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Damage to the myogenic 
differentiation of C2C12 cells by 
heat stress is associated with  
up-regulation of several 
selenoproteins
Jiayong Tang1,2, Aihua He1, Hui Yan3, Gang Jia1, Guangmang Liu1, Xiaoling Chen1, Jingyi Cai1, 
Gang Tian1, Haiying Shang1 & Hua Zhao1,2

This study was conducted to profile the selenoprotein encoding genes or proteins in mouse C2C12 cells 
and integrate their roles in the skeletal cell damage induced by heat stress (HS). Cells were cultured 
at 37.0 °C or 41.5 °C for 4, 6 or 8 days. The mRNA expression of 24 selenoprotein encoding genes 
and abundance of 5 selenoproteins were investigated. HS suppressed myogenic differentiation and 
impaired the development of muscle myotubes. HS down-regulated (P < 0.01) mRNA abundance 
of MYOD and MYOGENIN, and decreased (P < 0.01) MYOGENIN protein expression, HS elevated 
(P < 0.01) HSP70 and (P < 0.01) the ratio of BCL-2 to BAX at both mRNA and protein level. Meanwhile, 
HS up-regulated (P < 0.01–0.05) expressions of 18, 11 and 8 selenoprotein encoding genes after 4, 6 and 
8 days of hyperthermia, and only down-regulated (P < 0.01) DIO2 after 6 and 8 days of hyperthermia, 
respectively. Furthermore, HS influenced expression of selenoproteins and up-regulated (P < 0.01–
0.05) GPX1, GPX4 and SEPN1 after 6 days of HS. The damage to development of mouse skeletal muscle 
myotubes by HS accompanied with the up-regulation of both selenoprotein encoding genes and 
proteins, which suggested a potential protective effect of selenoprotein on hyperthermia associated 
damage in C2C12 cells.

The climate change with increased surface temperature on the earth occurs globally in the past decades. Heat 
stress (HS) has been is a challenge of the animal industry. HS can be simply defined as a condition in which the 
animal cannot dissipate excess heat in the body, either produced by itself or absorbed from the environment, 
to maintain its body thermal balance1. The disruption of thermal balance by HS negatively impacts animal’s 
physiology and performance including decreases in feed intake and milk yield, alterations in milk composition 
and carcass traits, growth retardation and reproduction disorders2–6, which severely influence the animal agri-
culture. Thus, HS induces financial burden globally7,8, and part of the economic distress derives from decreased 
carcass value. It has been documented over the past 40 years that the pig under HS has reduced muscle mass and 
increased adipose tissue9–11. Rats exposed to heat stress exhibit a subsequent retardation of muscle development12.

Skeletal muscle is the major component of edible animal products. Skeletal muscle is differentiated from satel-
lite cells and is highly adaptive to stress due to a remarkable regenerative capability, which is attributed to the high 
proliferation and differentiation rate of satellite cells. Myogenesis is a two-step process including determination of 
the muscle lineage committed from satellite cells and differentiation of committed myoblasts to myotubes13,14. The 
C2C12 cells derived from murine skeletal muscle cells is a well-established model to study muscle regeneration 
and differentiation15. In our study, C2C12 cells were used to investigate the response of skeletal muscle cells to 
heat stress during differentiation.
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During differentiation of C2C12 cells, myoblasts undergo remodeling to form mature myotubes in parallel 
with the increased expression of muscle specific genes16. This process requires activation of myogenic regula-
tory factors (MRF), including myogen termination gene (MYOD), MYOGENIN, MRF4, and myogenic factor 5 
(MYF5)17. 5′-AMP-activated protein kinase (AMPK) is well known as a sensor for cell energy status18–20 and plays 
an important role in muscle development that the activation of AMPK inhibits myogenesis and hypertrophy of 
skeletal muscle cells, and decreases muscle mass21. Heat stress has been associated with abnormality of cell func-
tion, including inhibition of protein synthesis, changes in protein folding and function, alteration in metabolism 
and membrane fluidity22,23. The nucleated cell responds to short period of (non-damaging) stress by synthesizing 
heat shock proteins (HSPs), a family of stress responsive protein. HSP70 is a well characterized marker of cellular 
stress responding to heat and other stressors in a variety of organism24. Increased cellular content of HSP70 pro-
tects cells from stress induced impairment16.

