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OBJECTIVE: This narrative review aims to discuss the potential applicability of 
speckle-tracking echocardiography (STE) in patients under mechanical ventilation 
(MV) and mechanical circulatory support (MCS). Both its benefits and limitations 
were considered through critical analyses of the current available evidence.

DATA SOURCES AND STUDY SELECTION: A literature search was conducted 
in PubMed and Excerpta Medica Database indexed databases (2012–2021). In 
addition, the reference lists of all selected studies were manually scanned for fur-
ther identification of potentially relevant studies.

DATA EXTRACTION: The terms “Speckle-Tracking Echocardiography,” 
“Mechanical Ventilation,” “Mechanical Circulatory Support,” “Extracorporeal 
Membrane Oxygenation,” “Ventricular Assist Devices,” and “Left Ventricular 
Unloading Devices” were searched for the identification of relevant articles for 
narrative synthesis.

DATA SYNTHESIS: STE is a well-established post-processing method of ana-
lyzing myocardial function, with potentially greater clinical utility than conventional 
2D echocardiography. STE has been incorporated into the guideline recommen-
dations for both the diagnostic and prognostic evaluations of myocardial and val-
vular pathologies. However, the potential of STE application within critical care 
settings has not yet been fully realized. Its utility in the assessment of patients 
undergoing MV and MCS is substantial. Specifically, it may serve as an ideal 
modality in the assessment of subtle changes in cardiac function. In the limited 
number of studies reviewed, STE was consistently a more sensitive marker of my-
ocardial functional change, compared with traditional markers of 2D and Doppler 
parameters during changes in MV and MCS.

CONCLUSIONS: Although current evidence is extremely limited, STE strain is 
suggested to be a more sensitive and reproducible parameter of myocardial func-
tion than conventional echocardiographic parameters and may have value in the 
assessment of patients undergoing MV and MCS in critical care settings. Further 
studies in larger populations are required to elucidate STE’s prognostic capability 
and its value as a point-of-care tool in guiding clinical practice for subjects under 
MV and MCS.

KEY WORDS: critical care; mechanical circulatory support; mechanical ventilation; 
myocardial deformation; myocardial strain; speckle tracking echocardiography

Speckle-tracking echocardiography (STE) is a promising postprocessing 
tool for the quantitative analysis of myocardial function, which provides 
significant incremental value to conventional 2D echocardiography (1–4). 

Although conventional echocardiographic parameters, such as ejection fraction 
(EF), evaluate cardiac function based on blood volume in the cardiac chamber, 
STE can assess heart function based on the direct measurement and quantification 
of myocardial deformation (5). This unambiguous measurement of myocardial 

Kei Sato, MD1,2

Jonathan Chan, MBBS, PhD, 
FRACP, FRCP, FSCCT, FACC3,4

Vinesh Appadurai, MBBS3

Nchafatso Obonyo, MD, PhD1,2,5,6

Louise See Hoe, PhD1,2

Jacky Y. Suen, PhD1,2

John F. Fraser, MBChB, PhD, 
FRCP(Glas), FRCA, FFARCSI, 
FCICM1,2,7

Exploration of the Utility of Speckle-Tracking 
Echocardiography During Mechanical 
Ventilation and Mechanical Circulatory Support

NARRATIVE REVIEW

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sato et al

2     www.ccejournal.org April 2022 • Volume 4 • Number 4

deformation improves the sensitivity of the assessment 
and allows detection of subtle changes in subclinical 
myocardial and valvular dysfunction. In addition, STE 
parameters can be assessed in a semiautomated man-
ner, which improves its reproducibility by decreasing 
interobserver variability (6). The angle-independent 
strain measurement derived from STE has also over-
come the flaw of the conventional tissue Doppler strain 
measurement and enabled evaluation of global and re-
gional myocardial deformations in a multidirectional 
manner (1). As a result, STE can evaluate cardiac func-
tion with increased sensitivity, and higher reproduci-
bility than conventional methods (6). The application 
of STE has gradually increased in clinical settings, such 
as ischemic heart disease (7), valvular heart disease (8),  
and cardiomyopathy (9–11). However, the utility of STE 
in critical care settings (12) remains extremely limited, 
especially during mechanical ventilation (MV) and me-
chanical circulatory support (MCS) (13). In this narra-
tive review, we summarize the current evidence on the 
utility of STE in subjects undergoing MV and MCS, and 
discuss potential applicability of STE for these condi-
tions by considering its benefits and limitations.

