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Abstract
Assuming a homogeneous population, we apply the mass action law for rate of new 
infections and a second-order gamma distribution for removal probability to model 
spread of an epidemic. In numerical examinations of higher-order gamma distri-
butions for removal probability, we discover an unexpected pattern in maximum 
fraction of population infected. We develop from first principles of probability an 
eighth-order system of ordinary differential equations to model effects of isolation 
and quarantine. We derive analytical expressions for reproduction numbers mode-
ling isolation and quarantine when applied separately and together and verify them 
numerically. We quantify strength and speed required of these interventions to con-
tain epidemics of varying severity and examine how their effectiveness depends on 
when they begin. We find that effectiveness is highly sensitive to small changes of 
intervention strength in a critical region. Finally, adding two more differential equa-
tions to capture natural population dynamics, we calculate endemic disease equilib-
ria when affected by isolation and examine dynamics of coming to an equilibrium 
state.

Keywords  Probabilistic model · Epidemic · Isolation · Quarantine · Ordinary 
differential equations · Endemic equilibria

1  Introduction

Mathematical epidemiology has a long history. In 1760, Daniel Bernoulli analyzed 
inoculation against smallpox, where he developed what is usually described as the 
first model in the subject (Bernoulli 1766; Blower 2004; Heesterbeck and Roberts 
2015).

On developments directly relevant to the matter at hand, in 1906 Hamer pro-
posed a mass action law, in which rate of new infections in a disease outbreak 
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is proportional to the product of the number of susceptible individuals and the 
number of infected individuals. This model has been widely used since that time 
(Hamer 1906; Brauer 2017).

Kermack and McKendrick (1927) introduced compartments to model spread of 
infectious diseases. A special case of their general model is referred to as the SIR 
model, with compartments S (susceptible but well), I (infected and able to trans-
mit the disease) and R (removed by immunity, recovery, death or quarantine). In 
this model, people who recover are permanently immune. The SIR model incor-
porates the mass action law and has become the starting point for a wide vari-
ety of compartmental models to the present day. The SIR model is deterministic, 
meaning it incorporates no element of chance. We will discuss the SIR model 
more, later in this article.

Beginning in 1928 and continuing through the 1930s and 1940s, L. J. Reed and 
W. H. Frost lectured at what is now the Johns Hopkins Bloomberg School of Pub-
lic Health and developed the stochastic Reed–Frost model, which has been widely 
used and from which many extensions have been formulated (Lessler and Cum-
mings 2016; Brauer 2017). Their work was published by their students (Abbey 
1952; De Maia 1952). Stochastic models include the element of chance. We will 
discuss the Reed-Frost model more, later in this article.

Isolation is removal of an infected person from public interaction. Quarantine 
is removal of a segment of the population, regardless of health condition, usually 
by government order. A deterministic study by Hethcote et  al. (2002) modeled 
compartments SIQR and SIQS. In the latter, people who recover are not immune 
but rather return to susceptibility. The compartment labeled Q was for isolation, 
in that transitions to Q were from I only. The analysis found conditions under 
which disease can be endemic, i.e., have a permanent presence. In some cases, the 
presence was a stable, constant equilibrium. In others, it was eventually periodic.

Gumel et  al. (2004) authored a study on strategies for controlling SARS 
(severe acute respiratory syndrome) outbreaks. They used a deterministic SEQIJR 
model, where Q and J were for quarantine and isolation and E labeled a com-
partment for the exposed but asymptomatic. In the Hethcote et  al. study above, 
the Gumel et al. study and most compartment-based studies, transitions between 
compartments are modeled as first-order, linear, single-parameter rates except for 
rate of new infections, which is modeled by various versions of the mass action 
law. In the Gumel et  al. study, transitions to the quarantine compartment were 
from the exposed compartment only, which implies they were based on contact 
tracing. The study compared model predictions to actual outcomes in a number 
of geographic areas and found good agreement. It also showed the benefit of fast 
response in both isolation and quarantine together.

The literature has many articles analyzing isolation and quarantine that are 
based on compartmental models. Many are deterministic (e.g., Castillo-Chavez 
et  al. 2003; Sahu and Dhar 2015; Denes and Gumel 2019) and some are sto-
chastic by virtue of adding Wiener processes (e.g., Li et  al. 2018). The latter 
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require multiple solutions of the equations to produce multiple realizations of 
an epidemic in order to yield reliable “expected value” results (Monte Carlo 
simulation).

All the isolation and quarantine models discussed above assume a homogene-
ous population. Other studies using the same assumption but not employing com-
partmental models include Day et al. (2006), which used a discrete time branch-
ing process, and Fraser et al. (2004), which utilized partial differential equations 
of the transport type.

Even if populations were homogeneous, compartmental models are inadequate 
for the very early dynamics of epidemics (Diekmann et al. 2013; Brauer 2017). 
Important fluctuations in initial spread are represented much better by network 
branching processes.

Spatial, age and demographic heterogeneity are real-life conditions that require 
additional model sophistication. The professional standard is set by immense com-
puter programs that account for actions of millions of people individually: their age, 
demographic status and location, with real data on such matters as airline schedules 
from city to city. The programs are stochastic but so large that only a few realiza-
tions can feasibly be produced, even on supercomputers. Halloran et al. (2008), Fer-
guson et al. (2006), German et al. (2006) and Lewis et al. (2007) are examples.

In today’s world, the sophisticated technologies described above are essential. 
But simple models have a place. With minimal time and effort, simple models 
can enable preliminary assessment of a wide range of strategic policy options and 
point the way to more in-depth studies. They can be useful introductory educa-
tional tools for those entering the epidemiology profession. Furthermore, even for 
basic subjects such as isolation and quarantine, a simple model can quantify, with 
a broad brush, effort required to contain an epidemic and clearly demonstrate 
how deleterious delay and noncompliance can be. Finally, it can identify endemic 
equilibria, conditions portending a long-term struggle against the disease.

This article develops and employs such a model.
Section 2 develops the model from first principles of probability as it applies 

to unmitigated spread of an epidemic. Section  3 compares that model to the 
SIR equations and finds an interesting ratio in maximum fraction of population 
infected, which Sect. 4 explores further. Applying first principles of probability, 
Sect. 5 extends the model to include effects of isolation and quarantine. Section 6 
employs the model to (a) determine requirements on isolation and quarantine to 
contain an epidemic, (b) quantify mitigation effectiveness as it depends on when 
intervention begins and (c) measure consequences of efforts falling short. It finds 
that intervention effectiveness is highly sensitive to small changes of effort in a 
critical region. Section 7 extends the model once more to examine endemic dis-
ease equilibria when affected by isolation. Finally Sect.  8 reviews main points 
of the article and summarizes advantages and disadvantages we perceive in this 
model with respect to others in the literature.
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2 � Developing the Basic Probabilistic Model

Let

ŝj(t) = conditional probability that individual j in a population of  N people is 
susceptible to the disease but has not contracted it after time t since its outbreak, 
given the sequence of contacts and times tk , k = 1,… , n̂j(t).
îj(tk) = probability that the person with whom individual j interacted in his or her 
k th interaction since disease outbreak was infected at time of interaction.
c = probability that the disease is transmitted in a single interaction between a 
susceptible-but-well person and an infected one.
n̂j(t) = number of interactions individual j has had with other people by time t.