Selenium (Se) is a micronutrient essential for animals. Study shows that Se supplementation alleviates the neg-
ative effect of HS25. Selenium exerts most of its biological functions in the form of selenoproteins, which contain 
at least one selenocysteine (Sec) in their active center26. A total of 25 selenoprotein coding genes have been iden-
tified in mammals and 24 in rodents27,28. Selenoproteins have been involved in the regulation of redox balance, 
protection protein from oxidized damage, immunomodulatory, cell apoptosis, protein folding, and degradation 
of misfolded proteins in endoplasmatic reticulum (ER)29. Our previous studies showed that selenoprotein encod-
ing genes were influenced by HS in a porcine small intestinal epithelial cell line (IPEC-J2)30, which suggested 
that they play important roles in cells under HS. However, the metabolic impact of HS on skeletal muscle and 
expression of selenoprotein encoding genes remain unclear, and it is necessary to explore the impact of HS on 
expression of selenoproteins using skeletal muscle cells model.

C2C12 isolated from mouse lines by Yaffe and Saxel, which mimics the development of skeletal muscle in 
vivo, representing an excellent model to study myogenic regulation and response to stimuli14,31. Therefore, we 
conducted this to determine (1) impact of HS on myogenic differentiation in C2C12 cells; (2) effect of HS on the 
gene or protein expression of selenoproteins, myoblast differentiation-related protein, apoptosis-related protein 
and HSP70; (3) impact of HS on antioxidant attributes of C2C12 cells. The results may help to further explore the 
potential roles of selenoproteins in skeletal cells faced to HS.

Results
Effect of HS on C2C12 cell differentiation.  As shown in Fig. S1, serum starvation medium triggered 
myogenic differentiation as indicated by formation of myotubes after 4 days of induction, while HS impaired 
development of muscle myotubes that cells became round with dramatically decreased number of myotubes. 
Compared to control cells, the myotubes incubated at 41.5 °C were poorly formed (Fig. 1A). The fusion index 
was increased (P < 0.01) from 11.1% to 26.0% after 4, 6 and 8 days of incubation in control cells, whereas it was 
significantly decreased (P < 0.01) when cells were incubated at 41.5 °C (Fig. 1B).

Effect of HS on expression of differentiation-related genes and AMPK genes.  We further inves-
tigated effect of HS on mRNA and protein expression of MYOD, MYOGENIN, AMPKα1 and AMPKα2 in the 
differentiating C2C12 cells (Fig. 2). Compared to the CK groups, HS decreased (P < 0.01) mRNA expression 
of MYOD by 66%, 60%, 83%, and MYOGENIN by 66%, 63%, 83%, in C2C12 cells at day 4, 6, 8, respectively 
(Fig. 2A–C). HS also decreased (P < 0.01) the protein abundance of MYOGENIN by 47% at day 6 (Fig. 2D), 
confirming HS impairs C2C12 cell differentiation. HS increased AMPKα1 (P < 0.01) and AMPKα2 (P < 0.05) 

Figure 1.  Morphological changes of differentiated C2C12 cells after exposure to heat stress. (A) Representative 
images of differentiated C2C12 subject to HS. Blue color indicated DAPI-stained nuclei and red color indicated 
stained differentiated myotubes. Bars, 200 µm; (B) Changes of fusion index of C2C12 cells after exposure to heat 
stress. Each column shows means ± SE of 3 independent cultures (n = 3). **P < 0.01.
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mRNA profiles at day 4 (Fig. 2A), but decreased (P < 0.05) mRNA expression of AMPKα2 at day 8 (Fig. 2C) in 
differentiated C2C12 cells.

