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Abstract
Modelling blood flow in microvascular networks is challenging due to the complex nature of haemorheology. Zero- and one-
dimensional approaches cannot reproduce local haemodynamics, and models that consider individual red blood cells (RBCs) 
are prohibitively computationally expensive. Continuum approaches could provide an efficient solution, but dependence on 
a large parameter space and scarcity of experimental data for validation has limited their application. We describe a method 
to assimilate experimental RBC velocity and concentration data into a continuum numerical modelling framework. Imag-
ing data of RBCs were acquired in a sequentially bifurcating microchannel for various flow conditions. RBC concentration 
distributions were evaluated and mapped into computational fluid dynamics simulations with rheology prescribed by the 
Quemada model. Predicted velocities were compared to particle image velocimetry data. A subset of cases was used for 
parameter optimisation, and the resulting model was applied to a wider data set to evaluate model efficacy. The pre-optimised 
model reduced errors in predicted velocity by 60% compared to assuming a Newtonian fluid, and optimisation further reduced 
errors by 40%. Asymmetry of RBC velocity and concentration profiles was demonstrated to play a critical role. Excluding 
asymmetry in the RBC concentration doubled the error, but excluding spatial distributions of shear rate had little effect. This 
study demonstrates that a continuum model with optimised rheological parameters can reproduce measured velocity if RBC 
concentration distributions are known a priori. Developing this approach for RBC transport with more network configura-
tions has the potential to provide an efficient approach for modelling network-scale haemodynamics.

Keywords  Blood flow · Haemorheology · Red blood cells · Continuum modelling · Data assimilation · Inverse rheology · 
Particle image Velocimetry · Computational fluid dynamics · Microfluidics

1  Introduction

Cardiovascular diseases are the foremost cause of death 
globally, and central to many of these conditions are altered 
blood flow dynamics. Understanding haemodynamics and 
being able to accurately model it using numerical methods 
is therefore of importance for both research and clinical 
applications.

Blood rheology is determined predominantly by the red 
blood cells (RBCs), which are suspended in the plasma at a 
volume concentration (haematocrit) that varies throughout 
the vasculature, with an average of 45% in large vessels. The 

specialised, anuclear RBCs are highly deformable, allow-
ing them to fit through gaps significantly smaller than their 
resting size and to align with flow under high shear condi-
tions. RBCs also have a propensity to reversibly aggregate 
due to interactions with plasma proteins. Together, these 
RBC characteristics lead to shear thinning behaviour (Chien 
1970) that is highly dependent on the haematocrit (Merrill 
et al. 1963; Pries et al. 1992), amongst other parameters. In 
large ‘macrovessels’ (arteries and veins), the RBCs are suf-
ficiently small that their distribution can be considered uni-
form. Macrohaemodynamic analyses therefore typically treat 
blood as Newtonian or use shear-dependent non-Newtonian 
viscosity models. However, microvessels have diameters less 
than 100 μm–200 μ m, such that the RBCs are of comparable 
length scales to the vessel dimensions and the distribution of 
RBCs in the microvasculature is highly heterogeneous. As 
blood rheology is dependent on local RBC concentration, 
the rheological environment of microvessels is correspond-
ingly complex.
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As deformable particles, RBCs migrate radially away 
from the vessel walls, which is countered by margination 
due to collisions with other RBCs. The result is varying 
spatial distributions of RBC concentration (or haematocrit) 
across the vessel cross section, with generally lower haema-
tocrit adjacent to the vessel wall (Aarts et al. 1988; Moger 
et al. 2004). This phenomenon leads to a reduction in haem-
atocrit with tube diameter, known as the Fåhraeus effect. 
At bifurcations, side branches draw fluid from a region of 
the parent vessel with lower haematocrit, resulting in a net 
reduction in haematocrit in the side branch, referred to as 
the Zweifach–Fung or Bifurcation ‘law’. However, not only 
the average haematocrit, but also the distribution of RBCs 
within the side branch is changed, with haematocrit skewed 
towards higher values at the inner wall of the daughter 
branch (that closest to the bifurcation point). Although not 
widely addressed, this phenomenon can be seen in previous 
studies in vivo (Pries et al. 1989; Manjunatha and Singh 
2002; Ye et al. 2016), in vitro (Sherwood et al. 2014b; 
Shen et al. 2016) and in silico (Balogh and Bagchi 2017; 
Lykov et al. 2015; Ye et al. 2016; Zhou et al. 2021). Even 
on vessel scales where the continuum assumption breaks 
down ( ≈ 20 μm (Cokelet 1999)), the time-averaged haema-
tocrit distribution follows these characteristics, as demon-
strated elegantly in a numerical study of a capillary network 
(Balogh and Bagchi 2018).

