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Abstract

Fibroblast growth factor-23 (FGF23), a bone-produced hormone, plays a critical role in mineral

homeostasis. Human diseases associated with excessive intact circulating FGF23 (iFGF23)

result in hypophosphatemia and low vitamin D hormone in patients with normal kidney function.

In addition, there is accumulating evidence linking FGF23 with inflammation. Based on these

studies and the frequent observation of hypophosphatemia among septic patients, we sought

to elucidate further the relationship between FGF23 and mineral homeostasis in a clinically rel-

evant murine polymicrobial sepsis model. Medium-severity sepsis was induced by cecum liga-

tion puncture (CLP) in adult CD-1 mice of both sexes. Healthy CD-1 mice (without CLP) were

used as controls. Forty-eight hours post-CLP, spontaneous urine was collected, and serum,

organs and bones were sampled at necropsy. Serum iFGF23 increased ~20-fold in CLP com-

pared to control mice. FGF23 protein concentration was increased in the bones, but not in

spleen or liver of CLP mice. Despite the ~20-fold iFGF23 increase, we did not observe any sig-

nificant changes in mineral homeostasis or parathyroid hormone levels in the blood of CLP ani-

mals. Urinary excretion of phosphate, calcium, and sodium remained unchanged in male CLP

mice, whereas female CLP mice exhibited lower urinary calcium excretion, relative to healthy

controls. In line with renal FGF23 resistance, expression of phosphate-, calcium- and sodium-

transporting proteins did not show consistent changes in the kidneys of male and female CLP

mice. Renal expression of the co-receptor αKlotho was downregulated in female, but not in

male CLP mice. In conclusion, our data demonstrate that the dramatic, sex-independent rise in

serum iFGF23 post-CLP was mainly caused by an upregulation of FGF23 secretion in the

bone. Surprisingly, the upsurge in circulating iFGF23 did not alter humoral mineral homeosta-

sis in the acutely septic mice. Hence, the biological function of elevated FGF23 in sepsis

remains unclear and warrants further studies.
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Introduction

Fibroblast growth factor 23 (FGF23) is a 32 kDa glycoprotein mainly synthesized by osteoblast

and osteocytes [1–4] in response to elevated serum phosphate [5–9], calcium [8], vitamin D

[6,10,11] and parathyroid hormone (PTH) [12–16]. FGF23 is indispensable to maintain sys-

temic mineral and vitamin D homeostasis. In renal proximal tubular epithelial cells, FGF23

controls phosphate reabsorption from the urine by downregulating the cell surface expression

of the sodium-phosphate co-transporters type 2a (NaPi2a) and 2c (NaPi2c), thus augmenting

renal phosphate excretion [17–21]. Furthermore, FGF23 suppresses 1α- hydroxylase

(CYP27B1) [17] in proximal renal tubules, the key enzyme for producing the active vitamin D

hormone 1,25(OH)2D3 [22]. In distal renal tubules, FGF23 stimulates calcium reabsorption by

increased trafficking of the epithelial calcium channel TRPV5 (transient receptor potential

vanilloid-5) to the apical plasma membrane [23]. Moreover, FGF23 increases the membrane

abundance of the sodium-chloride co-transporter NCC, one of the key molecules involved in

Na+-reabsorption in the kidney [24].

FGF23 signaling is mediated through the binding of the hormone to the ubiquitously

expressed FGF receptors (FGFR). FGFR1c is considered to be the most important mediator of

FGF23 effects [4,25]. However, FGFR3c and 4 may also be involved in FGF23 signaling in the

kidney [26–28]. Under physiological conditions, the type 1 transmembrane protein αKlotho

[29] serves as an essential co-receptor, allowing FGF23-mediated signal transduction by

enhancing the binding of FGF23 to FGF receptors [25,30–32]. Proteolytic cleavage of full-

length transmembrane Klotho produces the soluble isoform of Klotho (sKlotho) [33–35].

Recent evidence suggests that sKlotho, similar to transmembrane Klotho, functions as co-

receptor for FGF23 signaling [32].

In addition to its regulatory effects on mineral homeostasis, recent studies have uncovered

a new role of FGF23 in the systemic immune response. Several studies identified FGF23 as a

potent stimulator of cytokine production in inflammatory cells such as macrophages, but also

in hepatocytes [9,36,37]. Vice versa, inflammatory stimuli have been shown to elevate FGF23

expression and secretion from the osseous tissue [38–40]. In addition, increased Fgf23 mRNA

expression was also detected in extra osseous-tissues, especially in the spleen in lipopolysaccha-

ride (LPS)-treated mice [36]. In the latter study, Masuda et al. identified activated dendritic

cells and macrophages as source of the LPS-induced rise in splenic FGF23 expression. This

observation was corroborated by Bansal et al. who also attributed the elevation of circulating

Fgf23 in LPS-treated mice to an increase in splenic Fgf23 transcription [41]. A clinical study in

patients suffering from acute kidney injury (AKI) found a positive association between sepsis

severity and FGF23 serum level, underlining the potentially important role of FG23 as a puta-

tive immune-regulatory molecule in sepsis [42].