Effect of HS on expression of HSP70.  We investigated effect of HS on mRNA and protein levels of 
HSP70, which is a sensitive cellular indicator for heat stress. As expected, HS increased (P < 0.01) both mRNA 
(Fig. 3A) and protein (Fig. 3B) levels of HSP70 in differentiated C2C12 cells, respectively.

Figure 2.  Effect of HS on relative mRNA profiles of AMPKα1, AMPKα2, MYOD and MYOGENIN and protein 
level of MYOGENIN in the differentiated C2C12 cells. mRNA expression at day 4 (A); at day 6 (B); at day 8 (C); 
Protein level of MYOGENIN at day 6 (D). Values are means ± SE (n = 6 for genes and 3 for protein). **P < 0.01, 
*P < 0.05.

Figure 3.  Effect of HS on the mRNA (A) and protein (B) level of HSP70 in the differentiated C2C12 cells after 
incubation for 6 day. Values are means ± SE (n = 6 for mRNA and 3 for protein). **P < 0.01.
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Effect of HS on expression of selenoproteins.  We explored effect of HS on mRNA abundance of 24 
selenoprotein encoding genes in the myogenic differentiated C2C12 cells. HS increased (P < 0.05) mRNA pro-
files of 18 selenoprotein encoding genes (DIO2, GPX1, GPX3, GPX4, MSRB1, SELENOF, SELENOI, SELENOK, 
SELENON, SELENOO, SELENOP, SELENOS, SELENOT, SELENOW, SEPHS2, TXNRD1, TXNRD2, TXNRD3) 
at the early stage (day 4) (Fig. 4A). With prolonged HS challenge, the number of up-regulated selenoprotein 
encoding genes decreased. HS led to increases in mRNA expression of 11 selenoprotein encoding genes (GPX3, 
GPX4, SELENOI, SELENOK, SELENOM, SELENON, SELENOO, SELENOS, SEPHS2, TXNRD2, TXNRD3) at 
day 6 (Fig. 4B) and 8 genes (GPX1, SELENOI, SELENOK, SELENON, SELENOS, SEPHS2, TXNRD1, TXNRD2) at 
day 8 (Fig. 4D), respectively. Interestedly, DIO2 was up-regulated (P < 0.01) at early stage (day 4) of HS (Fig. 4A), 

Figure 4.  Effect of HS on relative mRNA levels of selenoprotein encoding genes in the differentiated C2C12 
cells. (A) The up-regulated selenoprotein genes under HS for 4 days; (B) The up-regulated selenoprotein genes 
under HS for 6 days; (C) The down-regulated selenoprotein genes under HS for 6 days; (D) The up-regulated 
selenoprotein genes under HS for 8 days; (E) The down-regulated selenoprotein genes under HS for 8 days. Data 
are means ± SE (n = 6). **P < 0.01, *P < 0.05.

Figure 5.  Effect of HS on the protein levels of GPX1, GPX4, SEPS1, SEPN1 and TRXR2 in the differentiated 
C2C12 cells after incubation for 6 day. Values are means ± SE (n = 3). **P < 0.01, *P < 0.05.



www.nature.com/scientificreports/

5SciEnTific ReporTS |  (2018) 8:10601  | DOI:10.1038/s41598-018-29012-6

while it was down-regulated (P < 0.01) at late stage (day 6 and 8) of HS (Fig. 4C,E). Furthermore, DIO2 was the 
only selenoprotein gene that was down-regulated in differentiated C2C12 cells under HS. The profiles of seleno-
protein encoding genes are shown in the Table S2.

We also investigated effect of HS on protein expression of 5 selenoproteins (GPX1, GPX4, SEPS1, SEPN1, and 
TRXR2) at day 6. Among those selenoproteins investigated, GPX1 and GPX4 have a higher distribution in skele-
tal tissues and SEPN1 is a selenoprotein relating to muscle development. As shown in Fig. 5, HS increased GPX1 
(P < 0.05), GPX4 (P < 0.05) and SEPN1 (P < 0.01) protein abundance, and decreased (P < 0.01) SEPS1 abundance 
while exhibited no effect on TRXR2 (P > 0.05) in the differentiated C2C12 cells. The limited availability of anti-
bodies in our Lab prevents us from exploring more selenoproteins in the present study.

