tumor immune dysfunction and exclusion 
(TIDE) was used to assess immunotherapy response in two risk groups. Finally, the expression of m6A-Ferr-
related prognostic genes was validated by quantitative reverse transcription polymerase chain reaction (qRT-
PCR). 
Results: In total, 6 model genes (HSD17B11, VEGFA, CXCL2, ASNS, FABP4, and GPX2) were obtained 
to construct the risk model. The nomogram was established based on the independent prognostic factors 
for predicting survival of COAD. TIDE assessed that the high-risk group suffered from greater immune 
resistance. Ultimately, the experimental results confirmed that the expression trends of all model genes were 
consistent among data from public database.
Conclusions: In this study, m6A-Ferr-related prognostic model for COAD was constructed using 
transcriptome data and clinical data of COAD in public database, which may have potential immunotherapy 
and chemotherapy guidance implications.
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Introduction 

According to statistics, colon cancer ranks third in global 
incidence and second in mortality among all cancers, 
with both incidence and mortality increasing year by 
year. A previous study (1) has shown that about 20% of 
colon cancer patients have metastases by the time they 
are diagnosed, and up to 50% of patients with initial 
localized disease will develop metastases. Although surgery, 
chemoradiotherapy, and targeted therapy have extended the 
survival time of colon cancer patients to some extent, the 
recurrence rate is high, and cancer drug resistance increases 
the treatment failure rate (2). Therefore, it is of great 
significance to develop personalized treatment plan for 
each patient and effectively predict prognosis level in colon 
cancer treatment. N6-methyladenosine (m6A) modification 
is one of the most abundant modifications affecting the 
fate of RNA among all the ways of post-transcriptional 
modification of biological RNA (3). Roles of m6A in various 
cancers have been reported recently, and m6A methylation 
modification regulatory factors play a role in promoting 
cancer through a variety of tumor-related molecules 
or signaling pathways, such as MYC, Wnt/β-catenin, 
PI3K/AKT/mTOR, p53, BCL-2, etc. M6A regulatory 
factors such as methyltransferase-like 3 (METTL3), 

methyltransferase-like 14 (METTL14), YTH domain family 
(YTHDF), and heterogeneous nuclear ribonucleoprotein 
C-like 2 recombinant protein (hnRNPCL2) are involved 
in colorectal tumorigenesis (4). Through sequencing 
and biological function tests, Chen et al. (5) found that 
METTL3 induced GLUTI signal in a m6A-dependent 
manner, further affecting glucose uptake and utilization, and 
ultimately promoting the progression of colorectal tumors, 
while mTROC1 inhibition enhanced the anti-tumor effect 
of METTL3 silencing. 

Ferroptosis is a reactive oxygen species (ROS)-dependent 
form of cell death associated with two major biochemical 
characteristics: iron accumulation and lipid peroxidation (6). 
Ferroptosis has been implicated in a broad set of biological 
contexts, from development to aging, immunity, and cancer. 
Additionally, mounting evidence has demonstrated that under 
specific biological contexts, multiple signaling pathways 
can dictate the susceptibility of cells to ferroptosis (7).  
Recently, ferroptosis has been associated with a variety of 
diseases and functions as a tumor suppressor mechanism 
(8-10). Ferroptosis induction is a promising method 
for the treatment of many diseases including neoplastic 
diseases. TP53-induced glycolysis and apoptosis regulator 
(TIGAR) is a potential regulator of iron-resistant death in 
the development of colon cancer. Its knockout significantly 
increases Erastin-induced ferroptosis in SW620 and 
HCT116 cells (11). Abnormal levels of m6A modification 
have been detected during the progression of ferroptosis in 
several diseases (12). Researchers have provided new insights 
into the molecular mechanism of dihydroartemisinin 
(DHA) induced ferroptosis, thus suggesting that m6A 
modified-dependent ferroptosis is a potential target for 
the treatment of liver fibrosis. The potential regulatory 
relationship between the m6A modification and ferroptosis 
and their role in the pathogenesis and progression of 
cancer are attracting more and more attention. However, 
the role of m6A in altering cancer prognosis and treatment 
by regulating ferroptosis has never been systematically 
evaluated in colon adenocarcinoma (COAD).

Hence, this study used bioinformatics technology to 
explore the biological functions and potential mechanisms 
of m6A related ferroptosis genes in the occurrence, 
development and prognosis of COAD, identify related 
biomarkers, and establish related prognosis models, so as 
to provide certain references for the clinical diagnosis and 
treatment of COAD. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-24-88/rc). 

Highlight box

Key findings
• This study developed a prognostic model using ferroptosis related 

genes (Ferr-RGs) and N6-methyladenosine (m6A) regulators, and 
evaluated its effectiveness in predicting the prognosis of patients 
with colon adenocarcinoma (COAD).

What is known and what is new?
• Targeting m6A to induce ferroptosis may be a promising strategy 

for ferroptosis-based therapy.
• Through a series of bioinformatics techniques, screening 

prognostic genes associated with ferroptosis and m6A for COAD 
may provide new targets for its treatment.

What is the implication, and what should change now?
• The outcomes of this study contribute to the advancement of 

personalized medicine for COAD. The prognostic model based 
on differentially expressed m6A-Ferr-RGs (DE-m6A-Ferr-RGs) 
can potentially aid in patient stratification, treatment decision-
making, and prognosis prediction. The findings open avenues for 
further research exploring the underlying molecular mechanisms 
of DE-m6A-Ferr-RGs in COAD progression and may inspire the 
development of targeted therapeutic interventions.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/rc
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Methods

Data sources

The transcriptomic data and clinical data of 450 COAD 
and 41 paracancerous samples were downloaded from The 
Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) (table available at https://cdn.amegroups.
cn/static/public/tcr-24-88-1.xlsx). The data with both gene 
expression data and survival time and survival status were 
combined, then, a total of 450 COAD samples served as 
training set. Transcriptome sequencing data and clinical 
data of GSE17538 (containing 232 COAD samples, 
Caucasian) and GSE41258 (containing 185 COAD and 54 
paracancerous samples) datasets were downloaded from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) for validation sets (tables available 
at https://cdn.amegroups.cn/static/public/tcr-24-88-2.
xls, https://cdn.amegroups.cn/static/public/tcr-24-88-3.
xls). There were 624 ferroptosis related genes (Ferr-RGs) 
obtained from the FerrDb database (http://www.zhounan.
org/ferrdb/current/), and 23 m6A regulators were obtained 
from the literature (13).