Then, ŝj(t) is given by the product of the probabilities of the individual not being 
infected on each of his or her n̂j(t) interactions:

We are assuming for simplicity that no one is initially immune.
Equation (1) is a form of the Reed-Frost model. The variables n̂j(t) , ŝj(t) and îj(t) 

are stochastic processes. The number n̂j(t) takes on only integer values, increas-
ing by one at randomly occurring interactions. Any realization of ŝj(t) is constant 
between interactions, where it takes discontinuous steps down. From this, we form a 
deterministic, differentiable function by taking expected values.

Averaging over all possible interactions, the individuals involved and when,

We assume that interaction times follow a homogeneous Poisson process with 
growth rate a , assumed constant. Let X = n̂j(t + Δt) − n̂j(t) . Then X is Poisson dis-
tributed with mean aΔt . We also assume that ij(t) changes little in the small Δt inter-
val. Then we can approximate

Now

(1)ŝj(t) =

n̂j(t)∏
k=1

(1 − cîj(tk)).

sj(t) = E
{
ŝj(t)

}

ij(t) = E
{
îj(t)

}

(2)
sj(t + Δt) = E

⎧
⎪⎨⎪⎩

n̂j(t+Δt)�
k=1

(1 − cîj(tk))

⎫
⎪⎬⎪⎭
≅ E

⎧
⎪⎨⎪⎩

n̂j(t)�
k=1

(1 − cîj(tk))

⎫
⎪⎬⎪⎭
EX

�
(1 − cij(t))

X
�

sj(t + Δt) = sj(t)EX

�
(1 − cij(t))

X
�
.

EX

{
(1 − cij(t))

X
}
= exp(−aΔt)

∞∑
k=0

(1 − cij(t))
k(aΔt)k

k!
= exp(−cij(t)aΔt).
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So

Assuming homogeneity of the population, this becomes

Then

Taking the limit as Δt → 0,

This is the aforementioned mass action law. We have developed a well-known 
deterministic model from a well-known stochastic one. The fundamentals of this 
relationship are discussed in basic texts (e.g., Diekmann et  al. 2013). We have 
included a bare sketch of the derivation to show the probabilistic underpinnings 
of our model. For a detailed rigorous proof, see Kurtz (1981). The product ac is 
often denoted � , and we will follow that custom henceforth.

Next, we must derive an equation for i(t) . Let r(t) be the probability a given 
person has been infected at some time in the epidemic but has been removed via 
recovery or death by time t  . We assume that a person who recovers is perma-
nently immune. To compute r(t) , we begin with the probability distribution

which has probability density �2
R
(t − �) exp(−�R(t − �)) . This says an infected person 

is more likely to be removed at a time 1∕�R after onset of infection than at any other 
time. Equation (5) is the second member of the Erlang family of distributions, which 
is the subset of the gamma family having integer order.

Let p(t) be the probability a given person was infected at some time prior to t 
in the epidemic. Then

The state equation for p is

Also,

sj(t + Δt) = sj(t) exp(−cij(t)aΔt).

(3)s(t + Δt) = s(t) exp(−ci(t)aΔt).

s(t + Δt) − s(t)

Δt
= s(t)

exp(−ci(t)aΔt) − 1

Δt
.

(4)
ds

dt
= −acsi.

(5)
Prob{removal by time t given infection at time �}

= r(t||�) = 1 − (1 + �
R
(t − �)) exp(−�

R
(t − �))

(6)s = 1 − p.

(7)
dp

dt
= �si.

(8)i = p − r
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if we assume that deaths due to the epidemic are not an appreciable fraction of the 
population. It is convenient to say here only that a nonconstant circulating popula-
tion is a complication and to defer further explanation of the need for this assump-
tion to Sect. 5.

From Eq. (5) and definition of p:

Integrating by parts:

Numerical values for r(t) as given by Eq. (10) can be computed most readily by 
the following general process. Anticipating needs later in this paper, we consider 
an equation of the form

Differentiating:

Denote the second term on the right-hand side of Eq.  (12) as ��1 . Then, 
Eq. (12) becomes

Differentiating �1:

Denote the second term on the right-hand side of Eq. (14) as ��2 . Continuing 
in this way

(9)r(t) = ∫
t

0

ṗ(𝜏)(1 − (1 + 𝛾R(t − 𝜏)) exp(−𝛾R(t − 𝜏)))d𝜏.

(10)r(t) = ∫
t

0

p(�)�2
R
(t − �)) exp(−�R(t − �)))d�.

(11)�0(t) = ∫
t

0

(
n∑

m=0

km(t − �)m

)
exp(−�(t − �))�(�)d�.

(12)
d�0

dt
= k0�(t) + ∫

t

0

(
n∑

m=1

mkm(t − �)m−1

)
exp(−�(t − �))�(�)d� − ��0.

(13)
d�0

dt
= k0�(t) + �(�1 − �0).

(14)

d�1

dt
=

(
k1

�

)
�(t) +

1

� ∫
t

0

(
n∑

m=2

m(m − 1)km(t − �)m−2

)
exp(−�(t − �))�(�)d� − ��1.

(15)
d�1

dt
=

(
k1

�

)
�(t) + �(�2 − �1)

(16)
d𝛼m

dt
=

(
m!km

𝜆m

)
𝜉(t) + 𝜆(𝛼m+1 − 𝛼m) (1 < m < n)
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Numerically integrating the simultaneous ordinary differential Eqs. (13), (15), 
(16) and (17) gives numerical values to �0(t) as given by Eq. (11).

Translating Eq. (10) into the general form in Eq. (11) results in the following 
equations for r(t):

Equations  (6), (7), (8), (18) and (19) constitute our basic model, applying to 
spread of an unmitigated epidemic. For simplicity and consistency, we will refer 
to it as the basic probabilistic model, although at this point, as we will see in the 
next section, it differs from the SIR model only in the equation for removal prob-
ability. The name probabilistic model will be more fitting when, using first princi-
ples of probability, we extend it to include isolation and quarantine in Sect. 5 and 
natural population dynamics in Sect. 7.

3 � Comparison with the SIR Model

The SIR equations can be written

(See, e.g., Hethcote 2000.)
It is not difficult to show that the SIR model assumes

and for brevity we omit the proof. Equation (23) is the first member in the Erlang 
family of probability distributions. The probability density for the distribution in 
Eq.  (23) is � exp(−�(t − �)) , which says that an infected person is more likely to 
recover immediately after infection than at any later time. This is unrealistic, as 

(17)
d�n

dt
=

(
n!kn

�n

)
�(t) − ��n.

(18)
dr

dt
= �R(r1 − r)

(19)
dr1

dt
= �R(p − r1).

(20)
ds

dt
= −�si

(21)
di

dt
= �si − �i

(22)
dr

dt
= �i.

(23)Prob {removal by time t given infection at time �} = 1 − exp(−�(t − �))
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discussed, e.g., in Diekmann et al. (2013), so we prefer to use the probability distri-
bution in Eq. (5).

