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Auditory attention is an important cognitive function used to separate relevant from
irrelevant auditory information. However, most findings on attentional selection have
been obtained in highly controlled laboratory settings using bulky recording setups
and unnaturalistic stimuli. Recent advances in electroencephalography (EEG) facilitate
the measurement of brain activity outside the laboratory, and around-the-ear sensors
such as the cEEGrid promise unobtrusive acquisition. In parallel, methods such as
speech envelope tracking, intersubject correlations and spectral entropy measures
emerged which allow us to study attentional effects in the neural processing of natural,
continuous auditory scenes. In the current study, we investigated whether these three
attentional measures can be reliably obtained when using around-the-ear EEG. To
this end, we analyzed the cEEGrid data of 36 participants who attended to one
of two simultaneously presented speech streams. Speech envelope tracking results
confirmed a reliable identification of the attended speaker from cEEGrid data. The
accuracies in identifying the attended speaker increased when fitting the classification
model to the individual. Artifact correction of the cEEGrid data with artifact subspace
reconstruction did not increase the classification accuracy. Intersubject correlations
were higher for those participants attending to the same speech stream than for
those attending to different speech streams, replicating previously obtained results
with high-density cap-EEG. We also found that spectral entropy decreased over
time, possibly reflecting the decrease in the listener’s level of attention. Overall, these
results support the idea of using ear-EEG measurements to unobtrusively monitor
auditory attention to continuous speech. This knowledge may help to develop assistive
devices that support listeners separating relevant from irrelevant information in complex
auditory environments.

Keywords: around-the-ear EEG, cEEGrid, auditory attention, speech envelope tracking, intersubject correlation
(ISC), spectral entropy, auditory attention decoding (AAD)
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INTRODUCTION

In everyday complex auditory scenes, one fundamental question
to be answered is how the brain manages to select relevant
and neglect irrelevant information. Although many studies on
auditory attention have contributed to this question, most of
them have been conducted in highly controlled laboratory
settings using discrete and artificial stimuli. Two recent advances
have opened up the possibility of measuring brain responses
to natural stimuli in everyday life. First, the development of
small and portable measurement devices has made it possible
to measure brain activity outside of the lab (e.g., Debener et al.,
2012). Second, methods have been developed to analyze the
neural processing of natural and continuous stimuli such as
speech (Hamilton and Huth, 2020). Here, we investigate the
potential of combining these two developments to eventually
measure attentional processes unobtrusively.

Electroencephalography (EEG) is a popular method to non-
invasively measure human brain electrical activity by placing
electrodes on the scalp. Traditional EEG as used in most
laboratories require caps or nets to position electrodes on the
scalp, which is not feasible for EEG acquisition in everyday
life (Bleichner and Debener, 2017). For unobtrusive EEG
acquisition, small and near-invisible approaches are preferred to
not disturb natural social interaction. This demand has led to the
development of in-ear EEG (Looney et al., 2012), and around-
the-ear EEG solutions (Debener et al., 2015), where electrodes are
placed inside the outer ear canal or around the ear, respectively.
The cEEGrid is one around-the-ear EEG solution – a c-shaped
flex-printed sensor array comprising 10 electrodes (Figure 1A).
In the current study, we used the cEEGrid as it provides larger
inter-electrode distances compared to in-ear EEG, leading to
an increase in the measured EEG amplitudes (Bleichner and
Debener, 2017) and better sensitivity to distant contributions
(Meiser et al., 2020).

Debener et al. (2015) and Bleichner et al. (2016) already
provided evidence that attentional processes can be captured with
cEEGrids but used event-based analyses and time-domain trial
averaging instead of measuring the neural response to continuous
stimuli. Here we investigated three methods which cannot only
analyze the neural processing of continuous speech but have also
been shown to be sensitive to attentional effects. We evaluated
their feasibility to capture neural effects of auditory attention
when using around-the-ear EEG.

The first method is speech envelope tracking, which refers to
the neural tracking of the slow amplitude fluctuations, i.e., the
envelope, of speech (Aiken and Picton, 2008). When presented
with more than one speaker at the same time, the listener’s
neural signal correlates more strongly with the speech envelope
of the attended than of the ignored speaker(s) (Power et al.,
2012; Zion Golumbic et al., 2013). Based on this observation,
many studies have been conducted to decode the attended among
all present speakers from the listeners’ EEG (Mirkovic et al.,
2015; O’Sullivan et al., 2015). Therefore, this method is often
referred to as auditory attention decoding (AAD). However, we
will not use this term, because in principle all three methods
introduced here aim at decoding the listener’s attention. One of

the main potentials of speech envelope tracking is that it can
help to develop neuro-steered hearing aids that first identify and
then enhance the attended speaker (Geirnaert et al., 2021b). This
could have a tremendous impact for hearing-impaired listeners
who have difficulties listening to one speaker in the presence of
background noise (Shinn-Cunningham and Best, 2008).

The second method is known as intersubject correlations
(ISCs). This method is based on the observations that
individuals who are exposed to the same stimulus show similar
spatiotemporal brain activity (Hasson et al., 2004; Dmochowski
et al., 2012, for more recent reviews see Zhang, 2018 and
Nastase et al., 2019). More recently, this approach has been
adopted to attention research. When selectively attending to
one of two simultaneously presented audio streams, ISCs of
EEG signals were found to be higher for those participants
attending to the same stream than for those attending to
different streams (Stuldreher et al., 2020; Rosenkranz et al.,
2021). Moreover, Rosenkranz et al. (2021) showed that the
magnitude of participants’ ISCs with others attending to the same
audio stream were positively correlated with the participants’
attentional effect observed in speech envelope tracking. Thus,
the strength by which an individual’s EEG signal correlates with
others attending to the same stimulus reflects the individual’s
ability to selectively attend to the target stimulus and ignore the
distracting stimulus. Regarding future application, this method
could be of value in classroom scenarios (Poulsen et al., 2017;
Janssen et al., 2021). For instance, this method could support
students who have difficulties in focusing on the lecture content
or support lecturers by identifying settings in which lectures are
most effective (Brouwer et al., 2019).