Sepsis is a life-threatening organ dysfunction caused by a dysregulation in the host response

to an infection [43]. Despite improvements in medical diagnostics and interventions, sepsis

remains a leading cause of death in critically ill patients worldwide [44]. Despite a decline of

in-hospital mortality during recent years, mortality rates persist at unacceptably high levels,

ranging 25–30% in sepsis and up to 50% in septic shock [45]. Reliable, clinically relevant ani-

mal models are of crucial importance to study the heterogeneous and complex pathophysiol-

ogy of sepsis.

In the current study, we used the cecal ligation puncture (CLP) procedure to investigate fur-

ther the role of FGF23 in the pathophysiology of sepsis. CLP is considered the gold standard

[46,47] in sepsis modeling since the resulting polymicrobial sepsis closely recapitulates the fea-

tures of human abdominal sepsis [48,49]. Using this model, we analyzed circulating intact

FGF23 (iFGF23), mineral homeostasis, as well as FGF23 production in the bone, spleen and
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liver of male and female mice. While we found a dramatic increase in circulating iFGF23 in

mice of both sexes after CLP, this change did not translate into major abnormalities of mineral

homeostasis. Interestingly, FGF23 protein expression was upregulated in the bone, but not in

the spleen and liver of septic mice.

Materials and methods

Animals

Three- to six-month-old wild-type CD-1 mice (Harlan) of both sexes were kept at 22–24˚C

with a 12 h/12 h light/dark cycle. Mice were fed a normal mouse chow (Abbed Lab and Vet

Service, Vienna, Austria) and had access to tap water ad libitum. All animal studies were

approved by the Viennese (Austria) legislative committee and were performed in strict accor-

dance with guidelines for animal care and welfare (Animal Use Proposal Permission no:

343130/2013/14).

Ethical statement

To ensure a comprehensive observation, all animals were checked by trained professionals (i.e.

DVMs and/or trained personnel) to identify deteriorating animals and prevent them from suf-

fering. All mice were monitored for clinical signs of illness and their status was evaluated using

our modified mouse clinical assessment scoring system (M-CASS; relying on body tempera-

ture, fur appearance, posture, mobility, alertness, startle, and righting reflex). starting 12 h

post-CLP [50]. Rectal temperature was monitored (Fluke Series II thermometer, Fluke USA)

at least twice daily (or more often whenever a mouse deteriorated). Starting with CLP, all mice

received continuous analgesic treatment (0.05 mg/kg buprenorphine, Bupaq1, Richter

Pharma, Austria) every 6–8 h.

Sepsis model

Animals were subjected to polymicrobial sepsis using the CLP procedure. The surgery was per-

formed under isoflurane anesthesia with perioperative buprenorphine (0.05 mg kg-1) in 1 ml

of Ringer’s solution. In brief, the cecum was tightly ligated below the ileo-cecal valve and was

perforated twice with a 17-gauge needle at its base and apex. This constitutes a mild-to-

medium severity CLP as it produced an approximate mortality of 40% in 3-month-old females

and 70% in 3-month-old males subjected to CLP as second hit after trauma [51]. In the current

study, 23% of animals were euthanized prior to the planned study endpoint at 48h, because

they met the criteria for humane endpoints based on the above-mentioned custom-developed

scoring approach [50].

After repositioning of the cecum, the abdomen was closed with single button sutures and

skin with Histoacryl1 tissue adhesive (B. Braun, Aesculap, Germany). Animals received imi-

penem/cilastatin (25/25 mg kg-1) in Ringer’s solution starting at 2 h post-CLP. For three conse-

cutive days, animals received an additional fluid resuscitation in combination with analgesic

therapy (buprenorphine/imipenem/cilastatin) twice daily, all given subcutaneously.

For the initial time course experiment, 20 μL of blood was collected via facial vein puncture

from each animal as previously described by Weixelbaumer et al. [52], 24 h before CLP (base-

line), as well as 6 h, 24 h, and 48 h after CLP. All samples were immediately diluted 1:10 in PBS

containing EDTA to prevent clotting. After centrifugation 180 μL of plasma was stored at

−80˚C for further analysis.

At necropsy, 48 h post-CLP, approx. 1 ml of blood was collected from vena cava and ani-

mals were euthanized by cervical dislocation. Urine was taken directly from the bladder during
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necropsy and stored at -80˚C. The blood was centrifuged, and serum was stored in -80˚C for

subsequent analysis. Liver, spleen, kidney, and bones were collected during necropsy. Healthy

CD-1 mice of both sexes without any surgery were used as controls.