Effect of HS on cell apoptosis.  To determine whether HS induces apoptosis in differentiated C2C12 cells, 
we investigated effect of HS on expression of BCL-2 and BAX (Fig. 6). The results showed that HS increased both 
mRNA abundance (P < 0.01) (Fig. 6A) and protein levels (P < 0.05) (Fig. 6B) of BCL-2 and BAX. The ratio of 
BCL-2/BAX at mRNA and protein level (Fig. 6C) was also significantly increased (P < 0.01) by HS.

Effect of HS on antioxidant attributes in C2C12 cells.  To determine whether HS induces oxidative 
stress in differentiated C2C12 cells, effect of HS on activity of glutathione peroxidase (GSH-Px), total super-
oxidase dismutase (T-SOD), and concentration of malondialdehyde (MDA) in differentiated C2C12 cells were 
investigated, and results are shown in Table 1. Compared to control cells, HS challenge for 6 days significantly 
increased (P < 0.01) the activity of T-SOD while had no effect on activity of GSH-Px. MDA is an indicative for 
oxidative stress in cells or organism. The results showed that HS decreased (P < 0.01) the levels of MDA in C2C12 
cells.

Figure 6.  Effect of HS on the mRNA and protein levels of BAX and BCL-2 in the differentiated C2C12 cells 
after incubation for 6 day. (A) The mRNA abundance of the BAX and BCL-2 (n = 6). (B) The protein levels of 
BAX and BCL-2 (n = 3). (C) The mRNA and protein ratio of BCL-2 to BAX. Values are means ± SE. **P < 0.01, 
*P < 0.05.

Measures CK HS P value

GSH-Px (U/mg prot) 5.54 ± 1.09 6.86 ± 0.42 0.14

MDA (nmol/mg prot) 1.90 ± 0.09 1.54 ± 0.07 <0.01

T-SOD (U/mg prot) 3.35 ± 0.14 30.88 ± 1.57 <0.01

Table 1.  Effect of HS on antioxidant measurements. Values are means ± SE (n = 6).
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Discussion
In this study, our target was to investigate effect of HS on the expression of selenoproteins in differentiating 
C2C12 mouse myoblast. Firstly, we investigated the effect of HS on myogenic differentiation of C2C12 cells. HS 
impaired the differentiation of C2C12 cells as shown by the suppression of myotube formation in a hyperthermia 
condition (Fig. 1). Similar results were reported in mouse study that HS impeded the development of myotube 
in skeletal muscles16. Myotubes were poorly formed when primary human skeletal muscle culture cells, human 
skeletal muscle myoblasts (HSMMs), and C2C12 mouse myoblasts were cultured at 41 °C32.

We investigated expression of two myoblast differentiation-related genes. MYOD is essential for skeletal mus-
cle differentiation33 through mediating the expression of some muscle-specific genes34. Previous study showed the 
absence of MYOGENIN resulted in a deficiency of muscle fiber despite muscle cell migration and commitment31. 
In our study, HS decreased expressions in both mRNA and protein levels of MYOD and MYOGENIN, indicating 
that HS suppressed the myogenic differentiation of C2C12 cells. We also investigated expression of two AMPK 
genes. Interestingly, we found HS increased the mRNA expression of AMPKα1 and AMPKα2 at day 4, while 
decreased AMPKα2 at day 8. The up-regulation of AMPKα1 and AMPKα2 at early stage of HS (at day 4) may 
reflect an increased energy requirement for adaption of metabolism and cell survival. With prolonged HS, cells 
gradually lost the adaptive function as cell impairment occurred (Fig. 2C).