The third method is spectral entropy. Spectral entropy
characterizes the structure of an EEG spectrum (Viertiö-Oja et al.,
2004) and has been proposed as a measure of attention. A high
spectral entropy indicates an equally distributed EEG spectrum.
This means that the power in each frequency band is very similar,
whereas a low spectral entropy indicates an EEG spectrum
in which the power is concentrated in one frequency band
(Lesenfants and Francart, 2020). Lesenfants et al. (2018) found
increased spectral entropy when participants actively attended to
a stimulus compared to when they did not attend to the presented
stimulus. In a consecutive study, Lesenfants and Francart (2020)
showed that speech envelope tracking of a single speaker was
increased during periods of high spectral entropy. Based on
these findings, the authors concluded that high spectral entropy
indicates high levels of attention. It is important to note that
compared to speech envelope tracking and ISC, spectral entropy
is not used to draw conclusion about one’s direction of attention.
Instead, spectral entropy may be an informative measure in
scenarios where it is important to monitor one’s level of attention,
for example, when driving a car.

The aim of the current study was to test whether speech
envelope tracking, ISCs, and spectral entropy capture effects of
auditory attention to ongoing natural stimuli when unobtrusive
around-the-ear EEG acquisition is used. To this end, we analyzed
listeners’ brain activity captured with cEEGrids while they
attended to one of two simultaneously presented, continuous
speech streams. As speech envelope tracking has previously been
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FIGURE 1 | cEEGrid illustration. (A) A cEEGrid attached with double-sided adhesive around the left ear. (B) cEEGrid channel layout consisting of a pair of cEEGrids,
one for the left and one for the right ear. Each cEEGrid comprises 10 electrodes. Electrodes R4a and R4b serve as ground and analog reference, respectively. In the
analysis, data were re-referenced to the half of channel L4b (algebraic linked mastoids). To keep the number of channels symmetrical between the left and right
cEEGrid channel L4a was removed in the analysis.

performed on cEEGrid data but yielded rather low accuracies in
identifying the attended speaker (Mirkovic et al., 2016; Nogueira
et al., 2019), we explored the effect of artifact correction and of
individualizing decoding models on the accuracy to identify the
attended speaker.

MATERIALS AND METHODS

Participants
In the current study, two previously recorded, unpublished
cEEGrid datasets were combined. The cEEGrid datasets were
each concurrently recorded with cap EEG. The corresponding
cap EEG datasets were originally used in Jaeger et al. (2020)
and Holtze et al. (2021), respectively, and later jointly used in
Rosenkranz et al. (2021). Here, we only considered the cEEGrid
datasets. From Jaeger et al. (2020), five out of the 20 participants
had to be excluded due to data loss during the cEEGrid recording.
From Holtze et al. (2021) all 21 participants could be included,
resulting in a total of 36 participants (mean age 23.6 years,
25 females) in the current study. All participants were native
German speakers, had normal hearing based on audiometric
thresholds of 20 dB HL or better in both ears at octave frequencies
from 250 Hz to 8 kHz (Holmes and Griffiths, 2019), and reported
no psychological or neurological condition. Both original studies
were approved by the local ethics committee (University of
Oldenburg, Germany, Jaeger et al., 2020, Drs.Nr.27/2018; Holtze
et al., 2021, Drs.EK/2019/006). All participants signed written
informed consent before taking part in the respective study and
received monetary reimbursement afterward.

Task and Stimuli
Participants were comfortably seated in a dimly lit and sound-
attenuated booth. They were instructed to attend to one of two
simultaneously presented audio books and had to keep their
attention on the same audio book throughout the experiment.
To motivate participants and to make sure that they attended to

the instructed audio book, participants had to answer questions
related to the content of the to-be-attended audio book. Each
audio book was narrated by a different male speaker (for further
details see Mirkovic et al. (2016) where these stimuli were
originally used). In Jaeger et al. (2020) each audio book was
presented via a free-field loudspeaker located to the front-left
(–45◦) and front-right (+45◦) side of the participant, respectively.
In Holtze et al. (2021) the audio books were presented via
earphones while the audio books were spatially separated at an
angle of ±30◦ in azimuth using a head related transfer function
(Kayser et al., 2009). Thus, in both studies, one audio book
appeared to originate from the front left of the participant and
the other one from the front right. The same audio books were
used in both studies. The mode of presentation did not seem
to affect the neural processing of the audio books as shown in
Rosenkranz et al. (2021), where the cap-EEG data from Jaeger
et al. (2020) and Holtze et al. (2021) were jointly analyzed. In both
studies the audio books were presented in blocks of 10 min. In
the Jaeger study the experiment consisted of six 10-min blocks
while in the Holtze study it consisted of five 10-min blocks.
Within the first 10-min block, both audio books were presented
at equal volume in both studies. In the Jaeger study this was
maintained for all remaining blocks. In the Holtze study only
in two out of the remaining four blocks both audio books were
presented at equal volume while in the other two blocks the to-
be-attended audio book was enhanced. To keep the equal volume
aspect constant across both studies, in the current study we only
included the three blocks from the Holtze study where both audio
books were presented equally loud. To keep the amount of data
per participant constant across studies, we also selected only three
blocks from the Jaeger study. This always included the first 10-
min block plus two from the remaining blocks. Due to technical
issues the cEEGrid data of some participants in the Jaeger study
were not recorded during all blocks. For those participants where
only three blocks were available, we used those. When more
than three blocks were available, we pseudo-randomly selected
two blocks such that blocks 2–5 were evenly represented across
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participants. Thus, in the current study we used 30 min of data
per participant, which always included the first 10-min block.