BASICS OF STE

Principle

STE is a common technique for measuring myocardial 
deformation in terms of strain, that is, the amount of 
lengthening, shortening, and thickening of myocardial 
fibers (13). Strain can be measured using dedicated 
software by tracking the dots called “speckles” in the 
gray-scale echocardiographic images, which repre-
sents the backscatters of myocardial fibers (14). Strain 
is expressed as a fractional length (L) change between 
systolic and diastolic phases (15) (Fig. 1).

Different Types of Strain

There are several parameters for STE strain analysis 
depending on the cardiac chambers measured: left 
atrium (LA), left ventricle (LV), right atrium (RA), 
or right ventricle (RV), and the orientation of my-
ocardial fibers. Since some strain parameters are 
denoted by negative values, there is often confusion 
in describing increases or decreases in strain. In order 
to overcome this, strain changes are described by ei-

ther an “increase” or “de-
crease” in the “absolute 
value” of strain, as per 
the recommendations of 
the American Society of 
Echocardiography  (ASE) 
and the European 
Association of 
Cardiovascular Imaging 
(EACVI). Thus, increased 
strain indicates improved 
contraction, and vice 
versa.

Left Ventricular Strain.
Global longitudinal strain. 
Global longitudinal strain 
(GLS) is the most widely 
used parameter in clinical 
practice. LV GLS is reflec-
tive of the length change of 
myocardial fibers in the lon-
gitudinal axis and acts as a 
measure of LV contraction 
(17). Echocardiographic 
images and normal value 

Figure 1. The mechanism of how to measure strain in speckle-tracking echocardiography. A, LV 
short-axis view taken by transthoracic echocardiography. B, A magnified view of image 1 (LV lateral 
wall), depicting “Speckles” as a group of dots. C, Speckles are arranged into blocks to be tracked 
frame-by-frame (1, 16). D, Speckles are tracked between end-diastolic and systolic phases, and the 
length (L) of myocardium is measured to calculate strain (15). LV = left ventricle.
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of GLS (18) are shown in Supplemental Figure 1 
(http://links.lww.com/CCX/A957). The clinical appli-
cability of GLS is supported by a strong body of evi-
dence due to its high reproducibility and it reflecting 
the bulk of myocardial fibers. In particular, GLS has 
demonstrated superior prognostic value than LV EF 
in acute heart failure patients (19) and facilitates more 
prompt interventions in patients with non–electrocar-
diogram ST-segment elevation myocardial infarction 
(20). Fifty case-experiences have been demonstrated to 
be sufficient for novices to achieve expert-level compe-
tency in reporting GLS (21).

Global circumferential strain and global radial strain. 
LV global circumferential strain (GCS) and global ra-
dial strain (GRS) are both deformation parameters 
reflective of LV contraction mechanics but differ in 
that GCS reflects changes in length observed in the 
circumferential axis and GRS in thickness observed 
in the radial axis of myocardial fibers in the para-
sternal short-axis view. Echocardiographic images and 
normal values for LV GCS and GRS (18) are shown 
in Supplemental Figure 1 (http://links.lww.com/CCX/
A957). Due to their limited reproducibility and greater 
normal ranges, GCS and GRS have had less clinical ap-
plication than GLS (17, 18).