Biochemical measurements

Serum creatinine, phosphorus, sodium, and calcium, as well as urinary phosphorus, sodium,

and calcium were analyzed using a Cobas c111 analyzer (Roche, Mannheim, Germany). For

the time course experiment, C-terminal FGF23 and iFGF23 in plasma (diluted 1:10) was mea-

sured by ELISA (Immutopics Inc., San Clemente California, USA). For the main experiment

(48 h post-CLP), intact PTH and iFGF23 in serum (for iFGF23 diluted 1:3) were determined

by ELISA (Immutopics Inc., San Clemente California, USA and Kainos Laboratories, Inc.,

Tokyo, Japan, respectively). Absorbance was read using an Enspire 2300 multilabel reader

(PerkinElmer, Massachusetts, USA). In the time course experiment, the detection limit (6 pg/

mL) of the iFGF23 assay (Immutopics Inc., San Clemente California, USA) was assigned to

samples below the detectable range of the assay. Serum cytokine levels were assessed by using

Milliplex1MAP Mouse cytokine/chemokine magnetic Bead Panel Assay (Merck, Darmstadt,

Germany) on a Bio-Plex 200 System (Bio Rad, Hercules, USA).

RNA isolation and quantitative RT-PCR

Snap-frozen kidneys were homogenized, and total RNA was extracted using the TRI Reagent

solution (Applied Bio-systems, Thermo Fischer Scientific, Bedford, USA) and reverse tran-

scribed into cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosys-

tems, Thermo Fischer Scientific, Bedford, USA). Quantitative RT-PCR was performed on a

qTOWER3 84 (Analytic Jena, Jena, Germany) using EvaGreen HOT FIREPol1 EvaGreen1

qPCR Mix Plus (Solis BioDyne, Tartu, Estonia). A melting curve analysis was done for all

assays. Primer sequences are available on request. Expression of target genes was normalized

to the expression of the housekeeping genes low density lipoprotein receptor-related protein
associated protein (LRPAP1) and death-associated protein-3 (DAP3).

Total cell membrane isolation

Whole mouse kidneys were homogenized in 20 mM Tris (pH 7.4/HCl), 5 mM MgCl2, 5 mM

NaH2PO4, 1 mM ethylenediamine tetra-acetic acid (EDTA, pH 8.0/NaOH), 80 mM surcrose

in the presence of protease inhibitors (cOmplete™ ULTRA Tablets, Mini, EDTA-free, EASY-

pack, Roche, Mannheim, Germany). After sonication, samples were centrifuged for 15 min at

4,000 g. Subsequently, supernatants were centrifuged for an additional 30 min at 16.000 g. Pel-

lets were dissolved in RIPA lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%

Triton X-100, 1% sodium deoxycholate, 0.1% SDS) and stored at -80˚C until use.

Extraction, measurement and normalization of FGF23 protein from tissue

Femora were harvested during necropsy and bone marrow was removed by brief centrifuga-

tion. Bones were snap-frozen in liquid nitrogen and kept at -80˚C until use. Bone protein was

extracted as described previously [53]. In brief, bones were incubated overnight in 1.2 M HCl

with moderate agitation at 4˚ C. Subsequently, bones were incubated for 72 h in 6 M guanidi-

nium-HCl at 4˚C while shaking. The supernatant of the latest extraction fraction was precipi-

tated with 100% EtOH, washed with 75% EtOH, and the protein pellet was resuspended in

RIPA lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1%

sodium deoxycholate, 0.1% SDS).
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At necropsy, the liver and spleen were harvested, shock-frozen in liquid nitrogen and stored

at -80˚C until further analysis. Frozen organs were homogenized in RIPA lysis buffer, and

used for analysis. All solutions for homogenizing and protein extraction were supplemented

with protease inhibitors (cOmplete™ ULTRA Tablets, Mini, EDTA-free, EASYpack, Roche,

Mannheim, Germany). Bone and soft tissue lysates were used to quantify intact FGF23

(iFGF23) protein levels with the help of an ELISA Kit (Kainos Laboratories, Inc., Tokyo,

Japan). Prior experiments were conducted to verify the suitability of the lysates for ELISA mea-

surements. To overcome the inhibitory effects of the buffer components, lysates were diluted

with the ELISA Kit internal standard 1 (0 pg/ml iFGF23) before being used in the ELISA. The

iFGF23 levels were normalized to the total protein amount of each sample which was deter-

mined using Pierce™ BCA Protein Assay Kit (Thermo Fischer Scientific, Waltham, USA).