Survival analysis

Survminer (14) (version 0.4.8) was used to determine the 
optimal threshold for genes based on patient survival time 
and survival status, thus patients were divided into high 
and low gene expression groups. Then, survival of the two 
groups was concluded using survival (version 3.2-3) (14) 
to analyze the correlation between each gene and the 
survival of COAD patients. Spearman correlation analysis 
was performed for prognosis-related m6A regulators, and 
correlation heat map was visualized using ggplot2 (version 
3.3.2) (15).

 

Screening of differentially expressed m6A Ferr-RGs  
(DE-m6A-Ferr-RGs) 

The expression data of Ferr-RGs were collected from the 
TCGA-COAD expression matrix and correlated with 
prognostic m6A genes for correlation analysis. Candidate 
m6A-Ferr-RGs were identified based on the criterion 
|Cor| >0.3, P<0.05. The same operation was performed 
in the GSE17538 and GSE41258 datasets, respectively. 
The limma package (version 3.44.3) (16) was used to mine 
the differentially expressed genes (DEGs) between COAD 
and normal groups (tumor vs. normal), with the screening 

condition of |log2 fold change (FC)| >1 and adjusted P 
value <0.05. The intersection of DEGs with candidate m6A-
Ferr-RGs was taken to obtain DE-m6A-Ferr-RGs, using 
Venn (version 1.11) to create Venn diagrams. The heat map 
was drawn using pheatmap (version 0.7.7) to visualize the 
expression patterns of genes.  

Cox regression analysis

The expression data of DE-m6A-Ferr-RGs were extracted 
from the training set, and then combined with the overall 
survival (OS) and other clinical data to obtain the clinical 
expression data of COAD samples. The “survival” package 
(version 3.2-3) (14) was used for univariate Cox and 
multivariate Cox regression analysis. The forest maps were 
drawn for visualization of the analysis result.

Construction and validation of prognostic model

COAD patients were scored by the expression of the model 
genes and risk coefficients obtained from multivariate Cox, 
and the median of risk score was used as the boundary to 
divide patients into high- and low-risk groups. The risk 
curves were plotted based on risk scores. Survival curves 
were plotted for OS in high- and low-risk groups using 
“survminer” (version 0.4.8) (14). The receiver operating 
characteristic (ROC) curves were plotted using the “pROC” 
package (version 1.0.3) (17) with 1–5 years as the survival 
time point, and the area under the curve (AUC) area was 
calculated to assess the accuracy of the model.

Correlation analysis between risk score and clinical 
characteristics

A trilinear table was applied to show the results of chi-
square tests to compare the number of patients in different 
clinical subgroups between high- and low-risk groups. Heat 
map of the gene expression in different clinical subgroups was 
drawn using the pheatmap package (version 0.7.7) (18). The 
rank sum test was deployed to compare whether there were 
significant differences in risk scores among stage staging and 
tumor node metastasis (TNM) staging subgroup. Stratified 
survival was performed in different clinical subgroups to 
further investigate the survival significance of risk score.

Independent prognostic analysis

For the COAD samples  in training set  (N=450) , 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/tcr-24-88-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-88-1.xlsx
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/tcr-24-88-2.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-2.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-3.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-3.xls
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
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clinicopathological factors such as age, gender, height, 
weight, stage, and TNM stage were included in the risk 
model along with the risk score for univariate Cox analysis. 
The factors with P<0.05 were then included in the multivariate 
Cox analysis. The R package rms (version 6.2-0) (19) was used 
to construct the nomogram to predict 1-, 3- and 5-year 
survival in COAD patients. Calibration curves were plotted 
based on the regplot (version 1.1) (20). 

Functional enrichment analysis

The limma package was used to perform differential 
analysis of genes between high- and low-risk groups on 
the basis of |log2FC| >0.5 and P<0.05. The R language 
“cluster Profiler” (version 3.18.1) (21) was used to perform 
functional enrichment analysis of differential genes between 

high- and low-risk groups. The bubble plots were plotted 
using enrichplot.

Immune cells, immunotherapy and drug sensitivity analysis

Using the R language immunedeconv package (version 
2.0.4) (22), the proportion of each immune cell in each 
sample was calculated by the maximum class probability 
(MCP)-counter algorithm. The differences in immune 
cells between high- and low-risk groups were compared 
using the rank sum test, and the box line plots were plotted 
using the R language ggplot2 and ggpubr packages. 
Then, the Spearman correlation analysis was performed 
and correlation heat maps were drawn. Tumor immune 
dysfunction and exclusion (TIDE) scores were calculated for 
each TCGA-COAD sample using TIDE database (http://
tide.dfci.harvard.edu/), differences in TIDE scores between 
high- and low-risk groups were compared. The Genomics 
of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/) contained 138 chemotherapeutic 
drugs that were routinely utilized in oncology treatment. 
The half maximal inhibitory concentration (IC50) values of 
each drug for each sample was calculated using pRRophetic 
(version 0.5) (23) based on TCGA-COAD gene expression 
data. Spearman correlation analysis of risk scores with IC50 
values of drugs was performed. 