Left Atrial Strain. LA strain analysis evaluates 
three parameters based on the different phases of 
the cardiac cycle: reservoir, conduit, and contraction 
strains (3). LA reservoir strain is of clinical signifi-
cance as studies have suggested that it has a greater 
accuracy and sensitivity in assessing LV diastolic 
function compared with the currently used param-
eter, LA volume index (22, 23). Echocardiographic 
images and normal ranges of LA strains (24) are 
shown in Supplemental Figure 1 (http://links.lww.
com/CCX/A957). LA strain measured by novice 
observers has a high degree of intraobserver re-
producibility (intraclass correlation coefficients for 
strain values greater than 0.88), with only a one-
time, 30-minute education session on three con-
secutive patients (25). Furthermore, the LA strains 
of patients with atrial fibrillation or atrial flutter  
(n = 56) may potentially be a predictor of successful 
recovery following electrical cardioversion (26).

Right Ventricular Strain. RV longitudinal strain (LS) 
should be measured using the RV-focused apical four-
chamber view to improve reproducibility (3). The ASE/
EACVI/Industry Task Force recommends reporting 

RV free-wall strain without computing for the inter-
ventricular septum as the standardized measurement, 
while inclusion of the intraventricular septum in the 
computation of RV global longitudinal strain (GLS) is 
optional (3). The echocardiographic images and normal 
range of RV strains (27) are shown in Supplemental 
Figure 1 (http://links.lww.com/CCX/A957). Of signif-
icance, one study suggested RV LS to be a potentially 
superior predictor of 30-day mortality in acute pulmo-
nary embolism than conventional echocardiographic 
parameters such as RV fractional area change (FAC) 
and tricuspid annular plain systolic excursion (28). At 
least 100 studies are required to achieve expert compe-
tency for independent RV strain reporting (29).

Factors Affecting Strain Parameters

A clinical advantage of strain parameters over conven-
tional echocardiographic measurements is its higher 
sensitivity to subtle functional changes, and it is im-
portant to understand factors affecting strain values in 
interpreting strain data (13).

Effects of Hemodynamics on Strain.
Preload. The effect of preload on strain values aligns 
with the Frank-Starling law, that is, prestretched myo-
fibers may increase the maximal force of myocardial 
contraction in the absence of cardiac dysfunction (13). 
In the gravitational stress simulation study by Negishi 
et al (30), tilt-induced increases in gravitational stress 
were found to significantly reduce the absolute GLS 
and GCS in 13 healthy subjects (GLS: from –19.8% ± 
2.2% to –14.7% ± 1.5%; GCS: from –29.2% ± 2.5% to 
–26.0% ± 1.8%; both p < 0.001), reflecting the reduced 
preload, whereas LV EF showed no significant change.

Afterload. An animal model study (16 pigs, weight-
ing 28 ± 4 kg) that assessed the influence of an acute 
increase in afterload induced by aortic banding found 
a decrease in LV LS (31). In addition, several clinical 
studies demonstrated that in conditions of chroni-
cally elevated afterload, such as systemic hyperten-
sion, aortic stenosis, and pulmonary hypertension, LV 
LS was also reduced but not detected by conventional 
echo parameters (32–34).

Heart rate. Increased heart rate (HR) decreases ven-
tricular filling time, leading to reduced stroke volume 
and reduced myocardial strain (13).

Effects of Geometry, Tissue Characteristics, and 
Desynchrony on Strain. Ventricular geometric factors 
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in conditions such as cardiac dilatation and cardiac hy-
pertrophy can decrease the absolute value of GLS (13).  
Myocardial tissue characteristics such as fibrosis and 
depositions may also decrease the absolute value of 
strain in condition of ischemic disease with scarring, 
cardiac amyloidosis, and hypertrophic cardiomyop-
athy (13). In addition, in homogeneous myocardial 
activation resulting from conduction delays, dyssyn-
chrony can also reduce the absolute value of LS due to 
mismatched timing of each LV wall contraction (13).