Experimental studies of haematocrit distributions have 
predominantly been carried out in long straight capil-
lary tubes in vitro (Alonso et al. 1995; Pries et al. 1992) 
or selected regions of microvascular networks in vivo 
(Kim et al. 2007; Yalcin et al. 2011), where a large dis-
tance between bifurcations allows for a ‘cell-free’ or ‘cell-
depleted’ layer to develop at the walls (CFL or CDL, respec-
tively). In practice, even where a CFL has had sufficient 
distance to form, it will be disrupted at the next bifurcation 
and will take many vessel diameters to recover (Ye et al. 
2016), with high likelihood of another bifurcation occurring 
before this happens, dependent on the particular microvascu-
lar network of interest (Bishop et al. 2001; Luo et al. 2017; 
Zhou et al. 2021). Notably, even in 1969 Merrill noted:

‘It is surprising that in the literature so much emphasis 
has been placed on annular layers of clear plasma at 
the wall of the living vessel in spite of the cinemato-
graphic proof that under normal conditions no such 
layer exists’ (Merrill 1969).

Thus, while there are regions of microvascular networks 
with cell-free layers (particularly in smaller vessels), they 
are not present throughout. Furthermore, studies that char-
acterise the CFL often also assume a ‘core’ region (the 
region of the vessel that is not the CFL/CDL) with uni-
form haematocrit (Cokelet and Goldsmith 1991; Sharan 
and Popel 2001; Gould and Linninger 2015; Sriram et al. 

2014), although the haematocrit actually varies through-
out the vessel (Aarts et al. 1988; Moger et al. 2004; Passos 
et al. 2019). Hence, we contend that it is more appropri-
ate to consider the CFL as part of a continuous distribu-
tion of haematocrit that varies throughout a microvascular 
network. Experimental studies of haematocrit distribution 
in vitro (Aarts et al. 1988; Moger et al. 2004) and in vivo 
(Manjunatha and Singh 2002) provide evidence to support 
this approach. It should be noted that this paradigm assumes 
a time-averaged haematocrit value, such that instantaneous 
fluctuations caused by individual RBCs are smoothed out 
and thus not directly accounted for, and may break down for 
vessel scales smaller than 20 μm Cokelet (1999). Although 
the CFL (due to RBC migration) is not present throughout 
the microvasculature, there are reasons why the time-aver-
aged haematocrit in a region immediately next to the walls 
would be significantly reduced. Firstly, due to the finite size 
of RBCs, there is a region near the wall where the aver-
age haematocrit approaches zero reduced due to exclusion 
of RBC barycentres (Secomb 2017). Secondly, in vivo the 
endothelial surface layer (ESL) significantly inhibits flow in 
a region of ≈ 1 μm adjacent to the vessel wall (Pries 2005).

A large number of numerical approaches have been 
proposed to model the complex fluid environment of the 
microvasculature, all of which depend on empirical input 
parameters. In the most detailed ‘Finite RBC models’, 
RBC dynamics are simulated using techniques such as lat-
tice Boltzmann, immersed boundary or dissipative particle 
dynamics (see reviews from, for example, Arciero et al. 
2017; Freund 2014; Gompper and Fedosov 2016; Omori 
et al. 2014). These models are dependent on various input 
parameters ( ai , Fig. 1a) describing RBC deformation as 
well as RBC aggregation (via imposition of attractive forces 
between RBCs). Through coupling with Navier–Stokes anal-
ysis of the suspending medium (plasma, typically treated as 
Newtonian), the location, velocity and orientation of RBCs 
can be calculated. Such modelling approaches are increasing 
in elegance and efficiency, but are fundamentally restricted 
by the large number of RBCs, even at microvessel scales. A 
vessel section such as investigated in this study would con-
tain 7000 RBC at a given moment in time, with a turnover 
rate of 1 s. As a result, even with supercomputing, finite 
RBC modelling is limited by computational expense and 
hence typically applied to simulation in two dimensions 
(Ye et al. 2016), at vessel scales below ≈ 30 μm in three 
dimensions (Balogh and Bagchi 2017; Freund and Vermot 
2014; Lykov et al. 2015) or at low haematocrits (Zhou et al. 
2021). For larger vessels, finite RBC approaches have pre-
dominantly been used to model long, straight vessel sections 
using periodic boundary conditions for efficiency (Lei et al. 
2013).

At the other end of the scale, modelling of microvascular 
networks tends to use simplified phase separation models 
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(Pries et al. 1989; Rasmussen et al. 2018), with empirical 
relationships for distribution of average haematocrit at bifur-
cations (Zweifach–Fung ‘law’, parameters bi , Fig. 1b) and 
haematocrit and vessel diameter-dependent viscosity ( ci , 
Fig. 1b). The parameters bi and ci are typically based on a 
few in vivo animal studies in accessible organs and thus do 
not account for differences between organs and mechanical 
properties of RBCs in different species. Such models are 
extremely computationally efficient and able to reproduce 
network-scale parameters, but are not able to recapitulate 
local distributions (Rasmussen et al. 2018).