The SIR equations are attractive for their simplicity and utility. Two impor-
tant measures of epidemic severity are (a) s∞ , probability that a person chosen 
at random from the population is susceptible but well at the end of the epidemic 
and (b) iMAX , maximum probability of that person being infected (largest fraction 
of the population infected at any one time) during the epidemic. Derivations of 
the SIR model’s well-known equations for these measures are included here for 
convenience.

Setting di∕dt = 0 in Eq. (21), we find that s = �∕� is the fraction of people sus-
ceptible but well when the number of people infected in the epidemic reaches its 
peak. Using Eqs. (20) and (21), we find that

Integrating:

Setting s = �∕� yields

Setting i = 0 in Eq. (24), we have

Equation (26) applies beyond the SIR model, as we will discuss.
To compare the SIR and the basic probabilistic model quantitatively, we must 

find common ground, setting each model’s parameters so they represent the same 
severity of epidemic. Common ground is found in the basic reproduction number 
R0 .  R0 can be defined as the expected number of cases directly generated by one 
infected person in a population where all other individuals are susceptible to infec-
tion. Mathematically,

For the SIR model, as is well-known and easy to prove:

For the basic probabilistic model:

di

ds
=

di

dt
⋅

dt

ds
=

di∕dt

ds∕dt
= −1 + (�∕�)(1∕s).

(24)i = 1 − s + (�∕�) ln (s).

(25)iMAX = 1 − (�∕�) + (�∕�) ln(�∕�).

(26)s∞ − (�∕�) ln(s∞) = 1.

(27)

R0 = ∫
∞

0

Prob{infected person is in circulation at time t} ⋅ average contact rate at time

t ⋅ Prob{transmitting infection on one interaction at time t}dt

R0 = �∕� .
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contact (interaction) rate at time t = a.
probability of transmitting infection on one interaction at time t = c.
probability that infected person is in circulation at time t = 1 − r(t|0) =
(1 + �

R
t) exp(−�

R
t)

So for the basic probabilistic model,

Therefore, to compare the SIR and basic probabilistic models we set �R = 2�.
Figure  1 graphs s∞ and Fig.  2 graphs iMAX for the two models as a function 

of basic reproduction number. Numerical integration was accomplished with the 
Adams–Moulton algorithm.

There has been interest in the generality of the final size formula, which is 
Eq. (26) with �∕� replaced by R0 . (Final size is defined as 1 − s∞ .) For example, 
Ma and Earn (2006) demonstrate that the formula applies to three SIR variations. 
Figure 1 shows that the final size formula applies as well to the basic probabilistic 
model. In fact, Anderson and Watson (1980) proved that, for SIR-like models, 
removal probabilities given by gamma distributions of any order yield the same 
final size.

Figure  2 shows that iMAX for the probabilistic model can be considerably 
larger than that for the SIR model. Interestingly, to the accuracy of our numerical 

(28)R0 = ac∫
∞

0

(1 + �Rt) exp(−�Rt)dt = 2ac∕�R = 2�∕�R.

Fig. 1   Computing s∞ as a function of basic reproduction number R
0
 . The SIR model and basic probabil-

istic model give the same result
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integration, the ratio of iMAX for the second-order removal distribution is 4/3 that 
for the SIR model as R0 approaches one. This curious result will divert us tempo-
rarily to a mathematical sidebar in the next section. The ratio is not greatly differ-
ent from 4/3 when R0 is much larger; e.g., the ratio is 1.300 when R0 is 2.75.

4 � Mathematical Sidebar

We consider the SIR model with higher-order members of the Erlang family of 
probability distributions for the removal process. That is, we consider equation 
sets of the form

which produce a SIR-like model with removal probability density

(29)

dp

dt
= 𝛽si, s = 1 − p, i = p − x1

dxm

dt
= n𝛾(xm+1 − xm) 1 ≤ m < n

dxn

dt
= n𝛾(p − xn)

Fig. 2   Comparing the basic probabilistic model to the SIR model in computation of   i
MAX

 as a function 
of basic reproduction number R

0
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where t − � is time since onset of infection and 1∕� the average time from infection 
to removal.

We have computed results for n up to and including 5 and found that within the 
accuracy of our numerical integration:

The limit of the ratio of iMAX produced by the gamma distribution of order n to 
that given by Eq. (25) is 2n∕(n + 1) as �∕� goes to one.

We conjecture that this is mathematically true for all integer orders.

5 � Introducing Quarantine and Isolation in the Probabilistic Model

Our objective here is to develop a probabilistic model of quarantine and isolation 
in an epidemic. Section 6 will employ the model to quantify important aspects of 
their effectiveness.

We are modeling a homogeneous population but ought to take into account 
that governments differ and orders to quarantine can come from anywhere within 
the hierarchy of nation, state, county and city. We can do this by assuming that 
the order comes with a probability distribution. Compliance to the order will also 
be distributed and we combine the two events into one process modeled by.

where qA0 is the probability the person will eventually be quarantined and 1∕�A the 
most probable time after epidemic outbreak that he or she enters quarantine. We 
believe that modeling both strength and speed of the process is framework for more 
realistic representation.

Let qAS(t) denote the probability a randomly drawn person is susceptible but 
well and quarantined. Using Eq. (6), we can compute qAS(t) by

We implement Eq. (32) in the ODEs, using Eq. (31), by

(30)f (t − �) =
1

(n − 1)!
(n�)n(t − �)n−1 exp(−n�(t − �))

(31)

Prob{person drawn at random from within the population

is in quarantine at time t after start of the epidemic} =

qA(t) = qA0(1 − (1 + �At) exp(−�At))

(32)qAS(t) = ∫
t

0

q̇A(𝜏)(1 − p(𝜏))d𝜏.
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Equation (33) assumes a susceptible-but-well person once quarantined remains 
so for the duration of the epidemic.

Let s(t) denote the probability a person drawn at random from the population 
at time t  from start of the epidemic is susceptible but well and not quarantined. 
From Eqs. (6) and (32)

Integrating Eq. (32) by parts, Eq. (34) can be rewritten as

which will be useful later on.
In addition to responding to an order, a person may also be removed by the process 

of isolation after becoming infected at time � and recognizing that fact through testing 
or onset of symptoms. Denote by qB(t|� ) the probability of removal by time t via this 
second process, given infection at time � and that the person has not been removed by 
recovery, death or quarantine. We model qB(t|�) as:

where qB0 is the (conditional) probability of a person eventually going into isolation 
on learning of his or her infection and 1∕�B is the (conditionally) most probable time 
the person enters isolation after the infection has occurred. Introducing this process 
will later cause us to amend the definition of qA(t).

Let i(t) denote the probability that a person drawn at random from the population 
has been infected but at time t has not been removed by recovery, death, quarantine or 
isolation. Putting quarantine aside for a moment and recalling Eq. (5),

Integrating by parts

Substituting Eqs. (5) and (36) into the above and doing a little work lead to

where

(33)
dqAS

dt
= qA0�

2
A
t exp(−�At)(1 − p(t)).

(34)s = 1 − p − qAS.