STE IN MECHANICAL VENTILATION

Effects of Mechanical Ventilation on 
Hemodynamics and Cardiac Function

Effects of MV on Preload. MV changes the negative 
intrathoracic pressure into positive pressure for ven-
tilation. This change can increase the RV surrounding 
pressure in the thoracic cavity, resulting in a reduction 
of venous return, hence decreasing RV preload (35, 36).  
Venous dilation caused by general anesthesia (GA) 
may also lead to further reduction of preload (37).

Effects of MV on RV Afterload. RV afterload is de-
pendent on the extent of positive-pressure ventilation. 
During mechanical inspiration with an appropriate 
inflation pressure, the increased lung volume causes 
the pulmonary vasculature to distend, resulting in a 
decreased pulmonary vascular resistance (PVR), and 
thus a declined RV afterload (38). Reverse hypoxic 
vasoconstriction due to an improvement of oxygena-
tion by MV will also reduce RV afterload. In contrast, 
if breathing pressure is excessive, the overinflated lung 
will compress the pulmonary capillaries and conse-
quently increase PVR reflected as RV afterload (38).

Effects of MV on LV Afterload. LV afterload is the re-
sistance against ventricular ejection and is dependent on 
the aortic elastance and the overall resistance of artery 
trees (39). During MV with positive-pressure inflation 
or positive end-expiratory pressure (PEEP), inspiration 
increases pleural pressure and decreases LV transmural 
pressure. This may lead to a decreased LV afterload, 
facilitating LV ejection. However, this increased LV 
ejection is limited by the decreased venous return men-
tioned above (effects of MV on preload) (40).

In summary, positive airway ventilation and PEEP 
induce various changes in cardiac output depend-
ing on preload, afterload, and the state of heart func-
tioning. Therefore, physicians need to consider these 

factors to avoid misinterpreting data and making erro-
neous decisions.

Available Literature on STE Application  
in Patients Under Mechanical Ventilation

Seven studies related to the application of STE for 
cardiac assessment under MV are summarized in 
Supplemental Table 1 (http://links.lww.com/CCX/
A958) (41, 42). All were conducted as single-center 
studies in a limited number of patients, with one being 
a preclinical study.

Franchi et al (43) reported that RA, RV, and LA strain 
values significantly decreased along with reduced car-
diac output during PEEP titration (PEEP 0–15 mm 
Hg), whereas LV LS remained stable. This implies that 
the reduction in cardiac output that occurred with 
incremental PEEP was preload-related rather than 
contractility-related (43). In contrast, some reported 
that MV and GA were significantly associated with the 
lower absolute value of LV strain (37, 44). However, 
the interpretation of LV strain requires caution, as 
changes in LV preload or afterload frequently induce 
baroreceptor-mediated counterregulatory alterations 
in cardiac sympathetic activity. This may increase or 
decrease cardiac contractility depending on the hemo-
dynamic conditions, thus affecting LV strain (44).

STE parameters have been applied in a small number 
of studies investigating subjects on MV. Ruiz-Bailén et 
al (45) reported that STE combined with dobutamine 
stress-echocardiography may discriminate weaning 
success from MV in heart failure patients during the 
recovery stage. In addition, Cameli et al (46) reported 
that LA strain may be a better predictor of LV filling 
pressure than the conventional echo parameter (E/e’), 
along with a better correlation with pulse pressure var-
iation, which is a dynamic index of fluid responsive-
ness. Since both were merely pilot studies that aimed 
to explore novel applications of STE and involve nu-
merous confounding factors, further investigations are 
warranted.