Between these two extremes lies a range of continuum 
modelling approaches, wherein local viscosity is dependent 
on both local shear rate and local haematocrit (Chebbi 2018; 
Jung and Hassanein 2008; Mansour et al. 2010; Schenkel 
and Halliday 2020; Xu and Kleinstreuer 2019). These mod-
els can be solved using established finite volume solvers 
and require (1) momentum equations (Navier–Stokes) for 
the mixture or mixture components (plasma and RBCs), (2) 
a transport equation to describe the RBC behaviour (advec-
tion, shear-induced diffusion, migration away from walls 
and down shear and viscosity gradients) and (3) a viscosity 
model to couple the local viscosity to the local shear rate and 

Fig. 1   Block diagrams of different approaches to modelling micro-
vascular blood flow. Shaded orange regions indicate outputs from the 
model. a In finite RBC models, each RBC is modelled independently 
along with a continuum model of the plasma. Empirical parameters 
are used to define the RBC dynamics. b For zero- and one-dimen-
sional network modelling, the network is modelled as a series of 
interconnected hydrodynamic resistances, with each dependent on 
local haematocrit via an empirical viscosity model. c The typical 
continuum approach has empirical parameters ci and di as inputs to 
the Navier–Stokes and transport equations, respectively, to estimate 

velocity and haematocrit distributions. d The hybrid continuum 
modelling approach uses experimental measurements of haematocrit 
(green) and intrinsic estimates of shear rate from the Navier–Stokes 
equations as inputs to an empirical viscosity model with parameters 
ci as inputs. By direct comparison with experimental measurements 
of the velocity (blue), an error minimisation approach is used to opti-
mise ci , which can then be applied to additional data sets. This pro-
cess does not provide haematocrit as an output, but does provide an 
estimate of the accuracy of the model
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haematocrit (Fig. 1c). The continuum approach is therefore 
significantly more computationally efficient than finite RBC 
modelling approaches, providing the possibility of scaling to 
whole microvascular networks without the need for super-
computing. However, difficulties arise in selecting 

	 (i)	 appropriate transport equations and corresponding 
parameters, di , to account for migration and margina-
tion of RBCs,

	 (ii)	 an empirical viscosity model and corresponding 
parameters ci , to account for nonlinear haematocrit 
and shear dependence, typically derived from data in 
constant shear rheometers.

More complex models have also been proposed to incor-
porate, for example, thixotropy and viscoelasticity (Gian-
nokostas et al. 2021) or aggregate distribution (Kaliviotis 
et al. 2018; Tsimouri et al. 2018), but these require addi-
tional parameters.

Irrespective of the modelling technique chosen, the reli-
ance on typically 5–10 parameters and a range of available 
phenomenological models make the problem ill-defined, and 
proper validation requires high-quality experimental data, 
which is scarce. Accordingly, validation of both finite RBC 
and continuum models has generally been limited to straight 
tubes, analytical solutions or constant shear rheometry data. 
As such, it remains unclear how well any of these models 
recapitulate blood flow behaviour in branching networks on 
the scale of the microvasculature.

In the present study, we bypass some of the difficulties 
associated with the dependence on the number of interact-
ing parameters in the continuum approach, using a hybrid 
experimental–numerical method that combines data meas-
ured in a microchannel model with 3D continuum computa-
tional fluid dynamics (CFD). This approach offers two main 
advantages. Firstly, rather than modelling the distribution of 
RBCs using a transport equation, we measure it experimen-
tally (Passos et al. 2019; Sherwood et al. 2014a, b) and use 
this as an input to a continuum model using CFD (Fig. 1d). 
This removes the parameters di , significantly reducing the 
parameter space. Secondly, by comparison with experimen-
tally measured velocity data, it is possible to optimise the 
parameters ci in order to obtain a numerical model that can 
predict haemodynamics as measured experimentally. We 
term this optimisation approach ‘inverse rheology’ (Ban-
dulasena et al. 2011), the CFD equivalent of inverse finite 
element modelling, an established technique used to similar 
effect in solid mechanics modelling.