Data Acquisition
The cEEGrid recording procedure was identical for both original
studies. For better electrode to skin conductance, the skin
around the ears was prepared with abrasive gel (Abralyt HiCl,
Easycap GmbH, Hersching, Germany) and cleaned with 70%
alcohol. Thereafter, a small amount of abrasive gel was placed
on the cEEGrid electrodes (TMSI, Oldenzaal, Netherlands;
Debener et al., 2015) before it was attached with double-sided
adhesive around the ear. Impedances were kept below 20 k�.
Each participant was equipped with two cEEGrids, one around
the left and one around the right ear. Electrodes R4a and
R4b of the right cEEGrid served as ground and reference,
respectively (Figure 1B). The two cEEGrids were connected
to a 24-channel mobile amplifier (SMARTING, mBrainTrain,
Belgrade, Serbia) which transmitted the data via Bluetooth
to a recording computer. The cEEGrid data were acquired
with a sampling rate of 500 Hz. The transmitted cEEGrid
data as well as the onset markers of the 10-min blocks were
integrated using the Lab Recorder software based on the
Lab Streaming Layer1 to time synchronize these data streams
(Mullen et al., 2015).

Data Analysis
Preprocessing
All analysis steps were performed in MATLAB (R2019b, The
Math-Works Inc., Natick, MA, United States), using custom
scripts2. The cEEGrid data were processed with EEGLAB (version
2020.0; Delorme and Makeig, 2004) using the cEEGrid EEGLAB
plugin3 (version 0.9). To account for the constant delay between
the onset markers of the 10-min blocks and the corresponding
EEG, we presented 20 beep tones to the participant prior to the
experiment. We then computed the grand average event-related
potential (ERP) in response to these beep tones and shifted the
cEEGrid data to align the N1 latency of the cEEGrid data to
the N1 latency observed in the cap-EEG, which in turn had
been corrected based on a timing test. This resulted in a time
delay of 54 ms for the Jaeger study and 70 ms for the Holtze
study. The difference can be explained by the different audio
presentation setups as described above (for details see Jaeger et al.,
2020 and Holtze et al., 2021). Then, the cEEGrid data were re-
referenced to algebraically linked mastoids by re-referencing the
data to the half of channel L4b. To keep the cEEGrid layout
symmetrical between the left and right side, channel L4a was
removed, leaving 16 cEEGrid channels per participant (Figure
1B) (Debener et al., 2015).

Artifact Correction
Artifact correction was performed using artifact subspace
reconstruction (ASR; Mullen et al., 2015), implemented in the
EEGLAB plugin clean_rawdata (version 2.4). ASR identifies

1https://github.com/labstreaminglayer
2https://doi.org/10.5281/zenodo.6379903
3https://doi.org/10.5281/zenodo.5946875

and reconstructs segments containing artifacts based on the
statistics of artifact-free calibration data. In the current study, no
explicit calibration data was provided, instead the plugin function
automatically selected artifact-free calibration data from the
entire recording. The clean_rawdata wrapper function consists
of multiple sub-functions. The sub-functions clean_flatlines and
clean_channels were not used, to keep the number of channels
constant for all participants, and because the interpolation of
removed cEEGrid channels may not produce reliable results
(cf. Kang et al., 2015). As ASR requires high-pass filtered data
(Mullen et al., 2015), we used the clean_drift function within
clean_rawdata with the default high-pass transition band from
0.25 to 0.75 Hz. As cutoff parameter for the clean_asr function
we used a rather liberal value of 10, as cutoff values below 10 may
be prone to remove brain data (Chang et al., 2018). The function
clean_windows, which removes data segments that still contain
artifacts after performing ASR, was not used as continuous
signals were required for the analyzes.

Speech Envelope Tracking
As mentioned, speech envelope tracking has previously been
implemented with cEEGrid data but yielded rather low accuracies
when the aim was to identify the attended speaker (Mirkovic
et al., 2016: 69.33% with 50 one-min-segments per participant;
Nogueira et al., 2019: 59.79% with 48 one-min segments
per participant). Therefore, we systematically investigated two
adaptations of the analysis pipeline used in Mirkovic et al. (2016),
with the goal of increasing the classification accuracy. For a better
understanding we now first describe how we implemented the
analysis pipeline described in Mirkovic et al. (2016) and then
explain the adaptations.

To extract the attended and ignored speech envelopes the
audio data were first normalized, by dividing them by their
standard deviation. Then, the absolute Hilbert transform was
computed, and low-pass filtered at 8 Hz (Butterworth, filter
order: 3). Lastly, the filtered data were down-sampled to 64 Hz
to reduce subsequent computation times. In accordance with
the two speech envelopes, the cEEGrid data were also low pass
filtered at a cutoff frequency of 8 Hz (finite impulse response filter,
Hann windows, filter order: 100), and then high-pass filtered at
a cutoff frequency of 2 Hz (finite impulse response filter, Hann
windows, filter order: 500). Afterward, the filtered cEEGrid data
were normalized by dividing them by their standard deviation,
and then down-sampled to 64 Hz.

For speech envelope tracking, we implemented a decoding
model, i.e., we trained a model on an individual’s cEEGrid data
to predict the attended speech envelope. For a better replicability,
we implemented the decoding model within the mTRF toolbox
(version 2.1; Crosse et al., 2016). For this, the individual’s cEEGrid
data and speech envelopes were first segmented into non-
overlapping 60 s segments using the mTRFpartition function.
This resulted in 30 segments of each speech envelope and
the corresponding cEEGrid data for each participant. Using
the function mTRFattncrossval, a decoder was trained on 29
segments of the attended speech envelope and the corresponding
cEEGrid data. This decoder was then used to reconstruct the
attended speech envelope of the left-out segment. Afterward, the
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reconstructed speech envelope was correlated with the attended
and ignored speech envelope of the left-out segment, respectively.
The difference between these Pearson correlation coefficients
(Corratt–Corrign) is considered as the attentional gain. If the
attentional gain was positive, the left-out segment was regarded
as classified correctly. The prediction error was quantified as
the mean squared error between the reconstructed and the
actual speech envelope. The process of training a decoder on 29
segments and testing it on the left-out segment was repeated 30
times in a leave-one-out cross-validation manner (Stone, 1974).
The decoding accuracy was then determined as the percentage of
correctly classified segments. Chance level decoding accuracy was
based on a binomial significance threshold.