In summary, strain values under MV are strongly 
affected by preload and afterload, and the values 
should be interpreted with caution considering the 
loading conditions. There may be a potential for 
strain to detect latent cardiac dysfunction or fluid 
volume status under MV (Fig. 2). However, since 
available data surrounding this are limited, more evi-
dence is warranted.

http://links.lww.com/CCX/A958
http://links.lww.com/CCX/A958
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STE IN MECHANICAL CIRCULATORY 
SUPPORT (MCS)

Venoarterial Extracorporeal Membrane 
Oxygenation

Venoarterial extracorporeal membrane oxygenation 
(VA-ECMO) is one of the MCS device configurations 
for supporting cardiogenic shock patients (47, 48). 
Despite decades of clinical use, VA-ECMO weaning 
failure is still a significant problem, and the inhospi-
tal mortality following weaning is around 40% (49). 
The current lack of effective and reliable imaging 
techniques to indicate optimal timing for successful 

weaning may be a contrib-
utor to weaning failure 
(50). Hence, STE strain 
parameters may facilitate 
a more accurate cardiac 
assessment to aid weaning 
success from VA-ECMO.

Effects of VA-ECMO 
on Hemodynamics 
and Cardiac Function. 
VA-ECMO decreases RV 
preload by draining blood 
directly from the RA. The 
drained blood returns to 
the artery, resulting in an 
increased arterial blood 
pressure and LV afterload.

Available Literature 
on STE Application in 
Patients on VA-ECMO. 
Four included studies 
explored the application 
of STE in patients under 
VA-ECMO. All were con-
ducted at a single-center 
and in a limited number 
of patients (Supplemental 
Table 2, http://links.lww.
com/CCX/A958) (51).

At the commence-
ment of VA-ECMO, the 
increased circuit flow rate 
decreases cardiac pre-
load and increases after-
load, and vice versa during 

VA-ECMO weaning (52). The resultant change in strain 
values in response to the modified preload and after-
load by VA-ECMO flow is complex, as discussed the 
Effects of Hemodynamics on Strain section. Therefore, 
the utility of STE strains for patients under VA-ECMO 
remains controversial.

In a cohort of adult patients undergoing VA-ECMO 
support postcardiovascular surgery (n = 111), Bartko 
et al (53) reported that RV free-wall strain was a pow-
erful predictor of mortality risk, including that of 
30-day mortality (adjusted HR, 0.41; 95% CI, 0.24–
0.68; p = 0.001) and long-term mortality (adjusted 
HR, 0.48; 95% CI, 0.33–0.71; p < 0.001) for a 1-sd  

Figure 2. Clinical implications of cardiac strains based on speckle-tracking echocardiography 
under mechanical ventilation and mechanical circulatory support. Created with BioRender.com. 
ECMO = extracorporeal membrane oxygenation, GCS = global circumferential strain, GLS = 
global longitudinal strain, LV = left ventricle, LVAD = left ventricular assist device, MV = mechanical 
ventilation, RV = right ventricle, STE = speckle-tracking echocardiography.

http://links.lww.com/CCX/A958
http://links.lww.com/CCX/A958
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(sd = –6%) change in RV free-wall strain. The authors 
suggest that the right heart and pulmonary circulation 
are of high prognostic value in predicting outcomes, 
with RV strain being an ideal indicator of RV function.

Furthermore, the study by Punn et al (54) on ech-
ocardiographic predictors of mortality in children 
weaning from VA-ECMO support (n = 21) reported 
that strain parameters, LV GLS and GCS, were not 
associated with mortality or requirement for heart 
transplant, unlike conventional echo parameters such 
as LV outflow tract velocity-time integral. However, 
the authors postulated that the suboptimal frame rate 
and acoustic image quality in STE analyses may have 
hindered the detection of subtle dysfunctions, conse-
quently influencing the outcomes.

In another study of 22 cardiogenic shock adult 
patients supported by VA-ECMO, Aissaoui et al (52) 
reported that LV LS was affected by stepwise decre-
ments of ECMO flow and, thus, was unable to predict 
the success of weaning from VA-ECMO. However, the 
investigators also observed that significant improve-
ments in LV systolic parameters (including strain 
values) during stepwise ECMO flow reduction were 
strongly associated with weaning success. Further 
studies are required to ascertain whether the observed 
variations in systolic measurements signified the pres-
ence of a load-dependent contractile reserve that fol-
lows the Frank-Starling law (52).