We use previously published experimental data (Sher-
wood et al. 2014a) that comprises haematocrit distribution 
and velocity data in a sequentially bifurcating microchannel 
with a square cross section at a range of input flow rates 
and flow ratios between branches. The modelling assumes 

a mixture and uses the semi-empirical Quemada viscos-
ity model, perhaps the most widely used viscosity model 
that incorporates both haematocrit and shear dependence 
(Cokelet 1987; Das et al. 1998; Popel and Enden 1993; 
Sriram et al. 2014). Initial parameters ci are derived from 
previously published data from a constant shear rheome-
try system (Cokelet 1987). We then carry out the inverse 
rheology approach on two aspects of the model: (1) the 
parameters ci and (2) the thickness of the exclusion layer 
that reduces haematocrit in the region immediately next to 
the wall (where experimental data could not be acquired due 
to diffraction). Using a subset of eight experimental cases, 
we identify the parameters ci and the thickness of exclu-
sion layer that minimise the error between experimental and 
numerical velocity profiles. Finally, we apply the model to 
all 38 experimental cases with different flow conditions and 
evaluate the relative importance of shear thinning vs the 
exclusion layer, and haematocrit vs shear dependence of the 
viscosity model.

2 � Methods

2.1 � Experimental methods

The inverse rheology approach is built on experimental data 
published previously Sherwood et al. (2014a), and detailed 
methods can be found therein. A brief description is pro-
vided in the following section.

2.1.1 � Perfusion set‑up and parameters

The experimental set-up (Fig. 2a) used a high-power green 
LED (Dantec Dynamics) to illuminate a blood sample pass-
ing through a microchannel mounted on an inverted micro-
scope (Leica DM-ILM, Germany) using a 10X objective 
( NA = 0.25 ). A Hamamatsu C8484-05C (Hamamatsu, 
Japan) PIV camera was used to capture image pairs, focused 
on the central plane of the channel at 3 Hz. The LED was 
pulsed once within each exposure of an image pair, with a 
pulse width of 0.1 ms. The delay dt between pulses ranged 
from 1 to 8 ms, depending on the flow rates in the system. 
All triggering and acquisition were carried out using Lab-
VIEW (National Instruments).

The microchannel master was fabricated using deep 
resistive ion etching (DRIE) of S1818 photoresist, and 
channels were cast in polydimethylsiloxane (PDMS) 
and bonded onto glass slides using standard approaches. 
The channels had a square cross section with a width of 
w = 50 μm and featured two side branches at 90 degrees 
to the main channel, with 5w between them (Fig. 2b, c). 
Pressures at all four branches were regulated using a pres-
sure control system (MFCS-8C: Fluigent, France). For 
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each acquisition, a uniform distribution of RBCs was first 
established by mixing the inlet reservoir with a magnetic 
stir bar and perfusing the channel at a high pressure drop. 
The flow rate was then dropped to a target value and held 
there for 20 s for RBC aggregation to reach a steady state 
prior to acquisition. Sixty image pairs were then acquired 
before returning the pressure to a high value ( ≈ 20 kPa ). 
Without this process, the haematocrit delivered to the 
channel would vary greatly due to sedimentation and 
aggregation of RBCs throughout the fluid system. Despite 
the high-resolution microfluidic pressure control system 
used, it was not possible to repeatedly get the same flow 
distribution and flow rates in the parent branch. Instead, a 
‘scattershot’ approach was taken with 38 cases comprising 
different input flow rates (0.1–1.2 μl/min) and flow ratios, 

Q∗ , defined as the proportion of the flow entering a given 
branch of a bifurcation.

2.1.2 � Blood samples

The study was approved by the South East London 
Research Ethics Committee (Reference 10/H0804/21), 
and informed written consent was obtained from volun-
teers. Blood was sampled from a healthy individual via 
venepuncture and mixed with 1.8 mg/ml EDTA to inhibit 
coagulation. RBCs were separated by centrifugation 
from the plasma and buffy coat, which were aspirated 
and replaced with phosphate-buffered saline (PBS). This 
process was repeated twice, then the RBCs were resus-
pended in PBS supplemented with Dextran 2000 at 5 mg/

Fig. 2   a Experimental set-up. 
Blood is perfused through the 
microchannel using a micro-
fluidic pressure controller. The 
blood in the inlet reservoir 
is mixed using a magnetic 
stir bar to counteract RBC 
sedimentation. A high-power 
LED is focussed on the region 
of interest in the channel, with 
transmitted light collected via 
an objective into a PIV camera. 
The microchannel features a 
sequential bifurcation with flow 
entering from the parent branch 
and exiting via daughter 1, 
daughter 2 or outlet branches. 
b Channel dimensions and flow 
rates. Each grid square repre-
sents 50 μm . Arrows indicate 
flow direction, with thickness 
representing relative propor-
tion of inlet flow. Dashed red 
lines indicate regions of interest 
(ROI) in each branch c Global 
and local coordinate systems, 
branch names and sample 
haematocrit distribution. Axes 
x∗ and y∗ provide scales in terms 
of channel widths
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ml. This  induced a physiological level of aggregation, 
independent of the plasma protein levels of the volunteer. 
All samples were used within 4 h of extraction or were 
refrigerated and used within 3 h of returning to room 
temperature.