 

RNA isolation and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) 

Twenty tissues (resected cancerous tissue and adjacent 
tissue from the surgical removal of COAD in 10 patients) 
were lysed with TRIzol reagent and total RNA was 
isolated following the manufacturer’s instructions. 
The concentrat ion of  RNA was measured with a 
NanoPhotometer N50. Then, RNA was reverse transcribed 
into complementary DNA (cDNA) using the SureScript 
First strand cDNA synthesis kit (Servicebio, Wuhan, 
China). The qRT-PCR reaction consisted of 3 µL of reverse 
transcription product, 5 µL of 2× Universal Blue SYBR 
Green qPCR Master Mix, and 1 µL each of forward and 
reverse primer. All primer sequence information is shown 
in Table 1. The GAPDH gene served as an internal control, 
and the relative expression of genes was determined using 
the 2−ΔΔCt method (24). Graphpad Prism 5 was used to 
make the graph and calculate the P value. The study was 
conducted in accordance with the Declaration of Helsinki 

Table 1 The primer sequences of prognostic genes for quantitative 
reverse transcriptase polymerase chain reaction

Primer Sequence

HSD17B11

Forward TGAAGGCAGAAATTGGAGATGT

Reverse CCAGTAAGAAGGGGACCGAGAC

VEGFA

Forward CTGTCTTGGGTGCATTGGAG

Reverse CGATTGGATGGCAGTAGCTG

CXCL2

Forward ACGGCAGGGAAATGTATGTGT

Reverse CTGCTCTAACACAGAGGGAAAC

ASNS

Forward GGAAGACAGCCCCGATTTACT

Reverse AGCACGAACTGTTGTAATGTCA

FABP4

Forward GGAATGCGTCATGAAAGGCG

Reverse TTCAGTCCAGGTCAACGTCC

GPX2

Forward AATGTGAGGTGAATGGGCAGA

Reverse GGTCATGAGGGAAAATGGGTC

GAPDH

Forward CGAAGGTGGAGTCAACGGATTT

Reverse ATGGGTGGAATCATATTGGAAC

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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(as revised in 2013). Approval was granted by the Ethics 
Committee of The China-Japan Union Hospital of Jilin 
University (approval ID No. 2023121301). Written inform 
consent was waived due to the retrospective nature of this 
study.

Statistical analysis

All bioinformatics analyses were undertaken in R language. 
The rank sum test was employed to contrast the data from 
different groups.

Results

Survival analysis of m6A regulators in COAD

The results of survival analysis showed that 16 m6A 
regulators were significantly associated with the survival of 
COAD patients (Figure S1). There was mainly a positive 
correlation between prognosis-related m6A regulatory 
genes (Figure S2).

Screening of DE-m6A-Ferr-RGs in COAD

A total of 1,641 DEGs existed between COAD and normal 
samples, of which 745 genes were up-regulated and 896 
genes were down-regulated in COAD samples (Figure 1A,  
table available at https://cdn.amegroups.cn/static/public/
tcr-24-88-4.xls). The expression data of Ferr-RGs were 
correlated with prognosis-related m6A regulators to obtain 
298 candidate m6A-Ferr-RGs (https://cdn.amegroups.cn/
static/public/tcr-24-88-5.xls). The correlation between 
Ferr-RGs and prognosis-related m6A regulators in the 
GSE17538 and GSE41258 datasets, respectively, is shown 
in tables available at https://cdn.amegroups.cn/static/public/
tcr-24-88-6.xls, https://cdn.amegroups.cn/static/public/tcr-
24-88-7.xls. Then, 47 intersected genes were obtained by 
intersecting the DEGs with the candidate m6A-Ferr-RGs, 
which were recorded as DE-m6A-Ferr-RGs (Figure 1B,1C) 
and incorporated into subsequent analysis.

The risk model based on DE-m6A-Ferr-RGs associated 
with prognosis in COAD

To investigate whether DE-m6A-Ferr-RGs were associated 
with the prognosis of COAD patients, Cox regression 
analysis was performed. A total of 8 survival-related genes 
were obtained after univariate Cox (Figure 2A).

And 3 genes (HSD17B11, CXCL2, and GPX2) were 
protective factors [hazard ratio (HR) <1], 5 genes (TRIB3, 
VEGFA, ASNS, FABP4, and SLC7A5) were risk factors (HR 
>1). Next, a model consisting 6 model genes (HSD17B11, 
VEGFA, CXCL2, ASNS, FABP4, and GPX2) was obtained 
by multivariate Cox analysis (Figure 2B, Table 2). Risk curve 
was plotted based on risk scores, and COAD patients were 
divided into high- and low-risk groups (Figure 2C). There 
was a significant difference in patient survival between 
the high- and low-risk groups (P<0.001), and patients in 
the high-risk group had a lower survival rate (Figure 2D). 
Moreover, the AUC of the ROC curve in the training set 
was greater than 0.6, indicating a decent efficacy of the risk 
model (Figure 2E). Similarly, the prognosis were worse in the 
high-risk group in the validation sets GSE17538 (P=0.02) 
and GSE41258 (P=0.04), and the AUC at the 1–5 year node 
in the ROC curves were greater than 0.6 (Figure 2F-2K).

The correlation between risk score and clinical factors

First, the number of high- and low-risk patients with 
different clinical subtypes was compared. As shown in Table 3,  
there were significant correlation between risk grouping 
and weight, survival status, stage, and TNM stage. The 
heat map of the model genes expression in different clinical 
subgroups is shown in Figure 3A. And then there were 
significant difference in risk scores among stage and TNM 
stage subgroups (Figure 3B). In addition, in stage III + stage 
IV, T3 + T4, M0, and N1 + N2 subgroups, there were 
significant differences in survival between patients in both 
high- and low-risk groups (Figure 3C).