Western blot

Total cell membrane protein samples were solubilized in Laemmli buffer and heated for 10

min at 97˚C. Forty μg of protein/well were electrophoretically separated on a 10% polyacryl-

amide gel, and transferred to a PVDF membrane (GE healthcare, Chicago, USA). Consistent

protein transfer was confirmed by Ponceau S staining. The membranes were blocked with 5%

(w/v) non-fat dried milk, and incubated with gentle agitation at 4˚C with the primary antibod-

ies dissolved in 2% (w/v) bovine serum albumin (BSA, Sigma Aldrich/Merck KGaA, Darm-

stadt, Germany). As primary antibodies, we used monoclonal mouse anti-TRPV5 (1:1,000, sc-

398345, Santa Cruz Biotechnology Inc., Dallas, USA), polyclonal sheep anti-NCC (1:2,000,

produced in house by Dario R. Alessi, University of Dundee, Dundee, UK), monoclonal

mouse anti-NaPi2a (1:1,000, NBP2-42216, Novus Biologicals, Centennial, USA), monoclonal

rat anti-human Klotho (1:500, KO603, Transgenic Inc., Fukuoka-shi, Japan), monoclonal

mouse anti-GAPDH (1:500, MAB374, Merck KGaA, Darmstadt, Germany), and monoclonal

mouse anti-β-actin (1:5,000, A5441, Sigma Aldrich/Merck KGaA, Darmstadt, Germany).

Membranes which served as negative controls for the secondary antibody were incubated with

BSA instead of the primary antibody. After washing, membranes were treated with the horse-

radish peroxidase-linked secondary antibodies diluted in 2.5% (w/v) non-fat dried milk for 1 h

at room temperature. Specific binding was visualized by the enhanced chemiluminescence

(ECL) substrate (Bio Rad, Hercules, USA). Images were captured using the Chemi Doc-It 600

Image System (UVP/Analytik Jena AG, Jena, Germany). Intensity of the protein bands was

quantified by using Image Quant 5.0 software (Molecular Dynamics). The expression levels

were normalized to β-actin expression. Each sample was used on two independent gels/mem-

branes to create two technical replicates. Results from both replicates were averaged for further

data analysis.

Statistics

All data represent the mean ± standard deviation of the mean (SD). All data sets were tested

for normality and distribution of variance prior to analysis. In the time course experiment, a

mixed model approach with Geisser-Greenhouse correction was conducted followed by Tukey

post hoc test to assess the differences in plasma concentrations of iFGF23, C-terminal FGF23,

and the iFGF23/C-terminal FGF23 ratio versus baseline within each sex. In the main experi-

ment, two-way analysis of variance (ANOVA) was used to assess the influence of sex and of

CLP, as well as their two-way interactions. In data sets showing a significant CLP effect in two-

way ANOVA, individual group comparisons (CLP vs. healthy control) were performed using

Student’s t-test with Welch correction. Statistical analyses were performed using Prism 7 and
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Prism 8 (GraphPad Software, San Diego, USA) and SPSS Statistics 25 (IBM Corp., Armonk,

NY). Values of p< 0.05 were considered statistically significant.

Results

Sepsis increases circulating cytokine levels in both sexes

To confirm a systemic inflammatory response in CLP animals, we first examined serum levels

of the inflammatory cytokines/chemokines interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis

factor-α (TNF-α), and keratinocyte-derived chemokine/chemokine ligand-1 (KC/CXCL1) in

control and CLP mice of both sexes (Table 1). As expected, CLP mice exhibited a robust

release of inflammatory mediators; e.g., serum KC/CXCL1 was ~60-fold higher in male and

female CLP mice, relative to healthy controls, 48 h post-CLP. All other pro-inflammatory cyto-

kines also tended to be elevated but due to the high variance within the CLP groups these

increases did not reach statistical significance.

Sepsis-induced elevation of serum intact FGF23 is associated with an

upregulated FGF23 expression in the bone but not in other tissues

To determine the optimal time point for subsequent experiments, we first conducted a time

course study evaluating the plasma concentrations of C-terminal and iFGF23 in mice of both

sexes after CLP (Fig 1A and 1B). In both sexes, CLP induced a rapid and distinct increase in C-

terminal FGF23 which was followed by a more delayed rise in iFG23 plasma levels. Within 6 h

post-CLP, the ratio of intact to C-terminal FGF23 dropped by ~80–90% in mice of both sexes

(Fig 1). Based on these data, we performed all subsequent experiments at the 48 h time point.

When we measured iFGF23 serum concentration using a different assay (Kainos) com-

pared with Fig 1 (Immutopics) in samples that were less diluted, we found the serum iFGF23

level (Fig 2) ~20-fold upregulated in CLP mice of both sexes vs. healthy controls, 48 h after

CLP.

Prior studies [9,36,41] identified the spleen, more specifically resident macrophages and

dendritic cells, as the major FGF23 expression site after an inflammatory stimulus. Addition-

ally, Masuda et al. reported an increased hepatic Fgf23 expression 2 h after the injection of LPS

in mice [36]. Furthermore, a clinical study with patients suffering from autosomal dominant

polycystic kidney disease (ADPKD)—the most common cause of genetic CKD—showed a sig-

nificantly elevated expression of hepatic FGF23, accompanied by increased circulating FGF23

[54]. To identify the major source of increased circulating FGF23 in our CLP model, we exam-

ined the abundance of intact FGF23 in spleen, liver, and bone (Fig 2). Due to the very low

Table 1. Inflammatory markers in the serum of control and CLP mice, 48 h post-CLP.