2.1.3 � Velocity measurement

Blood velocity was calculated using particle image veloci-
metry (PIV) processing of the RBC images using JPIV 
(https://​eguvep.​github.​io/​jpiv/), an open licence PIV soft-
ware package. Ensemble (or correlation) averaging of 60 
image pairs acquired over 20 s was used for each case. Each 
branch of the bifurcation was cropped to transverse width 
w (84 pixels) and axial length 4.5w and analysed with inter-
rogation windows of 32 × 4 pixels (axial × transverse), with 
vector spacing of 8 × 2 pixels. A region of 6 pixels adjacent 
to the wall was not usable due to diffraction at the channel 
edge, so the first vector was located 8 pixels ( 4.8 μm ) from 
the wall.

A w length ROI was selected for each branch (Fig. 2b, c). 
Spurious vectors were identified as having velocities further 
than three median absolute deviations from the median for 
a given transverse vector location. This one-dimensional 
approach was used instead of the more common normal-
ised median test (Westerweel and Scarano 2005) to avoid 
transverse smoothing of the velocity profile and resulted in 
removal of 3% of vectors on average. The mean and two 
standard deviations of the velocity at each transverse loca-
tion were then taken to represent the velocity profile for a 
given ROI. Finally, the velocity magnitude was scaled by 
a factor of 1.5, to account for the fact that the PIV analy-
sis would be ‘depth saturated’ (Poelma et al. 2012), i.e. the 
depth of correlation (DOC) is greater than the channel depth, 
leading to an underestimate of the velocity in the central 
plane of the channel. As normalised profiles are consid-
ered, the main uncertainty introduced by this adjustment is 
a potential systematic error on the absolute values of shear 
strain rate, which is implicitly addressed in the inverse rhe-
ology process.

2.1.4 � Concentration measurement

The average intensity at each pixel location was calculated 
from the 120 images used in each PIV analysis. This was 
used to calculate the depth-averaged concentration via a 
calibration procedure described previously (Sherwood et al. 
2014a). Briefly, an intensity–haematocrit curve was gener-
ated by perfusing solutions of RBCs in Dextran/PBS solu-
tion at various haematocrits through the microchannel, with 
empirical amendments for the Fåhraeus effect (Pries et al. 
1990) and red cell screening (Gaehtgens et al. 1978) to esti-
mate the channel haematocrit. Due to the diffraction region 

of 6 pixels next to the vessel wall (red lines in Fig. 3c, f), it 
was not possible to accurately resolve the haematocrit at the 
wall. Even without this imaging artefact, the effective size of 
the ‘exclusion layer’ ( � ) adjacent to the vessel wall using the 
continuum approach would require attention. As indicated in 
Fig. 3, the size of the exclusion region cannot be determined 
directly because of the different orientations of RBCs, as 
well as their deformability (not visualised).

We therefore modelled the exclusion layer during 
the inverse process as a region 1–5 pixels from the wall 
( 0.6 μm∕pixel ). To estimate the haematocrit in the 6 pixels 
adjacent to each wall, a second-order polynomial was fit 
between the first three valid pixels (7, 8 and 9 pixels away 
from the wall) and a value of zero at the imposed exclusion 
layer thickness.

2.1.5 � Local coordinate systems

A local coordinate system ( s∗
j
 , n∗

j
 , z∗ ) was defined in each 

branch (Fig. 2c), with the ∗ indicating normalisation by w. 
In the parent, middle and outlet branches, the axial coordi-
nate s∗

j
 was parallel to x∗ , and the transverse coordinate n∗

j
 

was antiparallel to y∗ . In the daughter branches, s∗
j
 was paral-

lel to y∗ , and n∗
j
 was parallel to x∗ . Local origins were defined 

in the centre of each ROI shown in Fig. 2c. The z∗ axis was 
the same for all coordinate systems.

2.1.6 � Extrapolation into three dimensions

To obtain a 3D model of the haematocrit distribution, and to 
appropriately calculate branch flow rates for normalisation 
of the velocity profiles, the velocity and haematocrit data 
were extrapolated into three dimensions. This was done on 
the basis that the velocity and haematocrit in the parent 
branch would be fully developed (having followed a straight 
section of ≈ 200w ) and thereby exhibit fourfold symmetry. 
This implies that for an arbitrary parameter �(s∗

j
, n∗

j
, z∗) in 

the parent branch (subscript p):

Furthermore, based on the fact that the length and timescales 
of the system are insufficient for RBC sedimentation to have 
an impact (Alonso et al. 1995; Sherwood et al. 2014b) and 
that the geometry is uniform in z∗ , it is reasonable to assume 
that the shape of the distribution in the z∗ direction does not 
change, and thus, �(s∗

p
, n∗

p
, 0) can be used to extrapolate into 

three dimensions as follows.