Independent prognostic analysis and nomogram model 
creation

To  f u r t h e r  i n v e s t i g a t e  t h e  p r o g n o s i s  v a l u e  o f 
clinicopathological characteristics with the risk model, 
clinicopathological factors along with the risk score were 
included in independent prognostic analysis. The results 
indicated that the risk score, age, and pT were independent 
prognostic factors in the univariate and multivariate Cox 
analysis (Figure 4A,4B). Hence, the nomogram was plotted 
based on the risk score, age and pT to predict 1-, 3-, and 
5-year survival of patients with COAD. The concordance 
index (C-index) of the nomogram was 0.707, indicating that 
the prediction of the model was satisfactory (Figure 4C). 
Calibration curves showed that the risk model had a decent 
accuracy in predicting the survival rate of patients at 1, 3, 

https://cdn.amegroups.cn/static/public/TCR-24-88-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-88-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-24-88-4.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-4.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-6.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-6.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-7.xls
https://cdn.amegroups.cn/static/public/tcr-24-88-7.xls
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Figure 1 Differential expression analysis in the TCGA-COAD dataset. (A) The volcano map of DEGs between COAD and normal 
samples. (B) The Venn diagram of 47 DEGs associated with m6A regulators and Ferr-RGs. (C) The expression heatmap of 47 DE-m6A-
Ferr-RGs in the COAD and normal samples. ns, not significant; TCGA, The Cancer Genome Atlas; COAD, colon adenocarcinoma; DEGs, 
differentially expressed genes; m6A, N6-methyladenosine; Ferr-RGs, ferroptosis related genes; DE-m6A-Ferr-RGs, differentially expressed 
m6A Ferr-RGs.

and 5 years (Figure 4D).

Functional differences between high- and low-risk groups

First, 111 DEGs between high- and low-risk groups were 
obtained (Figure 5A). Then the functional enrichment 
analysis was performed on them. Gene Ontology (GO) 
functional enrichment analysis resulted in a total of 104 

items, including 39 biological process (BP) items (neutrophil 
migration, neutrophil chemotaxis, and chemokine response, 
etc.), 25 cellular component (CC) items (zymogen granule 
membrane, zymogen granules, and specific granule lumen, 
etc.), and 40 molecular function (MF) items (CXCR 
chemokine receptor binding, chemokine activity, and 
cytokine activity, etc.), and Figure 5B showed the top 10 
ranked items under each GO classification. The results 
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Figure 2 Construction and validation of the prognostic model for COAD. (A) The univariate Cox regression analysis of 8 survival-related 
genes. (B) Six prognostic genes obtained by multivariate Cox analysis. (C) The risk curve, survival state distribution, and the expression of 
prognostic genes. (D) The Kaplan-Meier survival curves of high- and low-risk groups. (E) The ROC curves of the prognostic signature with 
1, 2, 3, 4, and 5 years as survival time points. (F) The risk curve, survival state distribution, and the expression of prognostic genes in the 
GSE17538 dataset (validation set). (G) The Kaplan-Meier survival curves of two risk groups in the GSE17538 dataset. (H) The ROC curves 
of prognostic model in the GSE17538 dataset. (I) The risk curve, survival state distribution, and the expression of prognostic genes in the 
GSE41258 dataset. (J) The Kaplan-Meier survival curves of two risk groups in the GSE41258 dataset. (K) The ROC curves of prognostic 
model in the GSE41258 dataset. TCGA, The Cancer Genome Atlas; OS, overall survival; COAD, colon adenocarcinoma; CI, confidence 
interval; ROC, receiver operating characteristic; AUC, area under the curve.
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Table 2 The coefficient of prognostic genes in the multivariate Cox analysis

Genes Coef Exp(coef) SE(coef) Z P

HSD17B11 −0.58749 0.55572 0.17906 −3.281 0.001

VEGFA 0.49623 1.64251 0.1852 2.679 0.007

CXCL2 −0.24534 0.78244 0.09254 −2.651 0.008

ASNS 0.473 1.6048 0.17422 2.715 0.007

FABP4 0.14964 1.16141 0.09141 1.637 0.10

GPX2 −0.29024 0.74808 0.12511 −2.32 0.02

Table 3 Risk and clinical data in TCGA-COAD

Clinical features Total
Risk

P value
High Low

Age (years) 67.0±13.0 66.5±13.5 67.5±12.5 0.55

Gender 0.51

Female 212 (47.1) 110 (48.9) 102 (45.3)

Male 238 (52.9) 115 (51.1) 123 (54.7) 0.24

Height (cm) 168.4±12.3 167.5±13.0 169.7±11.1

Weight (kg) 80.9±20.8 78.8±21.8 83.9±18.9

Vital <0.001

Alive 349 (77.6) 159 (70.7) 190 (84.4)

Dead 101 (22.4) 66 (29.3) 35 (15.6) 0.10

OS (months) 850.3±765.4 809.7±758.8 890.9±771.4

Stage <0.001

Stage I 75 (17.1) 24 (11.0) 51 (23.2)

Stage II 175 (39.9) 79 (36.1) 96 (43.6)

Stage III 126 (28.7) 73 (33.3) 53 (24.1)

Stage IV 63 (14.4) 43 (19.6) 20 (9.1)

pT <0.001

T1 11 (2.4) 3 (1.3) 8 (3.6)

T2 77 (17.1) 27 (12.0) 50 (22.3)

T3 306 (68.2) 154 (68.4) 152 (67.9)

T4 55 (12.2) 41 (18.2) 14 (6.3)

pN <0.001

N0 265 (58.9) 113 (50.2) 152 (67.6)

N1 103 (22.9) 58 (25.8) 45 (20.0)

N2 82 (18.2) 54 (24.0) 28 (12.4)

pM 0.002

M0 330 (84.0) 154 (78.2) 176 (89.8)

M1 63 (16.0) 43 (21.8) 20 (10.2)

Data are presented as mean ± standard deviation or number (percentage). TCGA, The Cancer Genome Atlas; COAD, colon 
adenocarcinoma; OS, overall survival.
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Figure 3 Clinical correlation analysis. (A) The heat map of the model genes expression in different clinical subgroups. (B) Discrepancies 
of risk score among different clinical subgroups. (C) The Kaplan-Meier survival analysis of high- and low-risk groups in different clinical 
subgroups. TCGA, The Cancer Genome Atlas; COAD, colon adenocarcinoma.
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Figure 4 Independent prognostic analysis and nomogram creation. (A) The univariate Cox regression analysis of risk score and clinical 
factors. (B) The independent predictor obtained by multivariate Cox analysis. (C) The nomogram established based on three independent 
predictors. **, P<0.01; ***, P<0.001. (D) The calibration curves of nomogram. CI, confidence interval; OS, overall survival; C-index, 
concordance index.

of Kyoto Encyclopedia of Genes and Genomes (KEGG) 
showed that a total of 30 pathways were enriched, the 
top 15 enriched pathways [tumor necrosis factor (TNF) 
signaling pathway, chemokine signaling pathway, cytokine-
cytokine receptor interaction, and IL17 signaling pathway, 
etc.] are shown in Figure 5C.