Parameter (pg/ml) ♀Control n = 4 ♀CLP n = 12 ♂Control n = 4 ♂CLP n = 14 Two-way ANOVA

Sex CLP Int.

IL-1β 13.58 ± 5.12 17.39 ± 8.14 10.98 ± 4.87 27.39 + 15.48 � ns p = 0.038 ns

IL-6 6.51 ± 3.42 1943 ± 4333 3.96 ± 2.13 5905 ± 9251 ns ns ns

IL-10 6.62 ± 2.24 432.2 ± 873.6 9.77 ± 2.56 1247 ± 1885 ns ns ns

TNF-α 7.65 ± 2.72 34.6 ± 34.30 7.48 ± 3.00 124.9 ± 215.42 ns ns ns

KC/CXCL1 75.73 ± 53.92 5229 ± 7035� 114 ± 20.81 6893 ± 8636 � ns p = 0.047 ns

Data are means ± SD. IL, interleukin; KC, keratinocyte-derived chemokine; CXCL1, chemokine ligand-1; TNF, tumor necrosis factor; Int., interaction between sex and

CLP.

�, P<0.05 vs. healthy controls within same sex, Student’s t-test with Welch corrections.

https://doi.org/10.1371/journal.pone.0251317.t001
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abundance of FGF23 protein, we were unable to quantify splenic and hepatic FGF23 protein

expression, using western blotting. Therefore, we measured splenic, hepatic and bone iFGF23

protein concentrations by ELISA (Fig 3).

Fig 1. CLP-induced increase in plasma C-terminal and intact FGF23 levels. Plasma C-terminal and iFGF23 concentration in females (A) and males (B)

increased post-CLP relative to baseline (BL; 24 h prior CLP). Each bar is the mean ± SD of 5–15 mice per group. Each symbol represents an individual sample.

Mixed model approach with Geisser-Greenhouse correction, followed byTukey post hoc test.�, P<0.05 vs. baseline within same sex.

https://doi.org/10.1371/journal.pone.0251317.g001

Fig 2. CLP-induced increase in serum iFGF23 levels, 48 h after surgery. Serum iFGF23 concentration increased

profoundly in CLP mice of both sexes, relative to healthy controls. Each bar is the mean ± SD of 4–6 mice per group.

Each symbol represents an individual sample. Inset shows results from two-way ANOVA. �, P<0.05 vs. healthy

controls within same sex, Student’s t-test with Welch corrections.

https://doi.org/10.1371/journal.pone.0251317.g002
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Interestingly, we did not observe significant differences in splenic (Fig 3A) and hepatic (Fig

3B) iFGF23 protein concentrations between control and CLP animals. In contrast, iFGF23

protein expression was markedly increased in the bones of CLP mice (Fig 3C). Hence, the

bone appears to be the major source of increased circulating iFGF23 in CLP mice. Although

FGF23 expression in the healthy kidney appears to be very low [17,55,56], increased renal

FGF23 expression has been noted in several models of kidney disease [55,57,58]. Therefore, we

quantified Fgf23 mRNA expression in the kidney by qRT-PCR. However, Fgf23 mRNA expres-

sion was undetectable in all groups of mice, showing that CLP does not upregulate Fgf23
mRNA expression in the kidney (data not shown).

Circulating PTH and mineral homeostasis remain largely unchanged in

septic mice

Several studies reported that PTH acts as a stimulator of skeletal FGF23 synthesis in rodents

[12–16]. In addition, a transient increase of serum PTH has been reported after administration

of LPS, heat-killed Brucella abortus, and IL-1β in mice [40,59]. We measured serum PTH to

examine its potential role as a stimulator of FGF23 secretion in septic mice. However, we

observed similar PTH levels in all groups (Fig 4A).

Sepsis frequently leads to single and/or multiorgan dysfunction [60], and the kidney is one

of the organs which is affected at the earliest [61,62]. To evaluate kidney function, we analyzed

serum creatinine level (Fig 4B). Consistent with a declining kidney function, we found

increased serum creatinine in CLP mice of both sexes. This finding is in agreement with previ-

ous studies showing elevated circulating creatinine levels already 24 h after CLP [63–65].

Despite the profound changes in circulating FGF23, serum phosphate, sodium, and calcium

concentrations remained unchanged in CLP mice (Fig 4C). Similarly, with the exception of

reduced urinary calcium excretion in female CLP mice (baseline vs. CLP, p = 0.056), renal

excretion of phosphate and sodium was comparable in control and CLP mice (Fig 4D).