(1)
�

(

s
∗
p
, n∗

p
, 0

)

= �

(

s
∗
p
,−n∗

p
, 0

)

= �

(

s
∗
p
, 0, n∗

p

)

= �

(

s
∗
p
, 0,−n∗

p

)

https://eguvep.github.io/jpiv/
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Haematocrit.  The haematocrit measurements are based 
on light transmitted through the sample and are therefore 
depth-averaged, hence for a given branch j

To avoid imposing asymmetries in z∗ , Hp is replaced by a 
symmetric profile of the form

with �h determining the haematocrit profile ‘bluntness’ and 
Hp,max being the maximum haematocrit. Equation (3) was 
fitted to H

(

s∗
p
,±n∗

p
, 0

)

.

(2)H
(

s∗
j
, n∗

j
, z∗

)

= H
(

s∗
j
, n∗

j
, 0
)Hp

(
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)
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p
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|

> w∕2 − 𝜉 are set to zero prior to calculating Hp.
Velocity. The velocity profile calculated with PIV is the 

value at the central plane (having accounted for depth of 
correlation effects); hence, the 3D velocity distribution in 
a given branch j is given by

As with the haematocrit, to avoid imposing asymmetries in 
z∗ , up is replaced by a symmetric profile of the form

(4)u
(

s∗
j
, n∗

j
, z∗

)

= u
(

s∗
j
, n∗

j
, 0
)up
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Fig. 3   Effects of the viscosity model modifications investigated using 
the inverse rheology approach. a, b Quemada viscosity as function of 
haematocrit for a range of shear rates with � = 1 (original data from 
Cokelet 1987) and � = 3 (final selected value). d, e Quemada viscos-
ity as function of shear rate for a range of haematocrits with � = 1 

and � = 3 . c, f Instantaneous and time-averaged images of RBCs, 
with scale diagrams of RBC orientation. Black dots indicate RBC 
barycentre, and dashed lines indicate exclusion zones 2, 4 and 6 pix-
els from the wall, corresponding to 1.2, 2.4 and 3.6 μm
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with �v determining the velocity profile ‘bluntness’ and up,max 
being the maximum velocity. Equation (5) was fitted to 
u
(

s∗
p
,±n∗

p
, 0

)

.

2.1.7 � Calculation of flow rate and conservation of mass

The flow rate in a given branch j at s∗
j
 is given by

However, the experimental velocity data are not defined for 
the 6 pixel ( 4.8 μm ) region adjacent each channel wall. In 
order to implement Eq. (6), the velocity in these regions 
must first be estimated. Whether the RBC velocity at the 
wall should equal zero or a finite value due to rolling of 
RBCs along the wall is an unresolved question (Roman et al. 
2016). However, as the RBC concentration at the wall is set 
to zero and the suspending medium is expected to follow the 
no-slip condition, a zero velocity at the wall is imposed in 
the present study. Equation (7) is a modification of Eq. (5) 
that captures zero wall velocity and enables asymmetry:

where �1 is the maximum velocity when �2 = �3 = 0 . The �2 
term allows for asymmetry in the profile and �3 provides an 
additional degree of freedom to achieve a tight fit with the 
experimental data. The value of �a relates to the bluntness 
of the velocity profile.

This approach uses all of the measured velocity val-
ues and has no free user parameters, in contrast to using, 
for example, a polynomial extrapolation that would be 
dependent on the selection of the number of data points to 
use and the order of the polynomial.

After Eq. (7) is fit to the experimental data, Eq. (4) is 
used to generate an ( n∗

j
, z∗ ) plane velocity profile, upon 

which Eq.  (6) is implemented using trapezoidal 
integration.

The estimated flow rates were used to compute the error 
in the velocity measurements. The errors in the first and 
second bifurcations are given by:

(6)Qj = ∫
w∕2

−w∕2 ∫
w∕2

−w∕2

u
(

s∗
j
, n∗

j
, z∗

)

dn∗
j
dz∗
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(8)eQ,1 =
Qp − Qd1 − Qm

Qp

× 100%

(9)eQ,2 =
Qm − Qd2 − Qo

Qm

× 100%

where the subscripts refer to the branches (Fig. 2). Errors 
across the whole system are given by

Note that this calculation assumes that at the domain bound-
aries, blood can be treated as a single-phase mixture with 
velocity that is reliably tracked by the RBCs.