Infiltration analysis of immune/stromal cells

The proportion of each immune/stromal cells in each 
sample was calculated by the MCP counter algorithm. 
The NK cells, myeloid dendritic cells, cancer-associated 
fibroblasts (CAFs), endothelial cells, and neutrophils were 
significantly different between high- and low-risk groups 

(Figure 6A). The model genes were significantly positively/
negatively correlated with CAF (Figure 6B).

Immunotherapy and drug sensitivity analysis

TIDE scores were higher in the high-risk group compared 
with the low-risk group (Figure 7A). The correlation analysis 
between risk score and TIDE score showed a significant 
positive correlation (Cor =0.23, P<0.001) (Figure 7A). In 
addition, there was a significant difference in the number 
of immune responding/non-responding patients between 
high- and low-risk groups (P<0.001), and comparison of 
risk scores between patients revealed that risk scores were 
higher in non-responding patients (P<0.001) (Figure 7B). 
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Figure 5 Functional enrichment analysis. (A) The volcano map of DEGs between high- and low-risk groups. (B) The GO terms enriched 
in DEGs between two risk groups. (C) The KEGG pathways enriched in DEGs. ns, not significant; DEGs, differentially expressed genes; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological progress; CC, cellular component; MF, molecular 
function; IL-17, interleukin 17; ECM, extracellular matrix; TNF, tumor necrosis factor.
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Figure 6 Immune infiltration analysis. (A) Discrepancies of the proportion of immune/stromal cells between high- and low-risk groups. (B) 
The correlation of prognostic genes to immune/stromal cells. NK, natural killer; CAF, cancer-associated fibroblast.
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Figure 7 Immunotherapy effectiveness analysis and drug sensitivity analysis. (A) Discrepancies of TIDE score between high- and low-
risk groups and correlation of TIDE score and risk score. (B) Differences in the number of patients responding and not responding to 
immunotherapy and risk scores between high- and low-risk groups. (C) The correlation analysis of risk score to the IC50 value of drugs. 
(D) Differences in estimated IC50 between two risk groups. GDSC, Genomics of Drug Sensitivity in Cancer; TIDE, tumor immune 
dysfunction and exclusion; IC50, half maximal inhibitory concentration.

The correlation analysis between risk score and IC50 values 
of drugs from GDSC showed that Nilotinib and PD.173074 
were negatively correlated with risk score (correlation 
coefficients less than −0.3). Meanwhile, the IC50 values of 
BMS.708163, lapatinib, sorafenib, and PF.4708671 were 

positively correlated with risk score (correlation coefficients 
were all greater than 0.3) (Figure 7C). Finally, the IC50 of 
the six drugs (|Cor| >0.3) were compared, in which the 
IC50 of BMS.708163, lapatinib, sorafenib, and PF.4708671 
were significantly higher in high-risk group, while the IC50 
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of nilotinib and PD.173074 were significantly lower in 
high-risk group (Figure 7D).

Expression validation of 6 model genes 

In this study, 10 pairs of COAD and para-cancer tissue 
samples were collected and qRT-PCR was performed 
to elucidate the changes in expression of model genes in 
the COAD and normal groups. The expression levels of 
VEGFA, CXCL2 and ASNS were significantly lower in 
COAD samples than in paraneoplastic tissues, while the 
opposite was true for HSD17B11 and FABP4 (Figures 8,9), 
which was consistent with results from public database (table 
available at https://cdn.amegroups.cn/static/public/tcr-24-
88-1.xlsx). In addition, although GPX2 expression was not 
significantly different in COAD and paraneoplastic tissues 
(Figures 8,9), the expression trends were consistent with 
public database (Figures 8,9, table available at https://cdn.
amegroups.cn/static/public/tcr-24-88-1.xlsx). Finally, in 
order to better understand the expression of the six model 
genes in patients at various phases of pathogenesis, we 
conducted additional analysis, which revealed that CXCL2 
expression was considerably raised in both the M0 and N0 
stages, among others (Figure S3).

Discussion

COAD remains one of the deadliest malignancies in the 
world, with a poor prognosis. The high mortality rate for 
COAD is expected to continue in the coming decades. 
Therefore, further studies are needed to identify new 
biomarkers for the early diagnosis and effective prognosis 
prediction of COAD. However, there have been no 
studies on the correlation of m6A modified ferroptosis in 
colon cancer. We used the transcriptome and clinical data 
of COAD from public databases to construct the m6A-
Ferr-related prognostic model, which may have potential 
significance in guiding immunotherapy and chemotherapy. 
Here, the prognostic value of m6A related iron deposition 
gene in COAD was investigated by bioinformatics analysis. 
We ended up with a six-gene model and a nomogram for 
predicting COAD patient survival.

FABP4 has been shown to be a fat-derived cytokine, 
which can be released into the circulation (25,26) and is 
involved in cancer cell growth and metastasis in a variety 
of malignancies (25,27). Mukherjee et al. have suggested 
that the regulation of FABP4 is crucial for cancer cells 
to adapt to lipid-rich microenvironments. Additionally, 

targeting FABP4 within cancer cells not only reduces their 
migratory capacity to the retina but also enhances tumor 
cell sensitivity to platinum-based chemotherapy (28). 
A study on colon cancer found that FABP4 protein was 
highly expressed in colon cancer tissues, and was positively 
correlated with TNM stage, differentiation degree and 
lymph node metastasis of colon cancer. The expression 
level of FABP4 in colon cancer tissues correlates with 
the expression of E-cadherin and Snail, suggesting that 
FABP4 promotes colon cancer progression associated with 
epithelial-mesenchymal transition (EMT) (29). This is 
consistent with our findings that FABP4 is a risk factor for 
patients’ prognosis and disease progression.