(35)s = (1 − qA)(1 − p) − ∫
t

0

ṗ(𝜏)qA(𝜏)d𝜏,

(36)qB(t|�) = qB0(1 − (1 + �B(t − �)) exp(−�B(t − �))

(37)i(t) = ∫
t

0

ṗ(𝜏)(1 − qB(t|𝜏 ))(1 − r(t|𝜏 ))d𝜏.

i(t) = p(t) − ∫
t

0

p(�)
d

d�

(
(1 − qB(t|�) )(1 − r(t|�)))d�.

(38)i = p − (1 − qB0)r − iB
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Translating Eq. (39) into the general form in Eq. (11) results in the following equa-
tions for iB(t):

We will need to determine the probability qB(t) a person drawn at random from 
the population is in isolation at time t . We assume that only a person who is cur-
rently infectious is subject to isolation. A person goes into isolation based on test-
ing and/or obvious symptoms. Testing and/or disappearance of symptoms should 
also prove recovery. It is undesirable from both public health and individual liberty 
points of view for a recovered (and by assumption therefore immune) person to be 
isolated. Hence, we can describe qB(t) as

where r(t|�) is given by Eq.  (5), qB(t|�) by Eq.  (36), and we will reconsider ṗ(𝜏) 
shortly. Equation (41) can be rewritten as

Integrating by parts, we find that the probability of being put into isolation can be 
written

where iB is given by Eqs.  (40) and r by Eqs.  (18) and (19). Note that substituting 
Eq. (42) into Eq. (38) leads to the simpler and more intuitive

Equation (43) applies when isolation is implemented alone. When quarantine and 
isolation are applied together, denoting the probability of a randomly drawn person 
being infected and in quarantine as qAI:

(39)

iB(t) = qB0 ∫
t

0

p(�)
(
(�2

R
+ �2

B
)(t − �) + �R�B(�R + �B)(t − �)2

)
exp(−(�R + �B)(t − �))d�.

(40)

diB

dt
= (�R + �B)(iB1 − iB)

diB1

dt
=

(
�2
R
+ �2

B

�R + �B

)
qB0p + (�R + �B)(iB2 − iB1)

diB2

dt
=

(
2�R�B

�R + �B

)
qB0p − (�R + �B)iB2.

(41)qB(t) = ∫
t

0

ṗ(𝜏)(1 − r(t|𝜏) )qB(t|𝜏)d𝜏

qB(t) = qB0

(
p − r − ∫

t

0

ṗ(𝜏)(1 + 𝛾R(t − 𝜏))(1 + 𝛾B(t − 𝜏)) exp(−(𝛾R + 𝛾B)(t − 𝜏))d𝜏

)
.

(42)qB = iB − qB0r

(43)i = p − r − qB.

(44)i = p − r − qB − qAI
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where, using Eq. (43),

We implement Eq. (45) in the ODEs as

Integrating by parts in Eq. (45), Eq. (44) can be rewritten as

which, together with Eq. (35), will be useful later on.
There are two comments we need to make at this point. First, Eq.  (44) must 

be followed by a check: If i < 0 then end the integration; the epidemic is over. 
Without this check, computations can run away nonsensically. Second, Eq.  (46) 
informs us that we must amend the definition of qA(t) alongside Eq. (31). It is not 
the probability of a given person being in quarantine at time t  ; it is the condi-
tional probability given that the person has not previously been isolated.

What effect do quarantine and isolation have on the equation for rate of new 
infections, i.e., on the equation for p(t) given by Eq.  (7) when quarantine and 
isolation are absent? First, it is clear we must replace i with i∕(1 − q) where q is 
the probability a person drawn at random from the population is in either isola-
tion or quarantine. (We have not written an equation for q here and will not do 
so. It would require three more ODEs and in the end we will not need to calcu-
late it.) To motivate the replacement, consider again the person-to-person inter-
actions Sect. 2 analyzed. There, i denoted the probability a person one interacts 
with is infected, but it also represented the probability a person drawn from the 
population as a whole is infected. In Sect. 2, s + i + r = 1 . Here, in Sect. 5, i and 
s include the condition that the person is not in isolation or quarantine. What is 
important is the probability of interacting with an infected person within the cir-
culating population. Our analysis has not required us to determine the probability 
a person was removed and not in isolation or quarantine, but if it had, and calling 
that probability rNQ , we would find s + i + rNQ = 1 − q . To make the probabilities 
of compartments of people one interacts with sum to unity, we must divide them 
by 1 − q . Hence, the probability that a person one interacts with is infected is 
i∕(1 − q) . Hethcote et al. (2002) and Li et al. (2018) applied this also in SIR-like 
analyses, with the premise of a constant contact rate, and called �si∕(1 − q) quar-
antine-adjusted incidence. Similar reasoning explains the assumption in Sect. 2 
that deaths due to the epidemic are not an appreciable fraction of the population. 
Without the assumption, Eq. (8) is inconsistent with Eq. (1).

(45)qAI(t) = ∫
t

0

q̇A(𝜏)(p(𝜏) − r(𝜏) − qB(𝜏))d𝜏.

(46)
dqAI

dt
= qA0�

2
A
t exp(−�At)(p(t) − r(t) − qB(t)).

(47)i = (1 − qA)(p − r − qB) + ∫
t

0

qA(𝜏)(ṗ(𝜏) − ṙ(𝜏) − q̇B(𝜏))d𝜏
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It is also clear that no adjustment need be made to s . The equation for rate of 
new infections needs the probability a person is susceptible but well and not in 
isolation or quarantine.

Does the average rate of contacts a , and therefore � , require an adjustment? 
Here the answer is not so clear. We believe there is basis for decision in neither 
probability theory nor biology of disease and we must make a judgment based 
on common sense, which is not easy. What, e.g., is the effect of social distancing 
orders? Hethcote et al. (2002) considered two alternatives. The first, as mentioned 
above, was to leave contact rate unchanged from its value in an unmitigated epi-
demic. The second assumed contact rate is reduced in proportion to density of 
circulating population. We believe that to analyze both here would be unwieldy. 
Either choice could be defended. Leaving contact rate unchanged leads to simpler 
equations and provides bounds on performance. However, it leads to equations 
that we believe undervalue quarantine. Assuming contact rate is reduced in pro-
portion to density of circulating population ascribes, we believe, more appropri-
ate value to quarantine. We reduce contact rate a to a(1 − q) , which modifies � to 
�(1 − q).

In conclusion, the probabilistic model’s equation for rate of new infections in 
an epidemic controlled by isolation and quarantine is

Equations (18), (19), (33), (34), (40), (42), (44), (46) and (48) suffice to com-
pute p and r . Then the measures of epidemic severity, recognizing that we are 
unconcerned here whether the person is “on the street” or not, are computed by 
taking the final value of

and the largest in the time history of

To complete the probabilistic model for quarantine and isolation, we derive 
formulas for reproduction numbers applicable to isolation alone, quarantine 
alone, and isolation and quarantine together. These expressions are an efficient 
means of determining minimum effort needed to contain an epidemic, although 
we will find that containment is achieved only if the processes are begun early 
enough.