Renal ion-transporting molecules are not regulated in a consistent manner

in septic mice

To further explore the puzzling finding that mineral homeostasis remained largely unchanged

in CLP mice despite a distinct elevation in circulating iFGF23, we investigated typical target

molecules known to be regulated by FGF23 in the kidney. To this end, we isolated membrane

fractions from kidney homogenates and quantified the abundance of mineral-transporting

proteins by western blotting. In female CLP mice, renal expression of NaPi2a and NCC was

similar to healthy controls, whereas the expression of TRPV5 and Klotho was reduced, 48 h

post-CLP (Fig 5A). In male CLP mice, NaPi2a, NCC, TRPV5 and Klotho protein expression

remained unchanged relative to control mice (Fig 5B).

FGF23 is known to regulate vitamin D metabolism in the kidney [17,56]. Therefore, we

examined the mRNA expression of renal 1α-hydroxylase (Fig 6). In female CLP mice, renal

1α-hydroxylase remained unchanged, relative to controls. Although male CLP mice tended to

have higher expression of renal 1α-hydroxylase than healthy controls, this difference did not

reach statistical significance.

Fig 3. iFGF23 protein expression in spleen, liver and bone after CLP. (A) Splenic, (B) hepatic and (C) bony iFGF23

protein expression measured in lysates from spleen, liver and bone by ELISA, 48 h post-surgery (n = 4–5 per group).

Data are mean ± SD. Each symbol represents an individual sample. Insets show results from two-way ANOVA. �,

P< 0.05 vs. healthy controls within same sex by Student’s t-test with Welch correction.

https://doi.org/10.1371/journal.pone.0251317.g003
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Discussion

The present study demonstrated for the first time that CLP-induced sepsis causes a profound

increase in circulating intact FGF23 in mice. A number of studies reported that inflammatory

Fig 4. Circulating PTH concentration, serum creatinine, and mineral homeostasis in septic CLP mice. (A) Serum PTH level (healthy

control female and male: n = 4 each; CLP female: n = 8, CLP male: n = 14), (B) serum creatinine (Crea), (C) serum phosphorus (Pi), sodium

(Na) and calcium (Ca) levels (n = 4–9), (D) urinary phosphorus/creatinine (Ur P/Crea), sodium/creatinine (Ur Na/Crea) and calcium/

creatinine (Ur Ca/Crea) (healthy control female and male: n = 4 each, CLP female: n = 11, CLP male: n = 22–23) in control and CLP mice, 48 h

post-surgery. Bars are mean ± SD. Each symbol represents an individual sample. Inset shows results from two-way ANOVA. �, P<0.05 vs.

healthy controls within same sex, Student’s t-test with Welch correction.

https://doi.org/10.1371/journal.pone.0251317.g004
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stimuli induce a rise in serum FGF23 [40,41,59,66,67]. However, these studies injected either

cytokines, inactivated bacteria, or LPS into mice to cause an inflammatory response. The use

of LPS to investigate altered physiology during endotoxemia has been a common practice.

However, LPS is a classical TLR-4 agonist and induces a rapid and transient immune response

Fig 5. Effects of CLP-induced sepsis on the renal expression of phosphate-, sodium- and calcium-transporting proteins and of Klotho. Quantification

and original western blot images of Napi2a, NCC, TRPV5 and Klotho protein expression detected in renal total membrane fractions of (A) female and (B)

male healthy control and CLP mice, 48 h post-surgery. Each bar represents the mean ± SD of 4–5 mice per experimental group. Each symbol represents the

mean of an individual sample measured on two membranes. �, P<0.05 vs. healthy control, Student’s t-test with Welch correction.

https://doi.org/10.1371/journal.pone.0251317.g005
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[48,68,69], which neither reflects the much milder and protracted elevation of circulating cyto-

kines nor the hemodynamic changes occurring in human sepsis [46,70–75]. Therefore, CLP

has been considered as a more appropriate recapitulation [46,47] of human abdominal sepsis

including its general pathophysiology and the progressive release of cytokines in particular

[48,49,69,71,76–78].

We observed that CLP-induced sepsis provoked a ~20-fold increase in circulating iFGF23

in both male and female mice, 48 h post-CLP. In agreement with the transient nature of LPS-

induced endotoxemia, an FGF23 up-regulation of such magnitude and duration has never

been reported in LPS-induced endotoxemia [36,41,59]. Our initial time-course experiment

showed that the upregulation of circulating iFGF23 is preceded by a rapid increase in cleaved

FGF23 within 6 h after CLP. The ratio of circulating intact to C-terminal FGF23, the latter

encompassing both intact and cleaved FGF23, dropped precipitously within 6 h post-CLP, and

remained suppressed until the 48 h time point. The latter finding suggests that CLP is associ-

ated with an increased cleavage of FGF23 and underscores the importance of measuring intact

FGF23 at the protein level. The mechanisms stimulating cleavage of FGF23 in CLP mice are

currently unknown and require further study.