In the decoding model, two important model hyperparameters
require adjustment. One is the time lag window, which accounts
for the time between the onset of the presented auditory
stimulus and its cortical response. The other is the regularization
parameter. Regularization is a technique to avoid overfitting and
estimate reliable model parameters that generalize to unseen data
(Holdgraf et al., 2017). Regularization is especially important
in decoding models as it strongly affects the decoding accuracy
(Wong et al., 2018). To closely follow the analysis pipeline used
in Mirkovic et al. (2016), we applied Tikhonov regularization.
Therefore, we estimated the optimal regularization parameter
which we then multiplied with the regularization matrix
(Crosse et al., 2016).

In line with Mirkovic et al. (2016), the optimal model
hyperparameters, i.e., the time lag window and regularization
parameter λ, were initially chosen on a group level. To this
end, the grand average decoding accuracies were computed for
different sets of hyperparameters. Potential time lag windows
of 45 ms duration ranged from –115 to 620 ms, with 30 ms
of overlap. Potential regularization parameters ranged from
10−5 to 105 in factors of 10. As a result, for each participant
we computed the decoding accuracy of 517 different sets of
hyperparameters, based on 47 different time lag windows and
11 regularization parameters. We then selected the set of
hyperparameters that yielded the largest grand average decoding
accuracy. These group-level based hyperparameters were then
used for all individual decoders. So far, we have described
how we implemented the analysis pipeline as similarly used
in Mirkovic et al. (2016). In the following two sections, we
will explain the adaptations we made to explore the effect of
artifact correction and individually chosen hyperparameters on
the decoding accuracy.

Effect of Artifact Correction
The first adaptation was to include artifact correction into the
analysis pipeline. As mentioned in Mirkovic et al. (2016), one
possible reason for the low decoding accuracies was that no
eye-, muscle- or movement-related artifacts were corrected for.
Therefore, we investigated the effect of artifact correction on
the decoding accuracy. To this end, we once performed artifact
correction before the data were pass-band filtered between 2
and 8 Hz and compared it to the uncorrected data filtered
between 2 and 8 Hz. To evaluate the impact of artifact
correction, we compared the individual decoding accuracies

between uncorrected and ASR-corrected data using a Wilcoxon
signed rank test. To quantify how much data was modified by
ASR and to what extent, we split the filtered data into consecutive
1-s segments and calculated the spectral power in the frequency
range from 2 to 8 Hz. For each 1-s segment, we then averaged the
spectral power over all channels and calculated the change in dB
from uncorrected to ASR-corrected data.

Effect of Individually Chosen Hyperparameters
As a second adaptation we used individually chosen
hyperparameters, instead of using group-level chosen
hyperparameters. Specifically, individualizing the time lag
window may help to increase decoding accuracies. As mentioned
above, the time lag window accounts for the time between
the stimulus onset and its cortical response. It is well known
that cortical response lags vary across individuals (Lauter and
Karzon, 1990), as can also be seen in Mirkovic et al. (2019).
To the best of our knowledge, the effect of individualizing the
regularization parameter for speech envelope tracking has not
been investigated. Therefore, we also explored this adaptation.
To select the optimal hyperparameters for each participant
separately, we chose the set of hyperparameters which yielded
the highest decoding accuracy for the individual. If multiple
sets of hyperparameters fulfilled this criterion, we selected
the one set among them which yielded the lowest prediction
error. We then compared the individual decoding accuracies
between the models using group-level and individually chosen
hyperparameters with a Wilcoxon signed rank test.

Leave-one-out cross-validation (standard cross-validation) is
a technique to train and test a model, such that the data which
is used to train the model is different from the data which
is used to test the model (Stone, 1974). Leave-one-out cross-
validation is commonly applied in auditory attention decoding
research (O’Sullivan et al., 2015). To compare our results to other
studies, we also followed this approach when comparing the
decoding accuracies of models using group-level or individually
chosen hyperparameters. However, one aspect of this approach,
which is sometimes neglected, is that when a model includes
hyperparameters to be tuned, validating the model should be
done on a yet another part of the data (Holdgraf et al., 2017).
This procedure ensures that the selected hyperparameters do
not only lead to high decoding accuracies on the data used
to select them, but also on independent data. To account for
this potential bias, we performed an additional analysis using
nested cross-validation (Varma and Simon, 2006; Parvandeh
et al., 2020). To this end, we first randomly selected 10 out
of the 30 segments per participant for later validation of our
model. The remaining 20 segments were then used in a leave-
one-out cross-validation manner to find the optimal set of
hyperparameters. Afterward, all these 20 segments were used to
train the model with the selected set of hyperparameters. Finally,
the model was validated by computing the decoding accuracy of
the 10 initially left-out segments. This entire process was repeated
50 times so that at each iteration 10 different segments were
randomly selected for later validation. In the end, the decoding
accuracies were averaged over all 50 iterations. To test whether
the results obtained in the initial analysis without independent
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validation data were biased, we performed the nested cross-
validation approach once with group-level chosen and once with
individually chosen hyperparameters. The difference between the
resulting decoding accuracies was statistically evaluated using a
Wilcoxon signed rank test.

Intersubject Correlations
Cap-EEG-based ISCs within a two competing speaker paradigm
have previously been analyzed by Rosenkranz et al. (2021).
In the current study, we performed the ISC analysis on the
simultaneously acquired cEEGrid data. The aim was to test
whether the attentional effect of ISCs, as observed by Rosenkranz
et al. (2021), can also be observed with unobtrusive around-the-
ear EEG recordings. Therefore, we closely followed the analysis
pipeline presented in Rosenkranz et al. (2021), which was largely
based on the publicly available code4 from Cohen and Parra
(2016). As mentioned above, ISCs are based on the observation,
that people who are exposed to the same stimulus show similar
brain activity. In the current study, the first 10-min block was the
only one which was included for all participants. Therefore, to
leverage the statistical power of the entire sample size, for the ISC
analysis we only used the first 10-min block. This was also done to
closely follow the analysis performed in Rosenkranz et al. (2021).