To estimate the overall experimental error, the RBC 
volumetric flux calculated at s∗

j
 is used. This is given by

Equations (8)–(10) were applied with F replacing Q. Table 1 
summarises the statistics of these data. The conservation of 
mass errors indicate that each bifurcation is associated with 
a small negative offset ( −3 % and −4 % in Bifurcations 1 and 
2, respectively), with a larger discrepancy when evaluating 
the error across all external branches of −7 % (see Table 1). 
Supplemental Figure S1 plots these error terms against flow 
ratio and parent branch flow rate. The average RBC flux 
errors are the same in Bifurcation 1 ( −3%), but larger in 
Bifurcation 2 ( −11 %) with an average of −12 % for the exter-
nal branches. Poelma et al. (2012) reported that the under-
estimation of RBC velocity scaled with absolute velocity. 
Hence, to investigate whether this could be the cause of the 
offset, we numerically identified that raising all measured 
velocities to the power 1.066 before calculating eQ elimi-
nated the average errors in mass conservation. Applying this 
small amendment in the flux calculation reduced the errors 
in the RBC flux to −5 % for all external branches (Figure 
S1, Table 1), indicating some contribution to the error from 
either the haematocrit measurements or the assumption of 
a single-phase continuum mixture with no relative velocity 
between phases. Nonetheless, given the multiple processing 
steps and extrapolations required to calculate these flows 
and fluxes, we consider these uncertainties to be acceptably 
small for the present analysis.

(10)eQ,tot =
Qp − Qd1 − Qd2 − Qo

Qp

× 100%

(11)Fj = ∫
w∕2

−w∕2 ∫
w∕2

−w∕2

u
(

s∗
j
, n∗

j
, z∗

)

H
(

s∗
j
, n∗

j
, z∗

)

dn∗
j
dz∗

Table 1   Errors in conservation of mass and RBC flux

Numbers are mean ± two standard deviations. Amendment involves 
raising the measured velocities to the power 1.066, which empirically 
eliminates the average error in flow calculation, but not flux

Bif. 1 Bif. 2 Total
eQ,1 eQ,2 eQ,tot

Flow rate − 3 ± 3 − 4 ± 2 − 7 ± 2
RBC flux −3 ± 5 − 11 ± 4 − 12 ± 2
Flow rate amended 0 ± 2 0 ± 2 0 ± 2
RBC flux amended 0 ± 4 − 7 ± 3 − 5 ± 3
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2.1.8 � Skewness indices

Asymmetry of velocity and haematocrit distributions plays 
a key role in determining the flow characteristics in all 
branches except the parent branch. It is therefore useful to 
quantify the extent of this asymmetry in each branch to pro-
vide context for the optimisation process described below. 
The skewness of the haematocrit distribution is character-
ised according to

similarly to our previous study (Sherwood et al. 2014a), but 
without taking the absolute value as was done therein. An 
SH,j value of 0.1, for example, would indicate that the posi-
tive n∗

j
 side of the axis has 10% more RBCs than a symmetric 

profile or equivalently 20% more than the negative n∗
j
 side 

of the axis. These calculations are carried out for � = 3 pix-
els (see Sect. 2.2.3). The skewness of the velocity profile is 
taken as the value of n∗

j
 corresponding to the location of 

maximum velocity (carried out on the fit to Eq. (7) evaluated 
at 1001 locations across the channel width):

2.2 � Numerical methods

2.2.1 � Viscosity model

In general, an empirical model is required to characterise 
the function 𝜇(H, 𝛾̇) (parameters ci in Fig. 1). There are 
many viscosity models that can account for the effects of 
both shear rate and RBC concentration on viscosity (see, 
for example, Hund et al. 2017; Sousa et al. 2016; Yilmaz 
and Gundogdu 2008 for detailed summaries). These models 
are typically fit to data obtained from bulk rheology meas-
urements, to characterise the parameters ci (Fig. 1b–d). For 
the present study, we focus on the Quemada model (Dufaux 
et al. 1980), a semi-empirical model derived for planar 
flow that has been widely used in blood flow modelling 
(Buchanan et al. 2000; Cokelet 1987; Das et al. 1998; Man-
sour et al. 2010; Marcinkowska-Gapińska et al. 2007; Popel 
and Enden 1993; Schenkel and Halliday 2020), although 
the method described here is applicable to any model. The 
Quemada model describes the viscosity according to

(12)SH,j =
∫ 0.5

0
H
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s∗
j
, n∗

j
, 0
)

dn∗
j

∫ 0.5

−0.5
H
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j
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(13)Su,j = n∗
j

(
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[

uasym

(

s∗
j
, n∗

j
, 0
)])