For isolation alone, we return to the definition: expected number of cases 
directly generated by one infected person in a population where all others are sus-
ceptible to infection. The infected individual’s interaction with others is unaf-
fected but his or her time in circulation is reduced. Given that the individual was 

(48)
dp

dt
= (�(1 − q))si∕(1 − q) = �si.

(49)sT = 1 − p

(50)iT = p − r.
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infected at time � = 0 , the probability he or she is still infectious and circulating 
at time t  is (1 − qB(t|0))(1− r(t|0 )) . From Eqs. (5), (27) and (36),

We arrive at

where

Recalling

we find

Now R0 = 2�∕�R is the basic reproduction number for the unmitigated epi-
demic. Hence, Eq. (52) can be written

In the next section, ODE results show that setting RB = 1 in Eq. (54) is remarkably 
consistent in predicting the strength ( qB0 ) and speed ( �B ) required to contain an epi-
demic, provided isolation is begun early enough. Section 7 further confirms its validity.

Quarantine is much less likely to be applied alone than is isolation, because of 
its impact on the public, but we consider the possibility here nevertheless.

It is worthwhile to let quarantine reproduction number depend on when quar-
antine is initiated. In the following discussion, we will be anticipating some of 
the numerical results of the next section. If quarantine starts early enough, the 
process can essentially be completed by the time the fraction of infected people 
becomes appreciable and, using Eq. (35), we can write

(51)RB = � ∫
∞

0

(1 − qB(t|0))(1− r(t|0 ))dt

RB = � ∫
∞

0

(1 − qB0 + qB0(1 + �Bt) exp(−�Bt))(1 + �Rt) exp(−�Rt)dt.

(52)RB = �
(
(1 − qB0)(2∕�R) + qB0tB

)

tB = ∫
∞

0

(
1 + (�R + �B)t + �R�Bt

2
)
exp(−(�R + �B)t)dt.

∫
∞

0

xn exp(−x)dx = n∫
∞

0

xn−1 exp(−x)dx,

(53)tB =
2

�R + �B

(
1 +

�R�B

(�R + �B)
2

)
.

(54)RB = R0

[
1 − qB0 + qB0

(
�R

�R + �B

)(
1 +

�R�B

(�R + �B)
2

)]
.
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But p << 1 , so

Similarly, using Eq. (47), with qB = 0,

Then Eq. (48) becomes

which is just the constant (1 − qA0) times the ṗ equation for initial moments of the 
unmitigated epidemic. Hence, the effect of quarantine with an early start is to reduce 
� to (1 − qA0)� . There being no dynamic remaining other than infection and recov-
ery, we know that an epidemic will occur in this case if (1 − qA0)R0 > 1 . Hence, 
denoting the reproduction number of quarantine started early as RAE:

The next section will show that this simple equation is useful when quarantine 
starts early enough.

If quarantine starts late, and we will quantify “early” and “late” in the next sec-
tion, dynamics of quarantine are simultaneous with those of infection and removal. 
In this case, we turn once more to the definition of reproduction number based 
on one infected individual in a population of susceptible but well people. Using 
Eq. (27), we find

A straightforward calculation leads to

where

s = (1 − qA0)(1 − p) − qA0 ∫
t

0

ṗd𝜏

s = (1 − qA0)(1 − p) − qA0p

s = 1 − qA0 − p.

(55)s = 1 − qA0.

(56)
i = (1 − qA0)(p − r) + qA0 ∫

t

0

(ṗ − ṙ)d𝜏

i = (1 − qA0)(p − r) + qA0(p − r)

i = p − r.

(57)ṗ = (1 − qA0)𝛽(p − r)

(58)RAE = R0(1 − qA0).

(59)RAL = � ∫
∞

0

(1 − qA(t))
2(1 − r(t|0 ))dt.

(60)RAL = R0

(
(1 − qA0)

2 + 2(1 − qA0)qA0uAL + q2
A0
vAL

)
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When isolation and quarantine are combined, we again have different formulas 
for early and late start of quarantine. In an early start, A and B processes are uncou-
pled in time and it is easy to see that the reproduction number for isolation and quar-
antine combined is

For the late start, given the forms of RAL and RB above we might expect the com-
bined reproduction number to be in the form

where tB is given by Eq. (53), uAL and vAL by Eqs. (61), and wABL and xABL are to be 
determined. A tedious calculation starting with

confirms the form in Eq. (63) and determines that

For convenience of the reader, we collect and display below the probabilistic 
model for control of an epidemic by isolation and quarantine, with exception of the 
long equations for RABL above.

(61)

uAL =
�R

�R + �A

(
1 +

�R�A

(�R + �A)
2

)

vAL =
�R

�R + 2�A

(
1 +

�A(�A + 2�R)

(�R + 2�A)
2
+

3�2
A
�R

(�R + 2�A)
3

)
.

(62)RABE = (1 − qA0)RB.

(63)

RABL = R0((1 − qA0)
2(1 − qB0) + (1 − qA0)

2qB0(�R∕2)tB + 2(1 − qA0)qA0(1 − qB0)uAL+

2(1 − qA0)qA0qB0wABL + q2
A0
(1 − qB0)vAL + q2

A0
qB0xABL)

(64)RABL = � ∫
∞

0

(1 − qA(t))
2(1 − qB(t|0 ))(1 − r(t|0 ))dt

(65)

w
ABL

=
�
R

�
R
+ �

A
+ �

B

[
1 +

�
R
�
A
+ �

R
�
B
+ �

A
�
B

(�
R
+ �

A
+ �

B
)2

+
3�

R
�
A
�
B

(�
R
+ �

A
+ �

B
)3

]

x
ABL

=
�
R

�
R
+ 2�

A
+ �

B

[
1 +

�2
A
+ 2�

R
�
A
+ 2�

A
�
B
+ �

R
�
B

(�
R
+ 2�

A
+ �

B
)2

+
3�

A
(�

R
�
A
+ 2�

R
�
B
+ �

A
�
B
)

(�
R
+ 2�

A
+ �

B
)3

+
12�

R
�2
A
�
B

(�
R
+ 2�

A
+ �

B
)4

]
.
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(66)

dp

dt
= �si

s = 1 − p − qAS

i = p − r − qB − qAI

dr

dt
= �R(r1 − r)

dr1

dt
= �R(p − r1)

qA = qA0(1 − (1 + �At) exp(−�At))

qB = iB − qB0r

dqAS

dt
= qA0�

2
A
t exp(−�At)(1 − p)

dqAI

dt
= qA0�

2
A
t exp(−�At)(p − r − qB)

diB

dt
= (�R + �B)(iB1 − iB)

diB1

dt
=

(
�2
R
+ �2

B

�R + �B

)
qB0p + (�R + �B)(iB2 − iB1)

diB2

dt
=

(
2�R�B

�R + �B

)
qB0p − (�R + �B)iB2

sT = 1 − p

iT = p − r

R0 = 2�∕�R

RB = R0

[
1 − qB0 + qB0

(
�R

�R + �B

)(
1 +

�R�B

(�R + �B)
2

)]