To compute ISCs, the preprocessed cEEGrid data from the
first 10-min block were first cleaned from artifacts as described
above. After artifact correction the data were low-pass filtered
at a cutoff frequency of 40 Hz (finite impulse response filter,
Hann windows, filter order: 100), and then high-pass filtered at
a cutoff frequency of 1 Hz (finite impulse response filter, Hann
windows, filter order: 500). Lastly, the data were down-sampled
to 250 Hz. Simply correlating the individual EEG channels
between participants would not reveal a good estimate of the
ISCs due to the low signal to noise ratio of EEG (Dmochowski
et al., 2012). Therefore, Dmochowski et al. (2012) developed the
correlated component analysis, which is available in the publicly
available code from Cohen and Parra (2016). In the correlated
component analysis, EEG channels are linearly projected such
that the resulting components are maximally correlated between
participants. Importantly, the number of resulting components
is identical to the number of initial EEG channels. Lastly, the
ISC scores of the three most correlating components were
summed, resulting in a single ISC sum score per individual. Other
components were neglected as their correlations have been shown
to be close to chance (Ki et al., 2016).

Attentional Effect on Intersubject Correlations
When presented with two concurrent auditory streams, those
participants attending to the same stream show higher ISC sum
scores than those attending to different streams, even though all
individuals are exposed to the same physical stimulus (Stuldreher
et al., 2020; Rosenkranz et al., 2021). Here, we investigated
whether this attentional effect could also be observed with
cEEGrids. To test this, the cEEGrid data of each participant
were correlated once with the cEEGrid data of all participants
attending to the same audio book (ISCsame) and once with the
cEEGrid data of all participants attending to the other audio book

4https://www.parralab.org/isc/

(ISCother). Importantly, the projection vector of the correlated
component analysis was computed on all but the to-be-correlated
participant to reduce the risk of overfitting. For each participant,
this resulted in 16 components (number of available cEEGrid
channels) for the ISCsame condition and 16 components for the
ISCother condition. Within a participant, we then compared the
ISC scores of the different components between the ISCsame and
ISCother condition. This we did for the three most correlating
components individually as well as for their sum, using paired
sample t-tests. The difference between an individual’s ISC sum
score in the same and other condition is considered as the
attentional effect (ISCsame–ISCother). To compute the chance level
for ISC scores, we created chance-distributions with circular
time-shifted data (Parra et al., 2018). For each participant the data
were shifted to a different extent but all EEG channels within
a participant were shifted equally. This disturbed the temporal
alignment between the participants’ EEG but kept the temporal
and spatial structure within a participant unchanged. The process
of randomly shifting the data and computing ISC scores for both
conditions was repeated 100 times. This resulted in a distribution
of ISC scores for each component and condition separately. The
95th percentiles of these distributions served as chance level.

In addition, we also classified whether a person attended to
the left or right story based on their ISC scores (Rosenkranz
et al., 2021). Therefore, we once computed the ISC scores of
each participant with all participants attending to the left audio
book (ISCleft) and once with all participants attending to the
right audiobook (ISCright). Thus, ISCleft and ISCright reflect the
synchrony of one participant with others attending to the left
or right audio book, respectively. For this analysis we used
two projection vectors, one was computed on participants who
attended to the left story, and one was computed on participants
who attended to the right story. Again, the to-be-correlated
participant was left out when computing the projection vectors.
Lastly, we summed the ISC scores of the three most correlating
components and classified the direction of attention based on the
ISC sum scores. Classification accuracy was calculated using the
area under the receiver operator curve. Chance level accuracy
was estimated by randomly assigning the class labels left and
right and then calculating the corresponding area under the
receiver operator curve (Ki et al., 2016). This was repeated
1000 times, each time randomizing the class labels. The 95th
percentile of this distribution was then considered as chance level.
Lastly, we evaluated the neurophysiological plausibility of the
ISC components. For that, we computed the projection vectors
of the correlated component analysis once for those participants
attending to the left story, once for those attending to the right
story and once for all participants. As the projection vectors
are not directly physiologically interpretable, the projection
vectors (spatial filters) were transformed into spatial patterns
(Haufe et al., 2014).

Spectral Entropy
To compute the spectral entropy, the preprocessed cEEGrid data
were first cleaned from artifacts as described above. Additionally,
the function clean_channels was used to identify channels
which correlated less than 0.6 with their robust estimate. These
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channels were later neglected when calculating the spectral
entropy averaged over channels. Here, only for three participants
one artifactual channel was identified. Spectral entropy was
computed based on the analysis described in Lesenfants and
Francart (2020). For each one-min segment and channel, the
spectrum from 8 to 32 Hz was computed using multitaper
spectral analysis (7 tapers, MATLAB function: pmtm). Each
spectrum was then normalized by dividing each frequency power
by the sum of all frequency powers in the range from 8 to 32 Hz
(Viertiö-Oja et al., 2004). Thereby, the power of each individual
spectrum was equalized to one which enabled the comparison
between participants and channels. The spectral entropy was
then computed as the product between the normalized frequency
power of each frequency bin and the logarithm of its inverse.
These were then summed over all frequency bins and normalized
by one over the logarithm of the number of frequency bins.
This resulted in spectral entropies ranging between zero and
one. A spectral entropy value close to one reflects a spectrum
in which the power of each frequency bin is similar, whereas a
lower spectral entropy indicates a spectrum in which the power
of the spectrum is concentrated in a few frequency bins. In the
end, we had 30 (segments) times 16 (channels) spectral entropy
values per participant. We did not have any prior assumptions
on which cEEGrid channels to use. Therefore, we averaged the
spectral entropy values over non-artifactual channels. Spectral
entropy has been linked to the level of sustained attention, with
higher values reflecting higher levels of attention (Lesenfants
et al., 2018). There is both behavioral and neurophysiological
evidence that the level of auditory attention decreases over time
(Moore et al., 2017). Therefore, we investigated the spectral
entropy over time by computing the Spearman rank correlation
coefficient between the segment number and the corresponding
spectral entropy. This we did for each participant individually
as well as for the grand average spectral entropy. Alpha power
(8–12 Hz) has also consistently been associated with attention
(Foxe and Snyder, 2011; Klimesch, 2012). As it comprises
one important frequency band when computing the spectral
entropy based on the frequency spectrum from 8 to 32 Hz, we
also investigated alpha power over time. For that we averaged
the normalized frequency power from 8 to 12 Hz over all
non-artifactual channels.