Heat shock proteins are considered as a cellular thermometer, which is frequently used to evaluate HS 
response35. HSPs are expressed globally in a variety of species and are required for cell survival under stress36. The 
previous studies showed a significant increase in the induction of HSPs, mainly HSP70 and HSP90, in different 
tissues and cells under HS37,38. Increased cellular HSPs can provide cytoprotection against subsequent stresses16. 
HSP70 is the most ubiquitous chaperones and is highly conserved in all organisms39. Thus, it has been frequently 
used to characterize stress response to heat and other stressors in different organisms24,40. It was not surprising 
that HS increased gene and protein expression of HSP70 (P < 0.01) in the differentiated C2C12 cells (Fig. 3), 
which was consistent with previous studies30,41.

Selenoprotein encoding genes encode for selenocysteine-containing proteins (selenoproteins), which are 
involved in a variety of functions including redox homeostasis regulation28. However most of their functions 
are still unknown. Our previous study showed that both mRNA and protein expression of selenoprotein encod-
ing genes were influenced by HS for 24 h in IPEC-J2 cells, and 4 selenoprotein genes (GPX3, DIO2, SELENOK, 
SELENOS) were up-regulated (P < 0.05) and six selenoprotein genes (GPX2, GPX6, TXNRD1, SELENOH, 
SELENOM, MSRB1) were down-regulated (P < 0.05 or as indicated) in IPEC-J2 cells by HS30. Interestingly, in 
this study, selenoprotein encoding genes (except DIO2) were globally up-regulated by HS in C2C12 cells, which 
suggesting their potential roles against HS-induced cell damage (Fig. 4). The numbers of these up-regulated genes 
decreased from 18 to 8 genes from day 4 to day 8 indicating decreased metabolism with exposure duration of HS. 
It was reported that genes related to cell survival will be turned on, while more unessential genes may be turned 
off under stress conditions42.

Among those selenoproteins influenced by HS, GPXs contribute to antioxidant system in mammals43. GPX1 
deficiency is correlated with increased susceptibility to oxidative stress44. The increased expression of GPX3 may 
contribute to detoxify reactive oxygen species (ROS) such as phospholipid hydroperoxide and hydrogen peroxide 
induced by HS45. In this study, HS increased expression of GPX1, GPX3, and GPX4 in the differentiated C2C12 
cells, indicating the potential protective effects of these selenoproteins in muscle cells against HS.

SELENOK, SELENOM and SEPS1 are endoplasmic reticulum (ER) transmembrane proteins. SELENOK is 
an ER stress-regulating protein, which modulates cellular redox balance46,47. SELENOM acts as a thiol-disulfide 
oxidoreductase involved in protein folding48. SEPS1 induces production of inflammatory cytokines and protects 
the cell compartment from oxidative stress49. The up-regulation of SELENOS, SEPHS2 and SELENOK in our 
study suggested an important role of these selenoproteins in protecting cells from the damage of HS. Although 
mRNA expression of SELENOS was up-regulated, protein level of SEPS1 was down-regulated when cells were 
challenged with HS for 6 days (Fig. 5). SEPN1 has been involved in muscle physiology as a key regulator of 
satellite function50–52. SEPN1 shows a high expression during the proliferation of fibroblast and myoblast, but it 
decreases when myoblasts differentiate into myotubes53. Absence of SEPN1 was associated with high susceptibil-
ity to H2O2-induced oxidative stress, leading to cell death54. The increased SEPN1 expression by HS in differenti-
ated C2C12 cells suggested SEPN1 may protect C2C12 cells from HS.

Thioredoxin (TRX) is an antioxidant that reduces oxidized moieties55. Thioredoxin reductases (TRXRs) 
are crucial to regenerate reduced TRX to maintain balance between reduced and oxidized molecules56,57. The 
up-regulation of TXNRD1, TXNRD2 and TXNRD3 in C2C12 cells suggested that TRX might contribute to main-
tain the redox balance in muscle cells under HS, these may partly explained why MDA were not increased in the 
stressed cells (Table 1). The protein levels of TRXR2 were not decreased by HS at the 6th day (Fig. 5), implying a 
physiological necessity for a constant expression of TRXR2 to deal with HS.