Chemokines are a class of small cytokines with a 
molecular weight of about 10 kDa (30), that play an integral 
role in various physiological and pathological processes. 
Chemokines are known to be expressed in a variety of cell 
types, including tumor cells, CAF, and tumor-associated 
macrophages (TAM) (31,32). In recent years, studies have 
identified VEGFA and CXC chemokines as important players 
in angiogenesis, especially tumor angiogenesis (33-35). 
VEGFA/kinase insertion domain receptor (KDR or VEGFR2) 
is a signaling pathway involved in tumor angiogenesis (36), 
among which VEGFA is a key driver of angiogenesis, 
secreted from many types of cells (including malignant cells) 
by stimulating the migration, invasion and proliferation of 
VEC (37,38). B7-h3-rich exosomes promote colon cancer 
angiogenesis and metastasis by activating the VEGFA/
VEGFR2 and AKTl/mTOR signaling pathways. CXCL2 
was also found to induce angiogenesis through neutrophil 
VEGFA release in a colon cancer liver metastasis model, 
thereby promoting cell migration and tumor growth. Our 
study demonstrated that both CXCL2 and VEGFA are 
prognostically relevant biomarkers in COAD patients, with 
CXCL2 as a protective factor and VEGFA as a risk factor.

GPX2  is  a selenase with antioxidant properties 
mainly found in the gastrointestinal tract. It works by 
removing ROS as antioxidants (39). It has been found 
to be involved in tumor progression and metastasis in 
a variety of cancers, including colon, stomach, bladder, 
and lung cancers (40). Interestingly, Emmink  et al.  
found that mice with GPX2 knocked out had higher tumor 
multiple, possibly due to more severe inflammation, but 
significantly smaller tumor volume. This finding suggests 
that GPX2 prevents colon tumor formation by limiting 
inflammation. In addition, in an induced mouse model of 
colon cancer liver metastasis, GPX2 depleted cells were found 
to show a significantly reduced ability to metastasize (41). 

https://cdn.amegroups.cn/static/public/tcr-24-88-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-88-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-88-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-88-1.xlsx
https://cdn.amegroups.cn/static/public/TCR-24-88-Supplementary.pdf
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Figure 8 The expression of prognostic genes in the COAD and normal samples. (A) TCGA-COAD dataset; (B) GSE41258 dataset. COAD, 
colon adenocarcinoma; TCGA, The Cancer Genome Atlas.

This is consistent with our findings that GPX2 is a protective 
factor for patient survival and disease progression.

One of the mechanisms by which mutant KRAS 
promotes tumor progression in colorectal cancer (CRC) 
is induced by the PI3K-AKT-mTOR pathway, which 

causes the proto-carcinogenic signaling cascade (42). In the 
downstream of KRAS, activation of transcription factor 
4 (ATF4) and nuclear factor erythroid-derived 2-like 2 
(NRF2) can up-regulate ASNS expression (43). Notably, 
tumor growth in KRAS mutant CRC cells was significantly 
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inhibited after ASNS knockdown. P53 inhibits asparagine 
synthesis through transcriptional down-regulation of ASNS 
expression and disrupts asparagine homeostasis, leading to 
in vivo and in vitro lymphoma and colon tumor growth and 
inhibition (44). High levels of ASNS maintain cell survival 
and promote tumor cell proliferation by inhibiting AMPK-
mediated p53 activation. The surprise was that ASNase 
treatment or ASNS knockdown mutually activated p53 to 
induce cell cycle arrest and protect cells from apoptosis. 
Therefore, we believe that ASNS, as a biomarker associated 
with prognosis in COAD patients, is a risk factor. This gives 
us a new way to treat cancer. It is concluded that asparagine 
biosynthesis plays a key role in accelerating cancer growth 
and metastasis. 

HSD17B11  i s  a  subtype  of  17-hydroxys tero id 
dehydrogenase, also known as DHRS8 and Pan1b. It is highly 
expressed in human tissues such as lung, eye, liver, pancreas, 
intestine, kidney, kidney, adrenal gland, heart, testis, ovary, 
placenta and sebaceous glands (45). It is important in a variety 
of tumors. HSD17B11 expression levels are high in human 
prostate cancer tissues, but relatively low in normal prostate 
tissues. Furthermore, in esophageal cancer, a study (46)  
has shown that the reading protein YTHDF1 may regulate 
tumor lipid metabolism by reducing the translation efficiency 
of the target gene HSD17B11. To date, no relevant reports 
of HSD17B11 have been found in colon cancer, and we have 
found for the first time that HSD17B11 gene was associated 

with the survival of COAD patients and affected the 
progression of the disease as a protective factor. Therefore, 
we believe that HSD17B11 is a favorable factor for patient 
prognosis and disease progression. 

In Hallmarks of cancer: the next generation (47) article 
puts forward that the patient’s immune system is important 
for identification of prognostic markers, and predicting 
response to chemotherapy and radiotherapy markers is of 
great significance. Over the past decade, immunotherapy 
has generated great excitement due to its success in 
achieving long lasting responses in previously difficult-to-
treat solid tumors, such as melanoma and lung cancer (48). 
In this study, we further studied the infiltration ratio of 10 
kinds of immune/stromal cells in the high-low risk group 
and found that 5 immune cells were significantly different 
between the high-low risk group. Correlation analysis 
showed that risk model genes were significantly positively/
negatively correlated with CAF, endothelial cell, myeloid 
dendritic cell, B cell, and natural killer (NK) cell. Again, this 
strongly demonstrates that the amount, type, and location of 
tumor immune infiltration are important for predicting the 
outcome of immune checkpoint blockade (ICB) therapy (49). 
TIDE was used to assess the difference in immunotherapy 
in the high- and low-risk groups, which showed greater 
immune resistance and more non-immune responses in 
the high-risk group. According to the characteristics of the 
high- and low-risk group, drug sensitivity analysis showed 
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Figure 9 The expression of prognostic genes in the COAD and normal tissue by qRT-PCR. COAD, colon adenocarcinoma; qRT-PCR, 
quantitative reverse transcriptase polymerase chain reaction.
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that six drugs were significantly correlated with the risk 
score, and there were significant differences between the 
high- and low-risk groups. This may help achieve a better 
overall outcome.