In summary, VA-ECMO has significant influences 
on cardiac preload and afterload; thus, strain param-
eters are significantly affected by its circulation flow. 
Certain strain parameters may be superior predictors 
for successful weaning compared with conventional 
echocardiographic parameters such as LV EF (Fig. 2). 
However, due to the paucity of evidence surrounding 
this, further studies are required.

Ventricular Assist Device

The left ventricular assist device (LVAD) constitutes a 
more durable support device as opposed to temporary 
MCS and has significantly improved the mortality of 
patients with severe heart failure. However, right ven-
tricle failure (RVF) has been reported to occur after 
LVAD implantation in approximately 30% of patients 
and remains a major cause of mortality following 
LVAD surgery (55). It is important to evaluate the RV 
reserve prior to LVAD implantation so that any existing 

latent RV dysfunctions are detected, and the treatment 
plan is revised as appropriate, such as a modification 
from LVAD alone to biventricular assist or direct heart 
transplantation.

Effects of LVAD on Hemodynamics and Cardiac 
Function. LVAD drains blood from the LV apex and 
returns it to the aorta, thereby decreasing intra-LV 
pressure, LV unloading, increasing arterial blood pres-
sure, and improving systemic blood perfusion (56). In 
addition, LVAD decreases RV afterload by reducing 
LA and pulmonary artery occlusion pressure, thereby 
improving both pulmonary and systemic circulations, 
resulting in potentially improving metabolic milieu 
and LV contractility (56). In the case of damaged RV, 
the increased preload may cause the RV septum to 
shift toward the LV. This deformation can impair RV 
contractility and relaxation, exacerbating RVF (57).

Available Literature on STE Application for Patients 
Requiring LVAD. Seven included studies investigated 
the application of STE on patients who required LVAD 
support, as shown in Supplemental Table 3 (http://links.
lww.com/CCX/A958) (58–61). Most were conducted at 
a single center and within a limited number of patients.

One study investigated the relationship between 
STE strains and LV/RV functions following an implan-
tation of pulsatile LVAD in children (n = 18, median 
age, 9 mo) (62). In this study, Iacobelli et al (62) re-
ported that LV function, measured by LVEF and GLS, 
and RV function, measured by FAC and free-wall 
strain, improved within the first and third months of 
implantation, respectively. However, both functions 
were reported to progressively decrease over time. 
Iacobelli et al (62) also suggest that both STE and con-
ventional echo parameters may capture biventricular 
interactions during LVAD support. Further studies are 
needed to verify whether STE measurements can fa-
cilitate the detection of earlier recovery or persistent 
dysfunction, which would be useful in guiding clinical 
decision-making.

In another study, Kato et al (55) prospectively inves-
tigated 68 patients that underwent elective LVAD 
surgery and suggested preoperative RV strain as a pre-
dictor for those that developed RVF at 14 d following 
the operation, with an accuracy of 76.5%. This con-
curs with findings from the meta-analysis conducted 
by Barssoum et al (63), which investigated the role of 
RV strain for the assessment of RV function following 
LVAD implantation (Fig. 2).

http://links.lww.com/CCX/A958
http://links.lww.com/CCX/A958
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In summary, STE strains may reflect subtle changes 
in cardiac function before and during LVAD support. 
In order to validate whether this facilitates patient 
selection for LVAD and other decision-making pro-
cesses, in particular whether initiating biventricular 
support or cardiac transplantation are required, fur-
ther validation studies are required.

Temporal LV Unloading Devices (Impella)

Effects of LV Unloading Devices on Hemodynamics 
and Cardiac Function. MCS such as VA-ECMO can 
cause an overload on the LV, leading to LV distention 
and attendant complications such as LV clotting and 
thromboembolism. LV unloading devices, such as 
Impella (Abiomed, Danvers, MA), are used to tempo-
rally decrease the LV interventricular pressure and re-
duce myocardial oxygen consumption (64).