RAE = R0(1 − qA0)

RAL = R0

[
(1 − qA0)

2 + 2(1 − qA0)qA0uAL + q2
A0
vAL

]

uAL =
�R

�R + �A

(
1 +

�R�A

(�R + �A)
2

)

vAL =
�R

�R + 2�A

(
1 +

�A(�A + 2�R)

(�R + 2�A)
2
+

3�2
A
�R

(�R + 2�A)
3

)

RABE = (1 − qA0)RB

RABL (Eqs. 63 and 65)
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6 � Computing the Effects of Isolation and Quarantine on Epidemic 
Severity

We gauge the effectiveness of control efforts by measuring the improvement in 
sT∞ , the fraction of population not infected during the epidemic, and iTMAX , the 
largest fraction of population infected at any one time. We conduct analysis at 
four levels of epidemic severity, for which the probabilistic model predicts s∞ 
and iMAX as shown in Table 1 when the epidemic is unmitigated. We base the four 
epidemic cases on specific values of s∞ . The unit of time throughout is 2∕�R , the 
average time of removal in an unmitigated epidemic. For numerical integration, 
we employ the Adams–Moulton algorithm.

Figure 3 describes minimum requirements on qB0 and �B to contain an epidemic 
with isolation alone, on condition that the process is initiated sufficiently early.

Table 1   Parameters of 
epidemics for case study and 
their unmitigated measures of 
severity

Epidemic case 
number

R
0
= 2�∕�

R
�
R

s∞ i
MAX

I 1.1886 2 0.7 0.01784
II 1.3861 2 0.5 0.05729
III 1.7198 2 0.3 0.13674
IV 2.5582 2 0.1 0.31578

Fig. 3   Conditional requirements to contain an epidemic by isolation alone
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Figure  3 is based on setting the reproduction number RB in Eq.  (56) equal to 
unity. When values for strength ( qB0 ) and speed ( �B ) from Fig. 3 were input to the 
ODEs and initial condition set at p(0) = 10−7 the resulting sT∞ values were always 
between 0.99953 and 0.99959. When p(0) = 10−3 , those same qB0 and �B values pro-
duced sT∞ ’s varying between 0.95535 and 0.95576, again remarkably consistent but 
a low bar for containment.

All the intervention reproduction numbers we consider here have this property: 
If we (a) find strength and speed combinations that yield the reproduction num-
ber equal to one and (b) input those strength and speed values into the ODEs, the 
resulting sT∞ values cluster closely about one point. For some p(0) that cluster point 
is close enough to unity that the epidemic can be considered contained. As p(0) 
increases, the cluster point decreases.

We can measure the dependence of the cluster point, call it degree of mitigation 
( dM ), on p(0) . Again, in short, dM is the average sT∞ achieved by intervention effort 
that yields its reproduction number equal to one. Figure 4 graphs dM as a function 
of p(0) for each of the intervention reproduction numbers considered here. The sT∞ 
ceiling, 1 − p(0) , is also plotted.

The particular numbers one calculates to create Fig.  4 depend to a degree on 
parameter ranges one considers: on basic reproduction number R0 , speeds �A and �B , 
and initial condition p(0) . In this study, we arbitrarily selected 1.1886 ≤ R0 ≤ 2.5582 

Fig. 4   Degree of mitigation dM for various intervention reproduction numbers as a function of initial 
condition p(0)
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(as shown in Table 1), 1 ≤ �A ≤ 4 , 1 ≤ �B ≤ 4 and 10−7 ≤ p(0) ≤ 10−3 . Within this 
set, for each intervention reproduction number RI in Fig. 4 except RB , we can state 
the following: For each R0 and each specific effort (qA0, qB0, �A, �B) satisfying RI = 1 , 
there exists a z > 1 such that, with these inputs, the ODEs produce

and z is nearly independent of p(0).  Hence, for each RI but RB,

Table  2 lists z for each RI other than RB . Furthermore, our numerical analysis 
shows that, for RB,

where, if expressed as (p(0))k , k = 1∕2 to better than one part in a thousand.
Returning to discussion of requirements, it is simpler to state than to graph 

requirements to contain an epidemic with quarantine alone when the process starts 
early. Setting RAE = 1 in Eq. (58), the minimum qA0 to contain an epidemic is then

RAE says quarantine performance is invariant to �A , while RAL compares �A to 
removal rate �R . The growing dependence on �A is gradual. What is an “early” quar-
antine start?

Equation (68) means that both RAE (Eq. 58) and RAL(Eqs. 60 and 61) are consist-
ent throughout the stated p(0) range. The key factor in deciding which to use is how 
much their sT∞ scatter about their dM . For each intervention reproduction number 
RI , call

where extrema are again taken over the above-defined set at a particular p(0) . We 
find that

RAL is much more accurate everywhere, but we would prefer, if possible, to use the 
much simpler RAE . Scatter in sT∞ on the order of 5 ⋅ 10−6 ( p(0) = 10−7 ) is, when 

(67)sT∞ = 1 − zp(0)

(68)dM = 1 − zp(0).

(69)dM = 1 − 1.39
√
p(0)

(70)qA0 = 1 − 1∕R0.

(71)Max{sT∞} −Min{sT∞} = MI ,

(72)
MAE = 48.4p(0)

MAL = 2.8p(0).

Table 2   Coefficient z in the 
equation dM = 1 − zp(0) , as 
it depends on intervention 
measure

R
I

z

R
AL

3.60
R
ABL

4.38
R
ABE

7.14
R
AE

8.96
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viewed in the absolute, not a problem for practical purposes. Scatter on the order of 
0.05 ( p(0) = 10−3 ) certainly is.

Acknowledging its subjective elements, we offer our opinion that “early” quaran-
tine start ends and “late” start begins at about p(0) = 10−5.

Figure  5 graphs minimum requirements on qA0 and �A to contain an epidemic 
with quarantine alone, based on setting the “late start” reproduction number RAL in 
Eq. (60) equal to unity. Comparing Fig. 5 to Fig. 3, we see that, to contain an epi-
demic of a given severity, quarantine requires less strength and less speed than does 
isolation. (Of course, quarantine has a much greater impact on the public.)

When isolation and quarantine are combined, a pertinent issue is allocation of 
effort between the two. How is burden of performance to be divided? We will lay 
out examples of choices.

Simplicity of the reproduction number formula for isolation combined with quar-
antine started early makes allocation for this case an easy task. Allocation is more 
complicated for late quarantine start, and it is perhaps a more realistic scenario, so 
we devote our attention to this case.

Figures 6 and 7 quantify strength and speed of the two processes needed to con-
tain an epidemic, on condition that the processes start early enough. For brevity, we 
show only results for cases II and III. Figures 6 and 7 are based on setting RABL = 1 , 
using Eqs. (63) and (65).

It goes without saying that on-the-ground realities drive what can be done; prac-
ticalities of implementation are primary. For instance, are means in place for test-
ing and contact tracing necessary for isolation? What is the public’s commitment to 
quarantine? Figures 6 and 7 provide broad-brush quantitative insight into potential 
of the combined measures.