Relation Between Attentional Measures
To investigate the relation between the attentional gain in
speech envelope tracking (Corratt–Corrign) and the attentional
effect of ISC sum scores (ISCsame–ISCother), the time resolved
attentional gain values in speech envelope were averaged over
time. This resulted in one speech envelope gain value and one
ISC sum difference score per participant. To investigate the
relation between the attentional gain in speech envelope tracking
(Corratt–Corrign) and the spectral entropy we performed two
analyses. Unlike Lesenfants and Francart (2020), we followed a
correlation-based approach. In the first analysis, we correlated
the time resolved speech envelope gain values with the time
resolved spectral entropy values for each participant separately.
In the second analysis, we first averaged the time resolved
speech envelope gain and spectral entropy values over time

to have one value pair per participant. We then correlated
these value pairs for all participants. In all of the above-
mentioned correlational analyses, the attentional gain of speech
envelope tracking was computed using artifact corrected data
and individual hyperparameters identified with standard cross-
validation. Lastly, we correlated the attentional effect observed
in the ISC sum scores (ISCsame–ISCother) with the spectral
entropy values averaged over time. To statistically evaluate the
correlations, we performed Spearman rank correlations.

RESULTS

Speech Envelope Tracking
When performing speech envelope tracking without artifact
correction, the grand average decoding accuracies reached 71.3%
(Figure 2A). Removing artifacts with ASR resulted in a grand
average decoding accuracy of 72.13%, which was, however, not
significantly higher (Figure 2A, Wilcoxon signed rank test,
Z = 0.84, p = 0.4). In this analysis, the group-level chosen time
lag window from 95 to 140 ms and a regularization parameter
of 10−2 were used (Figure 2B, black rectangle). Most part
of the data was not strongly modified by artifact correction.
In fact, the change in spectral power (8–12 Hz) due to ASR
was less than ±0.1 dB in 73.41% of all 1-s segments. In only
6.12% of all 1-s segments, the spectral power was changed more
than ±3 dB (Supplementary Figure 1). Even though artifact
correction did not significantly increase the decoding accuracy,
all further analyses were performed on artifact corrected data to
ensure that decoding the attended speaker is based on brain data
and not on artifacts. Using individually chosen hyperparameters
instead of group level chosen ones significantly increased the
decoding accuracies to 82.59% (Figure 2C, Wilcoxon signed
rank test, Z = 5.04, p < 0.001). The individually chosen optimal
hyperparameters are shown in Figure 2B. However, when
further controlling for overfitting with nested cross-validation
the decoding accuracies dropped substantially and the group-
level chosen hyperparameters outperformed those of individually
chosen hyperparameters (Figure 2D, Wilcoxon signed rank test,
Z = –3.88, p < 0.001).

Intersubject Correlations
Using cEEGrid data, we confirmed the expected effect that
ISC scores were significantly higher for participants attending
to the same audio book than for those attending to different
audio books (Figures 3A,C). This was the case for the ISC
sum scores, i.e., the sum of ISC scores of the three strongest
components (Figure 3A, paired sample t-test, t = 8.24, p < 0.001),
as well as for the ISC scores of the first two components
(Figure 3C, paired sample t-test, component 1: t = 7.93,
p < 0.001, component 2: t = 6.2, p < 0.001). For the third
component there was no evidence for a difference in ISC
scores between the same and other conditions (Figure 3C,
paired sample t-test, t = 1.5, p = 0.14). Only the ISC score
of the first and second component revealed above chance level
effects. The ISC sum scores of each individual participant
with all those attending to the left and right audio book
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FIGURE 2 | Effects on the accuracy of speech envelope decoding models. (A) Decoding accuracies of the individual models with and without artifact correction. In
this analysis a group-level based time lag window from 95 to 140 ms and a regularization parameter of 10−2 were used for all individual models. (B) Decoding
accuracies as a function of time lag window and regularization parameter. Black rectangle marks the group-level based optimal set of hyperparameters. Colored
circles mark the optimal set of hyperparameters for each participant. The color within the circle indicates the decoding accuracy of a participant which resulted from
using these hyperparameters. Due to an overlap of potential time lag windows only the center of a time lag window is displayed. (C) Decoding accuracies with
group-level chosen and individually chosen hyperparameters. These decoding accuracies were based on standard leave-one-out cross-validation including 30 test
trials. (D) Decoding accuracy with group-level and individually chosen hyperparameters based on nested cross-validation. Within the nested cross-validation only 10
test trials were used. (A,C,D) Horizontal gray lines indicate chance level decoding accuracy which were based on binomial significance thresholds. Dashed lines
connect data points of the same participant (n.s. non-significant, *** p < 0.001).

enabled us to classify to which audio book a participant
was attending to Figure 3B. Classifying whether participants
attended to the left story, using their ISC sum score with
participants who attended to the left story, yielded an accuracy
of 97.83%. Classifying whether participants attended to the
right story, using their ISC sum score with participants who
attended to the right story, yielded an accuracy of 80.05%.
Both classification accuracies were clearly above chance level,
which was at 65.94%. The spatial patterns of the condition-
independent ISC components are shown in Figure 3D. We

also provide the spatial patterns for all those participants
attending to the left and those attending to the right in the
Supplementary Material. Keeping in mind sign ambiguities, the
spatial patterns of the left and right condition did not differ
strongly from each other, nor from the condition-independent
patterns (Supplementary Figure 2).