The study has some limitations. First, risk profiles were 
created using public data and lack new clinical samples 
and data. In addition, due to insufficient samples, qRT-
PCR was performed on only 10 pairs of clinical samples to 
verify the expression of 6 risk model genes. Therefore, the 
function of this signature must be verified in clinical studies. 
In addition, the reproducibility of ferroptosis and m6A 
related genes obtained from the data set requires further 
verification. Further large-scale basic studies can confirm 
the conclusions of this study.

In summary, we used the transcriptome data and clinical 
data of colon cancer from public databases to construct 
the m6A-Ferr related prognostic model, which may have 
potential significance in guiding immunotherapy and 
chemotherapy.

Conclusions

In this study, m6A-Ferr-related prognostic model for 
COAD was constructed using transcriptome data and 
clinical data of COAD in public database, which may have 
potential immunotherapy and chemotherapy guidance 
implications.

Acknowledgments

Funding: None.

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-88/rc

Peer Review File: Available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-88/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-24-88/coif). The authors 
have no conflicts of interest to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 

to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). Approval was granted by the Ethics 
Committee of The China-Japan Union Hospital of Jilin 
University (approval ID No. 2023121301). Written inform 
consent was waived due to the retrospective nature of this 
study.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Ciardiello F, Ciardiello D, Martini G, et al. Clinical 
management of metastatic colorectal cancer in the era of 
precision medicine. CA Cancer J Clin 2022;72:372-401.

2. Hossain MS, Karuniawati H, Jairoun AA, et al. 
Colorectal Cancer: A Review of Carcinogenesis, Global 
Epidemiology, Current Challenges, Risk Factors, 
Preventive and Treatment Strategies. Cancers (Basel) 
2022;14:1732.

3. Wiener D, Schwartz S. The epitranscriptome beyond m(6)
A. Nat Rev Genet 2021;22:119-31.

4. Huang W, Chen TQ, Fang K, et al. N6-methyladenosine 
methyltransferases: functions, regulation, and clinical 
potential. J Hematol Oncol 2021;14:117.

5. Chen H, Gao S, Liu W, et al. RNA N(6)-Methyladenosine 
Methyltransferase METTL3 Facilitates Colorectal Cancer 
by Activating the m(6)A-GLUT1-mTORC1 Axis and Is 
a Therapeutic Target. Gastroenterology 2021;160:1284-
1300.e16.

6. Tang D, Chen X, Kang R, et al. Ferroptosis: molecular 
mechanisms and health implications. Cell Res 
2021;31:107-25.

7. Jiang X, Stockwell BR, Conrad M. Ferroptosis: 
mechanisms, biology and role in disease. Nat Rev Mol Cell 
Biol 2021;22:266-82.

8. Shen M, Li Y, Wang Y, et al. N(6)-methyladenosine 
modification regulates ferroptosis through autophagy 
signaling pathway in hepatic stellate cells. Redox Biol 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-24-88/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Liu et al. The role of m6A and ferroptosis in COAD 4406

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(8):4389-4407 | https://dx.doi.org/10.21037/tcr-24-88

2021;47:102151.
9. Peng P, Ren Y, Wan F, et al. Sculponeatin A promotes 

the ETS1-SYVN1 interaction to induce SLC7A11/xCT-
dependent ferroptosis in breast cancer. Phytomedicine 
2023;117:154921.

10. Nie J, Zhang P, Liang C, et al. ASCL1-mediated 
ferroptosis resistance enhances the progress of castration-
resistant prostate cancer to neurosecretory prostate cancer. 
Free Radic Biol Med 2023;205:318-31.

11. Liu MY, Li HM, Wang XY, et al. TIGAR drives colorectal 
cancer ferroptosis resistance through ROS/AMPK/SCD1 
pathway. Free Radic Biol Med 2022;182:219-31.

12. Zhi Y, Zhang S, Zi M, et al. Potential applications of 
N(6) -methyladenosine modification in the prognosis 
and treatment of cancers via modulating apoptosis, 
autophagy, and ferroptosis. Wiley Interdiscip Rev RNA 
2022;13:e1719.

13. Zhang X, Zhang S, Yan X, et al. m6A regulator-mediated 
RNA methylation modification patterns are involved in 
immune microenvironment regulation of periodontitis. J 
Cell Mol Med 2021;25:3634-45.

14. Wang S, Su W, Zhong C, et al. An Eight-CircRNA 
Assessment Model for Predicting Biochemical Recurrence 
in Prostate Cancer. Front Cell Dev Biol 2020;8:599494.

15. Ito K, Murphy D. Application of ggplot2 to 
Pharmacometric Graphics. CPT Pharmacometrics Syst 
Pharmacol 2013;2:e79.

16. Ritchie ME, Phipson B, Wu D, et al. limma powers 
differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res 2015;43:e47.

17. Park SH, Goo JM, Jo CH. Receiver operating 
characteristic (ROC) curve: practical review for 
radiologists. Korean J Radiol 2004;5:11-8.

18. Ni J, Liu S, Qi F, et al. Screening TCGA database for 
prognostic genes in lower grade glioma microenvironment. 
Ann Transl Med 2020;8:209.

19. Iasonos A, Schrag D, Raj GV, et al. How to build and 
interpret a nomogram for cancer prognosis. J Clin Oncol 
2008;26:1364-70.

20. Austin PC, Harrell FE Jr, van Klaveren D. Graphical 
calibration curves and the integrated calibration index (ICI) 
for survival models. Stat Med 2020;39:2714-42.

21. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS 2012;16:284-7.

22. Sturm G, Finotello F, List M. Immunedeconv: An R 
Package for Unified Access to Computational Methods 
for Estimating Immune Cell Fractions from Bulk RNA-

Sequencing Data. Methods Mol Biol 2020;2120:223-32.
23. Geeleher P, Cox N, Huang RS. pRRophetic: an R package 

for prediction of clinical chemotherapeutic response from 
tumor gene expression levels. PLoS One 2014;9:e107468.