Fig. 5   Conditional requirements to contain an epidemic by quarantine alone
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Fig. 6   Conditional requirements on isolation and quarantine combined to contain epidemic case II

Fig. 7   Conditional requirements on isolation and quarantine combined to contain epidemic case III
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Figures 8 and 9 address consequences of efforts falling short. In these figures, we 
arbitrarily set qA0 = qB0 and �A = �B and called the common values q0 and �0.

Figure 8 plots sT∞ as a function of q0 with �0 as parameter for each of the epi-
demic cases considered, at p(0) = 10−4 . Figure 8 shows that mitigation achieved by 
strength q0 just above a critical value q0C is much greater, though short of contain-
ment, than that achieved by strength just below it. The critical strength is roughly 
two-thirds of the containment requirement derived from RABL = 1 , which we denote 
as q0R . Table  3 compares q0C to q0R for the four epidemic cases, for �0 = 4 and 
p(0) = 10−4.

In Fig. 8 are bold circles marking points where a curve’s abscissa meets a con-
tainment requirement q0R . Notice that the circles cluster at about sT∞ = 0.9995. 
These are but a few of the points that went into calculation of dM for RABL.

For brevity, we omit graphs of quarantine alone and isolation alone in the for-
mat of Fig. 8. We can summarize important aspects of them: The graph for quaran-
tine alone shows discontinuities similar to those in Fig. 8. The graph for isolation 
alone, on the other hand, has smooth, gently sloping curves. The graph of isolation 
alone also shows that, while dM is only 0.98590 at p(0) = 10−4 , plausibly achiev-
able increases in qB0 from  qB0R values can raise sT∞ to much higher levels for epi-
demic cases I and II. In case I, e.g., with �B = 4, increases in qB0 from the qB0R value 
of 0.2678 to 0.320 and 0.420 raise sT∞ to 0.997 and 0.999, respectively. Creating 

Fig. 8   sT∞ as a function of q
0
 for various epidemic severities, with �

0
 as parameter
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graphs in the format of Fig. 8 is probably the best way to find levels of intervention 
effort that achieve desired sT∞ values when dM is too low, i.e., when intervention has 
begun too late.

In Fig. 8, sT∞ is highly sensitive to small changes in q0 . If sT∞ is a continuous 
function of q0 , then for every 𝜀 > 0 there exists a 𝛿 > 0 such that if  ||Δq0|| < 𝛿 then ||ΔsT∞|| < 𝜀 . We conducted numerical experiments at the critical q0 points to quan-
tify this. An example result: for Case III and �0 = 4 , as ||Δq0|| decreased from 10−3 to 
10−6 ΔsT∞ decreased only from 0.24620 to 0.23521. But despite the extremely slow 
convergence, we believe the function is continuous and, in fact, differentiable.

Fig. 9   iTMAX
 as a function of q

0
 for various epidemic severities, with �

0
 as parameter

Table 3   Comparing critical 
value of combined strength q

0
 

to that derived from R
ABL

= 1 , 
when �

0
= 4 and p(0) = 10

−4

Case I Case II Case III Case IV

q
0C

0.066522 0.124518 0.202420 0.338233
q
0R

0.0964 0.1813 0.3008 0.5329
Ratio 0.6900 0.6868 0.6729 0.6347
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As mentioned earlier, we used the Adams–Moulton (A–M) numerical inte-
gration algorithm for this study. To verify that the high sensitivity of sT∞ to 
changes in q0 we see in Fig. 8 is not an artifact of the algorithm, we also used the 
Runge–Kutta (R–K) and backward differentiation formula (BDF) algorithms to 
integrate the ODEs and recreate Fig. 8. We found the same high sensitivity with 
all three algorithms. Furthermore, the difference between  q0C values computed 
by the A–M algorithm and R–K algorithm was less than 6 ⋅ 10−6 , and difference 
between q0C values computed by A–M algorithm and BDF algorithm was less 
than 1.3 ⋅ 10−5 . Differences in computed ΔsT∞ were also minimal.

Figure 9 plots iTMAX as a function of q0 with �0 as parameter for epidemic cases 
III and IV. Discontinuities are again evident, at the same critical values of q0 . The 
figure shows that half measures leave the public facing a still-serious epidemic.

7 � Expanding the Model to Examine Endemic Equilibrium States

Our final objective is to examine endemic equilibrium states. We will calculate 
equilibrium values for the important state variables and examine dynamics of a 
disease coming to equilibrium. We assume that isolation, but not quarantine, is in 
effect. Maintaining quarantine over a significant portion of the population for a very 
extended period is unlikely.

For a model to exhibit an endemic state, it must include the population’s natural 
dynamics: births, deaths and net immigration. It then becomes necessary for us to 
use, instead of probabilities, state variables S(t) , the expected number of people in 
the population susceptible but well at time t ; I(t) , the expected number of people 
infected and not in isolation at time t ; and R(t) , the expected number of people in 
the population who have been infected but have recovered at time t . We continue 
to assume that the number of people who die from the disease is not an appreciable 
fraction of the population. Denote the number of births and net immigrants per unit 
time, assumed constant, as B . Let the probability a person drawn at random from the 
population is dead of natural causes by time t given he or she is alive at time � be

Let the rate of new infections be given by

Then

(73)d(t||�) = 1 − exp(−�D(t − �)) .

(74)PDOT = �
SI

S + I + R
.

(75)

dP

dt
= PDOT

S(t) = S(0)(1 − d(t|0 )) + ∫
t

0

(B − PDOT)(1 − d(t|�))d�



	 D. V. Kalbaugh 

1 3

63  Page 28 of 33

It is convenient to consider R(t) next:

which leads, via Eqs. (11) to (17), to

Next, modifying Eq. (37):

which can be written, in fashion similar to Eq. (38),

where, after again using Eqs. (11) to (17),

With these equations in hand, we can proceed. If the variables S , I and R are all con-
stant, then

where v is a constant. Then, Eqs. (76), (78) and (81) all take the form

(76)
dS

dt
= B − PDOT − �DS.

(77)
R(t) = ∫

t

0

Ṗ(𝜏)r(t|𝜏)(1 − d(t|𝜏))d𝜏

R(t) = ∫
t

0

P(𝜏)
d

dt
(r(t|𝜏)(1 − d(t|𝜏)) )d𝜏

(78)

R = R1 − R2

dR1

dt
= �DP + (�R + �D)(R11 − R1)

dR11

dt
= �RP − (�R + �D)R11

dR2

dt
= �DP − �DR2.

(79)
I(t) = ∫

t

0

Ṗ(𝜏)(1 − r(t||𝜏))(1 − qB(t|𝜏))(1 − d(t|𝜏))d𝜏

I(t) = P(t) − ∫
t

0

P(𝜏)
d

d𝜏

(
(1 − r(t||𝜏))(1 − qB(t|𝜏))(1 − d(t|𝜏)) )d𝜏

(80)I = P − (1 − qB0)R1 − IB

(81)

dIB

dt
= �DqB0P + (�R + �B + �D)(IB1 − IB)

dIB1

dt
=

(
�2
R
+ �2

B
+ �D(�R + �B)

�R + �B + �D

)
qB0P + (�R + �B + �D)(IB2 − IB1)

dIB2

dt
=

(
2�R�B

�R + �B + �D

)
qB0P − (�R + �B + �D)IB2.