In LPS injection models, the spleen has been identified as predominant site of FGF23

expression [36,41]. In contrast, David et al. postulated the bone as the main source for FGF23

synthesis during acute and chronic inflammation induced by heat-killed Brucella abortus or by

IL-1β injection [40]. We found an upregulation of FGF23 protein only in the bone, but not in

the spleen or liver of male and female CLP mice, 48 h post-CLP. In addition, Fgf23 mRNA

expression remained undetectable in the kidneys of male and female control and CLP mice.

Thus, our data support the notion that the bone is the major site of FGF23 expression in CLP-

induced polymicrobial sepsis.

Several clinical and experimental studies have shown a strong impact of sex and sex steroids

on immune functions during physiological and pathophysiological conditions including sepsis

[79–84]. Male sex and age [85] are the key risk factors for the development of sepsis [86–89].

In addition, males exhibit a higher morbidity and mortality from sepsis compared to females

Fig 6. CLP-induced sepsis does not alter renal 1α-hydroxylase mRNA expression. Relative renal mRNA expression

of 1α-hydroxylase measured by qRT-PCR in CLP mice (n = 5 female and male mice each) and healthy controls (n = 4

female and male mice each), 48 h post-surgery. Each bar represents the mean ± SD of 4–5 mice per experimental

group. Each data point represents an individual animal.

https://doi.org/10.1371/journal.pone.0251317.g006
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[90–94]. However, in our experiments, we did not observe major sex effects on cytokine or cir-

culating iFGF23 levels in CLP mice.

FGF23 is known to be a major regulator of mineral homeostasis. FGF23 downregulates api-

cal membrane expression of the phosphate transporters Napi2a and NaPi2c in proximal renal

tubules [17–21], and upregulates the sodium- and calcium transporting molecules NCC [24]

and TRPV5 in distal tubules [23]. However, despite the very high serum FGF23 level in CLP

mice, renal NaPi2a expression remained unchanged in both sexes. In contrast, Ikeda et al. [59]

as well as Meurer & Höcherl [67] found a downregulation of renal NaPi2a protein expression

in LPS-treated mice, together with increased PTH secretion. David et al. [40] observed an

increase of serum PTH levels in acute inflammation experiments. However, chronic inflam-

mation led to a reduced PTH secretion. A cytokine-dependent regulation of PTH secretion

during inflammation has been reported in several studies [95,96]. Therefore, it is possible that

a rapid, pronounced cytokine release such as seen after LPS injection triggers a different PTH

secretion pattern compared with CLP. In the current study, we did not observe changes in

serum PTH levels, 48 h after CLP. It is conceivable that the decreased renal expression of

NaPi2a in LPS-treated mice observed in the aforementioned studies are mainly due to

increased PTH secretion rather than the elevated iFGF23.

In agreement with the unchanged serum concentration of sodium, CLP mice of both sexes

did not show altered renal NCC protein expression compared to control mice in our study.

Similarly, Olesen et al. [97] found unchanged expression of NCC in LPS-treated rats. However,

the latter authors observed reduced serum sodium levels and increased urinary sodium excre-

tion, which was accompanied by a downregulation of other sodium transporters across differ-

ent renal compartments.

In our study, CLP mice, regardless of sex, exhibited an unchanged total serum calcium con-

centration, relative to healthy controls. In addition, CLP females but not males showed a

reduced urinary calcium excretion, compared to healthy control mice. The renal expression of

TRPV5 failed to provide an explanation for these findings, given that we observed a downregu-

lation of TRPV5 abundance in septic females, but unchanged expression in septic males.

Therefore, it is likely that other factors over-compensated for the reduced TRPV5 expression

in female mice. A possible candidate might be TRPV6, which we did not measure. Meurer &

Höcherl [67] have shown that LPS directly upregulates TRPV5 and 6 expression in primary

renal epithelial cells. Therefore, it is possible that CLP differentially regulates TRPV5 and 6 in

female mice. In addition, it is well known that the open probability of TRPV5 is regulated by

endocrine and paracrine factors [98–100], so that the protein abundance not necessarily

reflects the functional activity.

An important question in this context is why the increased circulating FGF23 did not

downregulate NaPi2a, and failed to upregulate NCC and TRPV5 expression in the kidney of

septic mice. In other words, why was sepsis associated with an apparent renal FGF23 resis-

tance? It has been recently shown that LPS injection resulted in a ~90% reduction in renal

function as measured by creatinine clearance in mice [67]. Hence, sepsis-induced acute kidney

injury might render the kidney FGF23 resistant. In the current study, we could not assess cre-

atinine clearance, because we collected only spontaneous urine. However, CLP was associated

with increased serum creatinine, reflecting the CLP-induced decline in kidney function.