24. Livak KJ, Schmittgen TD. Analysis of relative gene 
expression data using real-time quantitative PCR and the 
2(-Delta Delta C(T)) Method. Methods 2001;25:402-8.

25. Hotamisligil GS, Bernlohr DA. Metabolic functions of 
FABPs--mechanisms and therapeutic implications. Nat 
Rev Endocrinol 2015;11:592-605.

26. Cao H, Sekiya M, Ertunc ME, et al. Adipocyte lipid 
chaperone AP2 is a secreted adipokine regulating hepatic 
glucose production. Cell Metab 2013;17:768-78.

27. Uehara H, Takahashi T, Oha M, et al. Exogenous fatty 
acid binding protein 4 promotes human prostate cancer 
cell progression. Int J Cancer 2014;135:2558-68.

28. Mukherjee A, Chiang CY, Daifotis HA, et al. Adipocyte-
Induced FABP4 Expression in Ovarian Cancer Cells 
Promotes Metastasis and Mediates Carboplatin Resistance. 
Cancer Res 2020;80:1748-61.

29. Zhang Y, Zhang W, Xia M, et al. High expression of 
FABP4 in colorectal cancer and its clinical significance. J 
Zhejiang Univ Sci B 2021;22:136-45.

30. Gao A, Yan F, Zhou E, et al. Molecular characterization 
and expression analysis of chemokine (CXCL12) from Nile 
tilapia (Oreochromis niloticus). Fish Shellfish Immunol 
2020;104:314-23.

31. Liao Z, Tan ZW, Zhu P, et al. Cancer-associated 
fibroblasts in tumor microenvironment - Accomplices in 
tumor malignancy. Cell Immunol 2019;343:103729.

32. Pathria P, Louis TL, Varner JA. Targeting Tumor-
Associated Macrophages in Cancer. Trends Immunol 
2019;40:310-27.

33. Situ Y, Xu Q, Deng L, et al. System analysis of VEGFA 
in renal cell carcinoma: The expression, prognosis, gene 
regulation network and regulation targets. Int J Biol 
Markers 2022;37:90-101.

34. Situ Y, Lu X, Cui Y, et al. Systematic Analysis of CXC 
Chemokine-Vascular Endothelial Growth Factor A 
Network in Colonic Adenocarcinoma from the Perspective 
of Angiogenesis. Biomed Res Int 2022;2022:5137301.

35. Kumar A, Cherukumilli M, Mahmoudpour SH, et al. 
ShRNA-mediated knock-down of CXCL8 inhibits tumor 
growth in colorectal liver metastasis. Biochem Biophys Res 
Commun 2018;500:731-7.

36. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and 
Disease: Beyond Discovery and Development. Cell 
2019;176:1248-64.



Translational Cancer Research, Vol 13, No 8 August 2024 4407

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(8):4389-4407 | https://dx.doi.org/10.21037/tcr-24-88

37. Lai E, Cascinu S, Scartozzi M. Are All Anti-Angiogenic 
Drugs the Same in the Treatment of Second-Line 
Metastatic Colorectal Cancer? Expert Opinion on Clinical 
Practice. Front Oncol 2021;11:637823.

38. Simon T, Gagliano T, Giamas G. Direct Effects of Anti-
Angiogenic Therapies on Tumor Cells: VEGF Signaling. 
Trends Mol Med 2017;23:282-92.

39. Brzozowa-Zasada M, Ianaro A, Piecuch A, et al. 
Immunohistochemical Expression of Glutathione 
Peroxidase-2 (Gpx-2) and Its Clinical Relevance in Colon 
Adenocarcinoma Patients. Int J Mol Sci 2023;24:14650.

40. Naiki T, Naiki-Ito A, Iida K, et al. GPX2 promotes 
development of bladder cancer with squamous cell 
differentiation through the control of apoptosis. 
Oncotarget 2018;9:15847-59.

41. Emmink BL, Laoukili J, Kipp AP, et al. GPx2 suppression 
of H2O2 stress links the formation of differentiated tumor 
mass to metastatic capacity in colorectal cancer. Cancer 
Res 2014;74:6717-30.

42. Hua H, Kong Q, Zhang H, et al. Targeting mTOR for 
cancer therapy. J Hematol Oncol 2019;12:71.

43. Krall AS, Mullen PJ, Surjono F, et al. Asparagine couples 
mitochondrial respiration to ATF4 activity and tumor 
growth. Cell Metab 2021;33:1013-1026.e6.

44. Deng L, Yao P, Li L, et al. p53-mediated control of 
aspartate-asparagine homeostasis dictates LKB1 activity 
and modulates cell survival. Nat Commun 2020;11:1755.

45. Brereton P, Suzuki T, Sasano H, et al. Pan1b 
(17betaHSD11)-enzymatic activity and distribution in the 
lung. Mol Cell Endocrinol 2001;171:111-7.

46. Duan X, Yang L, Wang L, et al. m6A demethylase FTO 
promotes tumor progression via regulation of lipid 
metabolism in esophageal cancer. Cell Biosci 2022;12:60.

47. Hanahan D, Weinberg RA. Hallmarks of cancer: the next 
generation. Cell 2011;144:646-74.

48. Ghosn M, Tselikas L, Champiat S, et al. Intratumoral 
Immunotherapy: Is It Ready for Prime Time? Curr Oncol 
Rep 2023;25:857-67.

49. Jochems C, Schlom J. Tumor-infiltrating immune cells 
and prognosis: the potential link between conventional 
cancer therapy and immunity. Exp Biol Med (Maywood) 
2011;236:567-79.

Cite this  art ic le as :  Liu X,  An J ,  Wang Q,  J in  H. 
Characterization and validation of a prognostic model for the 
N6-methyladenosine-associated ferroptosis gene in colon 
adenocarcinoma. Transl Cancer Res 2024;13(8):4389-4407. doi: 
10.21037/tcr-24-88