(82)
dP

dt
= PDOT = v
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which has solution

Using Eqs.  (74), (76), (78), (80) and (81), we eventually find the steady-state 
values

Given numerical values for the parameters, one could solve for v via Eq.  (74). 
However, it is of more interest to assume 𝛾D << 𝛾R , so Eqs. (84) become

and Eq. (74) becomes

We can then solve for v in closed form and find, with 𝛾D << 𝛽,

where RB is the isolation reproduction number given by Eq.  (54). Note that the 
threshold for an endemic state in an epidemic with isolation is RB > 1 . Although 
the probabilistic model has the added complexities of a second-order removal 

ẋ + 𝜆x = k1t − k2

(83)x =
1

�

(
k1

(
t −

1

�

)
− k2

)
.

(84)

S∗ = (B − v)∕�D

I∗ = v(1 − qB0)

(
1

�R + �D

)(
1 +

�R

�R + �D

)
+ vqB0

(
1

�R + �B + �D

)
⋅

(
1 +

�R + �B

�R + �B + �D
+

2�R�B

(�R + �B + �D)
2

)

R∗ = v

(
1

�D
−

1

�R + �D
−

�R

(�R + �D)
2

)
.

(85)
S∗ = (B − v)∕�D

I∗ = vRB∕�

R∗ = v∕�D

(86)
v = �

(
((B − v)∕�D)(vRB∕�)

(B − v)∕�D + vRB∕� + v∕�D

)

1 =
((B − v)∕�D)RB

(B∕�D) + v(RB∕�)
.

(87)

v = B

(
RB − 1

RB

)

S∗ =

(
B

�D

)(
1

RB

)

I∗ =

(
B

�

)
(RB − 1)

R∗ =

(
B

�D

)(
RB − 1

RB

)
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probability and an isolation process, it has led to the well-known SIR equations for 
the equilibrium state, with RB replacing R0 . (See, e.g., Diekmann et al. 2013.)

How does a disease become endemic? Only under special conditions, it appears. 
The disease must first have been epidemic, to drive the number of susceptible peo-
ple below S∗ . The equilibrium position is at the threshold for herd immunity, when 
the portion of the population immune to the disease suffices to negate an epidemic. 
(See, e.g., Hethcote 2000.) If an incursion of infected people occurs when S > S∗ 
and mitigation is inadequate, an epidemic inevitably follows, driving S past S∗ to the 
S∞ concomitant with the starting point and I to zero. Then S begins a disease-free 
course to the natural capacity B∕�D.

If the disease incursion occurs when S is well below S∗ , the outbreak is relatively 
quickly extinguished and S continues its path to B∕�D . Only if the incursion happens 
as S nears S∗ from below, as in Fig. 10, can the S trajectory be forced into transition 
to its equilibrium value.

Figure 10 pictures dynamics of settling into equilibrium. Here, the natural capac-
ity B∕�D = 107 , �D = 1∕1500 , qB0 = 0.5 , �B = 4 and other values are as in Sect. 6. If 
the average recovery period is 2.6 weeks, then 20 time units equal one year.

Compared to duration of an epidemic, dynamics of settling into equilibrium are 
slow, as is well known. (See, e.g., analysis of the linearized SIR model in Diekmann 
et al. 2013.) For RB = 1.2 , as in Fig. 10, the oscillation period is about 21 years and 
decay time constant about 140 years. For RB = 2 , they are about 9 and 90 years.

Fig. 10   Expected number of people susceptible but well as a function of time as disease settles into 
endemic equilibrium state
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The equilibrium I∗ is small compared to the epidemic IMAX : 78 people for 
RB = 1.2 and 235 for RB = 2 . Transitioning as in Fig. 10, amplitude of oscillations 
in S and R depends on RB and imperceptibly (if at all, given numerical uncertainty) 
on size of the small incursion or its timing (within limits described earlier).

Computed values agree with Eq. (87) to within small fractions of a percent.

8 � Concluding Remarks

We review here main points of this article, summarize how the probabilistic model 
differs from other models in the literature and opine on advantages and disadvan-
tages these differences confer.

Beginning with a small but nontrivial difference, the probabilistic model adopts 
a second-order gamma distribution for removal probability while most other models 
employ one of first order. The first-order distribution is attractive for its simplicity 
but is unrealistic in its time profile. In concert with the mass action law, the second-
order removal distribution predicts an expected maximum fraction of population 
infected at any one time, iMAX , significantly greater than does the first order, e.g., 
more than 30% for R0 < 2.75 . This is consequential for predicting peak stress on 
medical facilities.

Our numerical studies indicate that the limit of the ratio of iMAX produced by the 
gamma distribution of order n to that of order one is 2n∕(n + 1) as R0 goes to one.

Moving to a more significant difference, the probabilistic model incorporates 
two parameters versus one in both isolation and quarantine. We believe that mod-
eling both strength ( qA0 and qB0 ) and speed ( �A and �B ) of these processes is frame-
work for more realistic representation. These parameters are easy to interpret and 
potentially measurable, which should make the model useful in empirical research. 
When quarantine or combined intervention strength is modeled, we discover that 
intervention effectiveness, as measured by either sT∞ or iTMAX , is highly sensitive 
to small changes at a critical value of that strength. The critical value is about two-
thirds of the containment requirement derived from reproduction number. Does this 
accurately model the natural world? If so, knowledge of the phenomenon should be 
valuable.

Another major difference is that our model is founded on first principles of prob-
ability rather than mathematical simplicity. Coefficients such as 2�R�B∕(�R + �B) 
that arise naturally in the probabilistic model have no counterpart in typical SIR-
like models. Note that the coefficient combines parameters from different pro-
cesses. The typical SIR-like model describes transitions with pairs of equations like 
ẋi = −𝛾ijxi + ... and ẋj = 𝛾ijxi + ... , where the rate �ij common to the pair is a param-
eter set by the analyst. Whether basis in probability is an advantage remains to be 
seen. We expect it to represent reality more accurately, but comparison with field 
data is required.

A disadvantage: the ODE equations modeling quarantine are not time-invariant, 
which can be a hindrance, e.g., in stability analysis. We have modeled quarantine as 
time-driven, which we believe is more realistic than event-driven, e.g., removal only 
after tracing from contact with an infectious person.
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We used reproduction numbers to determine requirements on qA0 , qB0 , �A and 
�B to contain epidemics of varying severity, confirmed them with ODE results and 
quantified dependence of intervention effectiveness on when interventions begin. 
We derived expressions for endemic disease equilibria when affected by isolation 
and found familiar formulas, with RB replacing R0 . We examined dynamics of com-
ing to an equilibrium and found that only special conditions permit it.

In sum, assuming a homogeneous population we developed a model based on 
first principles of probability, with eight differential equations, six parameters and 
five reproduction numbers, and quantified important aspects of isolation and quaran-
tine effectiveness in controlling an epidemic.
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