Spectral Entropy
Figure 4A shows the average of all individual spectrograms
from 8 to 32 Hz which in turn were averaged over all but
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FIGURE 3 | Attentional effects on ISC. (A) ISC sum scores of each participant with all those attending to the same story (ISCsame) and with all those attending to the
other story (ISCother). Horizontal lines indicate chance level based on circular time-shifted data. Dashed lines connect data points of the same participant. (B) ISC
sums scores of each participant with all those attending to the left story (ISCleft) and with all those attending to the right story (ISCright). (C) Grand average of the ISC
scores of three strongest components. Once computed between those participants attending to the same story and once for those attending to different stories.
Gray bar indicates chance level based on circular time-shifted data. (D) Spatial patterns (cEEGrid topographies) of the three strongest ISC components over all
participants, independent of which story they attended to. In each pair of cEEGrids the left and right cEEGrid are depicted (n.s. non-significant, *** p < 0.001).

the artifactual channels. The grand average spectral entropy
decreased over time (Figure 4B, Spearman rank correlation,
rho = –0.81, p < 0.001). On an individual level the spectral
entropy significantly decreased over time for 12 participants
while it significantly increased for 5 participants. For the
remaining 19 participants there was no significant change over
time (Supplementary Figure 3). In line with a decrease in the
grand average spectral entropy, the grand average alpha power

significantly increased over time (Figure 4C, Spearman rank
correlation, rho = 0.82, p < 0.001).

Relation Between Attentional Measures
The attentional gain observed in speech envelope tracking
(Corratt–Corrign) correlated positively with the attentional
effect observed in the ISC sum scores (ISCsame–ISCother,
Figure 5, Spearman rank correlation, rho = 0.3, p = 0.04).

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 869426

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-869426 April 27, 2022 Time: 14:52 # 10

Holtze et al. Ear-EEG Auditory Attention Measures

FIGURE 4 | Spectral domain of cEEGrid data during the competing speaker
paradigm. (A) Grand average spectrogram over all channels and participants
in the frequency range from 8 to 32 Hz. (B) Spectral entropy over time
averaged over channels and participants. Error bars reflect the standard error
over participants. (C) Alpha power (8–12 Hz) over time averaged over
channels and participants. Error bars depict the standard error over
participants. (A–C) Vertical lines at 10 and 20 min indicate the end of a
preceding 10-min block.

There was no evidence for a relation between the attentional
gain observed in speech envelope tracking and the spectral
entropy, neither for any individual participant nor for the time
aggregated analysis (Supplementary Figure 4A, Spearman rank
correlation, rho = –0.22, p = 0.19). There was no evidence
for a relation between the attentional effect observed in ISC

FIGURE 5 | Correlation between the attentional gain in speech envelope
tracking and the attentional effect in ISC sum scores (Spearman rank
correlation, rho = 0.3, p = 0.04). Corratt: Spearman correlation between the
predicted and the attended speech envelope. Corrign: Spearman correlation
between the predicted and the ignored speech envelope. ISCsame: ISC sum
score between a participant and all others attending to the same story.
ISCother: ISC sum score between a participant and all others attending to the
other story. Gray line represents the least square regression.

sum scores and the spectral entropy values averaged over
time (Supplementary Figure 4B, Spearman rank correlation,
rho = 0.06, p = 0.73).

DISCUSSION

Methods such as speech envelope tracking, ISCs, and spectral
entropy help to analyze the neural processing of continuous
stimuli. We show that all three methods capture complementary
information about attention when the neural data is acquired
exclusively with small flex-printed electrodes placed around the
ear. Speech envelope tracking reliably decodes the attended of two
concurrently presented speakers using cEEGrid data. We found
that artifact correction did not increase the decoding accuracies
while individualizing hyperparameters of the decoding models
did. Moreover, ISCs based on cEEGrid data showed more similar
brain activity between an individual with those attending to
the same speaker than with those attending to another speaker.
Regarding spectral entropy, we found that values obtained
from cEEGrid data decreased over time, potentially reflecting a
decrease in the participants’ level of attention. Interestingly, the
attentional gain of speech envelope tracking and the attentional
effect of ISC sum scores correlated positively while there was no
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evidence that either of these two measures correlated with the
spectral entropy values.

Speech Envelope Tracking
Effect of Artifact Correction
By approximating the analysis pipeline described in Mirkovic
et al. (2016), the resulting decoding accuracies observed in
the current study were comparable to Mirkovic et al. (2016).
However, in contrast to our expectations, attenuating artifacts
with ASR did not increase the decoding accuracy. One
explanation could be that the short duration of typical artifacts
only makes up a small portion of the 60 s segments that were
used for decoding and thus artifact reduction does not strongly
affect the decoding accuracy. In fact, only a small portion of the
data contained strong artifacts which were corrected by ASR.
Consequently, the decoding accuracy may benefit more from
artifact correction when shorter segments of data are used. In
Jaeger et al. (2020), ASR improved classification of shorter data
segments, whereas Straetmans et al. (2022) showed that even
for data segments as short as 5 s, decoding accuracies were not
increased when the data was cleaned with ASR. We speculate
that these heterogenous results could reflect the quality of the
calibration data that were used to perform ASR. In Jaeger et al.
(2020), the calibration data were extracted while participants
performed a task (i.e., the competing speaker paradigm). In
Straetmans et al. (2022), the calibration data were acquired while
participants were seated without performing any task. It is known
that good calibration data are crucial when performing ASR
(Blum et al., 2019).

Effect of Individually Chosen Hyperparameters
We tested the effect of individualizing the classification
model hyperparameters on the decoding accuracy using the
commonly applied standard leave-one-out cross-validation. As
could be expected, we observed higher decoding accuracies for
models using individually chosen hyperparameters compared
to models using group-level chosen hyperparameters. However,
implementing standard leave-one-out cross-validation involves
the risk of overfitting, since the same data are used for choosing
the optimal hyperparameters and validating the model (Holdgraf
et al., 2017). To account for this bias, we repeated the analysis
using nested cross validation (Varma and Simon, 2006), where
the validation of the model is done on a different part of the data
than the training or the selection of hyperparameters (Parvandeh
et al., 2020). In contrast to the results obtained with standard
cross-validation, when implementing nested cross-validation, the
models using group-level chosen hyperparameters outperformed
those models using individually chosen hyperparameters. These
results contradict studies showing that models fitted to the
individual generally perform better than group-level based
models (Mirkovic et al., 2015; O’Sullivan et al., 2015). Yet, when
only a small amount of individual data is available, group-level
based models outperform individualized models (Mirkovic et al.,
2015). Only when a sufficient amount of data from an individual
is supplied, does the individualized model outperform the group-
level based model (Mirkovic et al., 2015). Therefore, we assume
that a sufficiently large amount of individual data is necessary

for the beneficial effect of individually chosen hyperparameters to
become apparent when using nested cross-validation. Recently,
a new approach has been proposed where the decoding models
are initially provided with a participant-independent decoder
which is then continuously updated as more data from the
individual is available (Geirnaert et al., 2021a). To further
investigate the effect of fitting the model to the individual, long-
term recordings of an individual should be acquired. In contrast
to cap-EEG acquisition, long-term data collection is certainly
feasible with cEEGrids, providing good signal quality for many
hours (Debener et al., 2015; Bleichner and Debener, 2017; Da
Silva Souto et al., 2021; Hölle et al., 2021).