Available Literature on STE Under Temporal LV 
Unloading Devices. Two included studies investigated 
the application of STE on patients under temporal LV 
unloading devices, specifically whether STE strains can 
evaluate how much the device can unload LV interven-
tricular pressure. Both studies were conducted at single 
centers, in a limited number of patients (Supplemental 
Table 4, http://links.lww.com/CCX/A958).

In an acute myocardial infarction model (pigs,  
n = 24) with reduced LV EF (mean, sd; 38.5 ± 9.2%), 
Hammoudi et al (65) reported that the absolute values 
of LV LS and circumferential strain significantly 
decreased after LV unloading by Impella  (Abiomed). 
Linear relationships between LV LS and stroke work 
were found, calculated by an invasive pressure-volume 
(PV) catheter. Similarly, Montisci et al (66) reported 
that LV GLS has the potential to assess the extent of 
LV unloading, whereas LVEF has been suggested to be 
insufficient for this purpose.

In summary, STE parameters may provide more pre-
cise estimates for the degree of LV unloading compared 
with conventional echo parameters, while being less in-
vasive than PV catheters (Fig. 2). However, the limited 
evidence available warrants further validation studies.

Limitation of STE in ICU Settings. First, the ev-
idence surrounding the utility of STE strain analysis 
in the presence of MV and MCS is extremely limited. 
Most of the available findings are based on individual 
single-center studies, thus may be prone to publication 
bias. Therefore, a cautious approach is required for the 
interpretation of findings.

Second, the impact of preload/afterload on STE 
strain parameters is comparable with or more signif-
icant than that of conventional echo parameters such 
as EF. However, the key difference between STE strains 
and conventional measurements is the higher sensi-
tivity and reproducibility observed in STE. To effec-
tively utilize this advantage in ICU settings, further 
studies are required.

Since there are technical requirements to enable the 
acquisition of quality images and accurate measures 
using STE, technology availability remains one of the 
limitations to its utility in critical care settings. With 
future technological advancements, there is potential 
for an increased uptake of STE in clinical settings.

High dependency on image quality. The accuracy 
of STE analysis is highly dependent on the obtained 
image quality. ICU settings are challenging to obtain 
the optimal image quality within a limited timeframe, 
frequently due to suboptimal acoustic windows of 
patients. As transesophageal echocardiography (TOE) 
imaging has been suggested as an effective technique 
for strain analysis (67, 68), STE analysis based on 
TOE may potentially increase its feasibility. In addi-
tion, contrast echocardiography may be incorporated 
to delineate endocardial borders, thereby increasing 
the accuracy of strain measurements and reducing 
interobserver variations under ECMO (69).

Time-consuming nature. As current STE predomi-
nantly uses offline software systems, the time required 
for acquisition of data and analysis is time-consuming. 
This process may be a deterrent to uptake in crit-
ical care settings. The emergence of advanced echo 
machines that have embedded software packages for 
real-time GLS measurements may further increase the 
feasibility of STE in clinical settings (70).

Dependency on frame rate. In critical care settings, 
patients commonly exhibit tachycardia due to condi-
tions such as shock or hyperthermia. The quality of 
STE analysis is dependent on frame rate, which needs 
to be increased in higher HR but consequently compro-
mises image resolution. Frame rate settings between 40 
and 80 frames/s are required to obtain precise strain 
values with STE (13).

CONCLUSIONS

There is currently insufficient evidence to support 
the utility of STE in subjects under MV and MCS. 
However, STE may provide more sensitive and 

http://links.lww.com/CCX/A958
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reproducible measures of myocardial function than 
conventional echocardiographic parameters, which is 
valuable in the assessment of cardiac performance in 
subjects under MV and MCS, provided that its afore-
mentioned limitations are considered. Further studies 
on larger cohorts are required to explore the diagnostic 
and prognostic value of STE in guiding clinical deci-
sions for subjects under MV and MCS.
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