FGF23 signaling requires the presence of the co-receptor Klotho [25,30–32] and there is con-

vincing evidence that renal Klotho protein expression is reduced in septic patients with AKI

[101], in septic foals [102], and in experimental sepsis models [101,103–106]. Similarly, we

found diminished renal Klotho expression in female CLP mice. However, male CLP mice did

not generally exhibit a significant decrease in Klotho protein abundance. Other studies using

male mice showed a reduction of Klotho expression after inflammatory stimuli [101,106–108].
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Therefore, we do not have a good explanation for the sex difference in Klotho expression in

CLP mice. Nevertheless, reduced Klotho protein expression is one of the most likely scenarios

for the renal FGF23 resistance observed in septic patients and experimental sepsis models.

In conclusion, our data demonstrate a robust increase in circulating iFGF23 in mice of both

sexes in the acute phase of polymicrobial sepsis. The bone appears to be the major source of

FGF23 in acute CLP sepsis. Because mineral homeostasis did not show major alterations in

CLP mice, the biological function of the high circulating iFGF23 in acute sepsis remains

unclear. Several lines of evidence support the role of FGF23 as an immune-regulatory mole-

cule. It has been shown that FGF23 is able to regulate cytokine production in macrophages

[9,36] and hepatocytes [37]. Furthermore, a transcriptome analysis in CKD mice revealed sev-

eral FGF23-responsive pro-inflammatory pathways in the kidney, including TGF-β, TNF-α,

and IL-1β signaling pathways [109]. Therefore, based on current knowledge [110,111], iFGF23

may serve as a positive feedback signal between various inflammatory processes and the bone.

This warrants further studies aimed at delineating the pathophysiological role of FGF23 in

sepsis.
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80. Knöferl MW, Angele MK, Diodato M d., Schwacha MG, Ayala A, Cioffi WG, et al. Female Sex Hor-

mones Regulate Macrophage Function After Trauma-Hemorrhage and Prevent Increased Death Rate

From Subsequent Sepsis. Ann Surg. 2002; 235(1):105–12. https://doi.org/10.1097/00000658-

200201000-00014 PMID: 11753049.

81. Angele MK, Frantz MC, Chaudry IH. Gender and sex hormones influence the response to trauma and

sepsis: potential therapeutic approaches. Clinics. 2006; 61(5). https://doi.org/10.1590/s1807-

59322006000500017 PMID: 17072448

82. Christaki E, Opal SM, Keith JC, Kessinian N, Palardy JE, Parejo NA, et al. Estrogen receptor beta

agonism increases survival in experimentally induced sepsis and ameliorates the genomic sepsis sig-

nature: a pharmacogenomic study. J Infect Dis. 2010; 201(8):1250–7. https://doi.org/10.1086/651276

PMID: 20205571.

83. Sakiani S, Olsen NJ, Kovacs WJ. Gonadal steroids and humoral immunity. Nat Rev Endocrinol. 2013;

9(1):56–62. https://doi.org/10.1038/nrendo.2012.206 PMID: 23183675.

84. Angele MK, Pratschke S, Hubbard WJ, Chaudry IH. Gender differences in sepsis: cardiovascular and

immunological aspects. Virulence. 2014; 5(1):12–9. https://doi.org/10.4161/viru.26982 PMID:

24193307.

85. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis*.

Crit Care Med. 2006; 34(1):15–21. https://doi.org/10.1097/01.ccm.0000194535.82812.ba PMID:

16374151

86. Oberholzer A, Keel M, Zellweger R, Steckholzer U, Trentz O, Ertel W. Incidence of septic complica-

tions and multiple organ failure in severely injured patients is sex specific. J Trauma. 2000; 48(5):932–

7. https://doi.org/10.1097/00005373-200005000-00019 PMID: 10823539.

87. Maio A de, Torres MB, Reeves RH. Genetic determinants influencing the response to injury, inflamma-

tion, and sepsis. Shock. 2005; 23(1):11–7. https://doi.org/10.1097/01.shk.0000144134.03598.c5

PMID: 15614125.

88. Frink M, Pape H-C, van Griensven M, Krettek C, Chaudry IH, Hildebrand F. Influence of sex and age

on mods and cytokines after multiple injuries. Shock. 2007; 27(2):151–6. https://doi.org/10.1097/01.

shk.0000239767.64786.de PMID: 17224789.

89. Kisat M, Villegas CV, Onguti S, Zafar SN, Latif A, Efron DT, et al. Predictors of sepsis in moderately

severely injured patients: an analysis of the National Trauma Data Bank. Surg Infect (Larchmt). 2013;

14(1):62–8. https://doi.org/10.1089/sur.2012.009 PMID: 23461696.

90. Zellweger R, Wichmann MW, Ayala A, Stein S, DeMaso CM, Chaudry IH. Females in proestrus state

maintain splenic immune functions and tolerate sepsis better than males. Crit Care Med. 1997; 25

(1):106–10. https://doi.org/10.1097/00003246-199701000-00021 PMID: 8989185.
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