Intersubject Correlation
We provide evidence that attentional effects of EEG-based ISCs
can reliably be observed even when the neural data is recorded
with a small number of electrodes placed around the ear. This
is not a fully independent replication of the results reported by
Rosenkranz et al. (2021), as the cap-EEG analyzed in that study
was simultaneously acquired with the cEEGrid data presented
here. However, it shows the potential of ear-EEG to measure
attentional effects of ISCs. When comparing the ISC sum scores
of cap-EEG with those of cEEGrid data, it becomes apparent
that the cEEGrid based ISC sum scores are less often above
chance. This is also the case for the ISC scores of the individual
components. The fact that fewer ISC scores are above chance
for cEEGrid data may be due to the lower number of channels
and their spatial coverage. In fact, cEEGrid electrodes do not
cover central parts of the scalp where ISCs are most prominently
expressed (Rosenkranz et al., 2021). Nevertheless, the ISC sum
scores were higher in the same than in the other condition for
33 out of 36 participants. In addition, the ISCleft and ISCright
sum scores enabled us to accurately classify to which audio
book a participant attended to. These results demonstrate for
the first time the sensitivity of around-the-ear EEG to attentional
effects in ISCs.

It has been shown that attentional effects of ISCs can also be
obtained based on other physiological data such as electrodermal
or heartbeat activity, yet less reliably than based on EEG (Brouwer
et al., 2019; Stuldreher et al., 2020; Pérez et al., 2021). However, in
terms of application, electrodermal and heartbeat activity were
preferred over traditional cap-EEG as those measures are easy to
apply and cost efficient. Here we show that the cEEGrid presents
a suitable candidate which fulfills both criteria–it can be used
to obtain reliable attentional effects in ISCs, and it can be easily
applied to unobtrusively measure one’s EEG. Thus, especially
the combination of cEEGrids with cost-efficient data acquisition
platforms such as the OpenBCI provide a setup that could be
used for research in everyday life scenarios (Knierim et al.,
2021). In addition, ISCs could also be based on a combination
of EEG, electrodermal, and heartbeat activity, which has been
shown to produce more accurate results than using EEG alone
(Stuldreher et al., 2022).

Spectral Entropy
The capacity to sustain attention in demanding tasks typically
declines over time, coinciding with an increase in mental fatigue
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(Moore et al., 2017). Spectral entropy has been proposed as
an objective measure of sustained attention (Lesenfants et al.,
2018). In line with this, we found a decrease in spectral
entropy over time. Since application of spectral entropy as a
marker of sustained attention is a fairly new approach, there
is limited evidence available to which we can compare our
results. However, spectral entropy computed in the frequency
range from 8 to 32 Hz strongly depends on alpha power (8–
12 Hz), which in turn has also been associated with attention
(Foxe and Snyder, 2011; Klimesch, 2012). The influence of alpha
power on spectral entropy is evident in Lesenfants et al. (2018).
They observed decreased alpha power and increased spectral
entropy when participants were actively attending to a flickering
stimulus compared to when the participants did not attend
to the presented stimulus. We also found this inverse relation
between alpha power and spectral entropy in the increase of
alpha power over time. Such an increase in alpha power over
time has been attributed to the depletion of attentional resources
(Wascher et al., 2014). Furthermore, alpha band activity has
been related to the suppression of task-irrelevant stimuli (Foxe
and Snyder, 2011; Klimesch, 2012). Thus, the increase in alpha
power and the decrease in spectral entropy might reflect the
growing need to suppress the ignored speaker when mental
fatigue accumulates.

Relation Between Attentional Measures
We found a positive relation between the attentional gain in
speech envelope tracking and the attentional effect of ISCs.
This suggests that both measures reflect similar phenomena.
Attended stimuli evoke a stronger neural response than ignored
stimuli (Picton and Hillyard, 1974). While speech envelope
tracking focuses on the aspect that the neural response
toward the speech envelopes is consistent over time within
a participant (Aiken and Picton, 2008), ISCs focus on the
aspect that the neural response toward the same external
stimuli is similar between participants, at least in sensory areas
(Hasson et al., 2004).

Spectral entropy on the other hand is not directly linked to
the neural response to the stimulus. When computing spectral
entropy in the frequency range from 8 to 32 Hz, the lower
frequencies, which are relevant for the brain to track the speech
envelope (Giraud and Poeppel, 2012) are neglected. Spectral
entropy may rather reflect a participant’s level of attention or
vigilance (Lesenfants et al., 2018), that is, the capability to be
aware and focus on external stimuli (van Schie et al., 2021). In
contrast, speech envelope tracking and ISCs capture selective
attention – the ability to select relevant and neglect irrelevant
information. This may explain why we did not find a correlation
between spectral entropy values and any of the two selective
attention measures. This does not mean that one’s level of
attention or vigilance does not influence one’s ability in selective
attention, but only states there may not be a direct linear relation.
In fact, Lesenfants and Francart (2020) showed that there is
a difference in one’s selective attention ability during periods
of high and low levels of attention/vigilance, but the exact
nature of a potential relation between the selective attention and
attention/vigilance needs to be further explored.

CONCLUSION

The current study provides clear evidence that attentional
measures to natural and continuous stimuli can be captured with
around-the-ear EEG recordings, as provided with the cEEGrid.
Ear-EEG opens up the possibility to capture neural traces of
attentional processes unobtrusively in realistic everyday life
scenarios. Future assistive devices could help those that have
difficulties attending to one stream of information in the presence
of distractor sounds.
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