Iodothyronine deiodinase 2 (DIO2) converts thyroxine (T4) to bioactive 3,5,3′-tri-iodothyronine (T3) to ini-
tiate the action of thyroid hormone58. DIO family is comprised of 3 isoforms, DIO1, DIO2 and DIO3. DIO2 was 
the only selenoprotein encoding gene that was down-regulated by HS in C2C12 cells. It has reported that T3 
generated from T4 by DIO2 is key to maintain C2C12 cells differentiation, and T3 were essential for the enhanced 
transcription of MyoD59. In the present study, decreases expression of DIO2, MYOD and MYOGENIN is con-
sistent with the low level of differentiation under HS. Thyroid hormone improves critical protein synthesis60, 
however cells may have to decrease cell metabolism to survive with extended HS61, which may partly explain the 
down-regulation of DIO2 (P < 0.01) at late stage (Fig. 4C,E).

Hyperthermia investigations at cellular level showed some types of cell underwent apoptosis in response to 
heat stress22. BCL-2 genes play important roles in regulating apoptosis, including antiapoptotic protein BCL-2 
and proapoptotic protein BAX62. The ratio of BCL-2 to BAX represents the level of apoptosis63. We found that HS 
increased (P < 0.01) ratios of BCL-2/BAX at both mRNA and protein level in C2C12 cells, which were consistent 
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with previous study in C2C12 cells64. Increased BAX may indicate apoptosis, and increase in the BCL-2/BAX ratio 
would indicate the anti-apoptosis. The up-regulation of selenoproteins may contribute to anti-apoptosis and pre-
vent cells underwent apoptosis by HS. ROS generated through a variety of extracellular and intracellular actions 
has drawn attention as novel signal mediator involved in growth, differentiation, progression, and death of cells65. 
A previous study has shown that HS caused overproduction and accumulation of ROS, leading to the impairment 
of cells66. Chicken exposed to HS resulted in a significant increase in activities of SOD, CAT and GPx67. In the 
present study, HS greatly increased activity of T-SOD in C2C12 cells, while decreased levels of MDA (Table 1). 
GSH-Px showed no response, however it increased in value (P = 0.14) by HS. MDA is used as a biomarker to 
measure the level of oxidative stress in an organism68, and the decreased levels of MDA indicate cells were not in 
an oxidative stress condition. Our previous results shows that HS has limited effect on antioxidant measurements 
in porcine IPEC-J2 cells, and MDA exhibits a decreasing tendency in HS stressed cells30. It seems oxidative stress 
is not the major factor for C2C12 cells damages induced by HS, possibly the up-regulation of selenoprotein 
encoding genes contribute to preventing the increasing of MDA.

In summary, HS impairs the differentiation of C2C12 cells and induces selenoprotein responses. Although 
information available concerning the relations between selenoproteins response and HS in skeletal muscle was 
still limited, studies yet elucidated was that the increased mRNA and protein expression of HSP70 protected cells 
from heat stress. Therefore, many selenoprotein encoding genes or proteins were up-regulated in C2C12 cells 
under HS, which implied the potential protective effect of these selenoproteins against the impairment induced 
by hyperthermia. The results may also implied the potential of these selenoproteins act as target genes or protein 
be used to further investigate the effect of husbandry temperature on meat quality or production.

Materials and Methods
Cell culture.  The C2C12 mouse myoblast cell line was maintained in medium (DMEM; Gibco, USA) contain-
ing 1% penicillin-streptomycin (Gibco, USA) and 10% (v/v) fetal bovine serum (FBS; Gibco, USA). 1 × 105 cells/
well of cells were seeded in 12-well plates and cultured at 37 °C under 5% CO2. After reaching to 80% confluence, 
cells were divided into two groups: cells in control group (CK) were cultured at 37 °C, while cells in HS group 
(HS) were exposed to a hyperthermia condition at 41.5 °C. Meanwhile, differentiation were triggered by replacing 
10% FBS to 2% horse serum (Gibco, USA), and cells were cultured for another 4, 6 or 8 days. The differentiation 
media were changed every two days.

Immunofluorescence staining.  After HS treatment for 4, 6, 8 days during differentiation, cells were 
washed with warm PBS (37 °C) and fixed in 4% paraformaldehyde at room temperature for 30 min and then 
applied for immunofluorescent staining for myotubes and 4,6-diamidino-2-phenylindole (DAPI) staining for 
nuclei as described by Yamaguchi et al.32. The primary antibody was mouse anti-MyHC (1:200; Zen BioScience, 
China) and the secondary antibody was fluorescence-conjugated goat anti-mouse IgG (1:1000; Millipore, 
USA). The immunofluorescence stained cells were examined with fluorescent microscope (DMI 4000B; Leica, 
Germany). The fusion index was defined and determined according to Yamaguchi et al.32.

Real-time quantitative PCR analyses.  After HS treatment for 4, 6, 8 days during differentiation, the cells 
were harvested for total RNA extraction using TRIzol (Invitrogen, USA). Two wells of cells were pooled together 
and in each treatment six samples were collected (n = 6). The qPCRs procedure and relative mRNA abundance 
quantification were conducted as previously described using 2−ΔΔCt method30,69. For each measurement, all sam-
ples were run on the same plate. Primer Express 3.0 (Applied Biosystems, USA) was used for primers design and 
primers for 4 myogenic differentiation-related genes (AMPKα1, AMPKα2, MYOD and MYOGENIN), 24 seleno-
protein encoding genes, HSP70, 2 apoptosis-related genes (BAX and BCL-2), and 2 reference gene (β-ACTIN and 
GAPDH) are presented in Table S1.

Western blot analyses.  Cell culture and HS treatment were conducted as mentioned above, and cells for 
protein extraction were grown in 6-well plates. After HS treatment for 6 days, cells were harvested and protein 
was extracted using RIPA lysis buffer30. Each treatment contain three replicates (n = 3) and four wells of cells 
were pooled together for each replicate. Western blot was processed as described previously by our group30. 
The primary antibodies included MYOGENIN (1:800; Zen BioScience, China), HSP70 (1:5000; Abcam, USA), 
GPX1 (1:1000; Zen BioScience, China), GPX4 (1:2000; Zen BioScience, China), SEPS1 (1:800; Zen BioScience, 
China), SEPN1 (1:800; Proteintech, China), TRXR2 (1:800; Zen BioScience, China), BAX (1:5000; Proteintech, 
China), BCL-2 (1:800; Proteintech, China), and β-ACTIN (1:5000; Millipore, USA). The secondary antibodies 
were horseradish peroxidase-linked goat anti-rabbit IgG (1:10000; CST, USA) or goat anti-mouse IgG (1:20000; 
Millipore, USA). Electrochemiluminescence (ECL) was used to detect a specific protein signal and western blot 
bands were analyzed using Image Lab™ software system (Bio-Rad, USA).

Enzyme activity assays.  After HS treatment for 6 days, cells were harvested and digested with 0.25% 
trypsin. Samples (n = 6) were prepared as described previously30. Activity of GSH-Px, T-SOD and concentration 
of MDA were determined using corresponding kit according to the manufacturer’s instructions. Kits for GSH-Px 
(No. A005), T-SOD (No. A001–1–1) and MDA (No. A003-4) were purchased from Jiancheng Bioengineering, 
China, respectively. Protein concentration was determined by the BCA method. The optical density (OD) values 
were measured with an UV-visible spectrophotometer (SpectraMax 190, MD, USA).

Statistical analysis.  Independent t-test (SPSS for Windows 13.0, Chicago, IL) was used to determine the 
influence of HS on investigated index in C2C12 cells. Data are presented as means ± SE and significance level is 
set at P < 0.05.
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