(14)� =
�p

(1 − 0.5kH)2

where �p is the plasma viscosity and k is referred to as the 
intrinsic viscosity, which is given by:

with k0 as the intrinsic viscosity at zero shear rate and k∞ as 
the intrinsic viscosity at infinite shear rate. The critical shear 
rate 𝛾̇c acts as a scaling factor for the shear rate. Cokelet 
(1987) published experimental data describing k0 , k∞ and 
𝛾̇c as functions of haematocrit. Haematocrits of up to 0.7 
were used, and fourth-order polynomials in the log domain 
were used to fit the data. Subsequent studies have noted 
the discontinuities caused by this fitting approach and have 
proposed amendments to the fit (Das et al. 1998; Schen-
kel and Halliday 2020). In the present study, to reduce the 
number of variables and focus on haematocrits of relevance 
to microvascular flow, we applied new fits to the original 
data, as described in Table 2. The resulting relationships for 
k0(H) , k∞(H) and 𝛾̇c(H) are shown in Figure S2 and com-
pared to those reported by Cokelet (1987). The relative vis-
cosity curves according to Eqs. (14) and (15) are shown in 
Fig. 3a, d, at a range of shear rates and haematocrits. The rel-
ative viscosity increases approximately exponentially with H 
for H > 0.1 (Fig. 3a). The viscosity is also sensitive to shear 
rate, particularly at shear rates below ≈ 10 s−1 (Fig. 3d). For 
comparison, note that a power law model would be a straight 
line on these axes.

2.2.2 � Computational fluid dynamics approach

Computational modelling was carried out using ANSYS 
CFX. A steady simulation was carried out for each experi-
mental case. The measured haematocrit distributions 
were mapped into three dimensions as described above 
and imported into CFX. All branches in the domain were 
extended by five branch widths to eliminate boundary 
effects, with the haematocrit in the extended branches being 
the axial average over the outermost w/2. The parent branch 
velocity was set to the average value calculated from the 
experimental data, up , and the outlet pressure was set to zero. 

(15)k =

k0 + k∞

√

|𝛾̇|

𝛾̇c

1 +

√

|𝛾̇|

𝛾̇c

Table 2   Alternative fitting parameters for data from Cokelet (1987) 
that halves the number of degrees of freedom

k0 k∞ 𝛾̇c

ln
(

k0
)

=
p1

p2+H
ln
(

k∞
)

=
p3

p4+H
ln
(

𝛾̇c
)

= p5H + p6

p1 = 0.833 p3 = 0.532 p5 = 11.9

p2 = 0.177 p4 = 0.399 p6 = −4.48
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To distribute the uncertainties in flow rate between branches, 
the flow ratios were calculated as follows:

The boundary condition at the outlets of the daugh-
ter branches were set to an average velocity, given by 
ud1 = upQ

∗
1
 in daughter Branch 1 and ud2 = up

(

1 − Q∗
1

)

Q∗
2
 

in daughter Branch 2. The shear rate in the viscosity model 
was set intrinsically, with haematocrit imposed extrinsically. 
An RMS residual target of 10−5 was used to determine con-
vergence. The ANSYS CFX high-resolution differencing 
scheme was implemented, which maximises a blend factor 
between upwind and second-order differencing schemes, 
while keeping the solution bounded.

An unstructured tetrahedral mesh was generated in 
ANSYS Workbench using in-built adaptive sizing algo-
rithms. The reference size was selected as an integer mul-
tiple of the pixel resolution ( 0.6 μm ). Wall resolution was 
improved via 7 ‘inflation layers’, with a first layer height half 
the reference size and a growth rate of 1.2.

Mesh sensitivity analysis was carried out on a sample 
case, using 6 different mesh sizes ranging from ≈ 140k to 
> 6M elements (see Table S1). The RMS deviation of the 
velocity profile for each mesh relative to the finest mesh 
in each branch was calculated and used to characterise the 
effect of further refinements (Figure S3a). Each refinement 
reduced the error, although differences were small. The time 
to run the simulation was also considered for each mesh 
(Figure S3b) and compared to the time to load the exper-
imental data ( ≈ 6 min). A mesh with a reference size of 
1.2 μm , comprising 2.4M elements was selected. The aver-
age RMS deviation between the velocity profiles across all 
branches for this mesh and the finest mesh was 0.31%. The 
selected mesh took 40% less time to run than the finest mesh 
at < 12 min including loading the mapped haematocrit data 
( ≈ 6 min) on a standard desktop machine.

2.2.3 � Inverse rheometry and paradigms

For the inverse rheometry process, a subset of 8 cases 
was selected that represented a wide range of input parent 
branch velocities ( up = 0.8 − 7.9mm∕s ) and flow ratios 
( Q∗ = 0.16 − 0.64 ) (see Table 3 for full details). For the 
present study, we used this process to optimise parameters 
for (i) the viscosity model and (ii) the size of the exclusion 
layer, �.

(16)Q∗
1
=

Qd1 +
(

Qp − Qm

)

2Qp

(17)Q∗
2
=

Qd2 +
(

Qm − Qo

)

2Qm

Viscosity model parameters. Even with the reduced param-
eter space for the viscosity model (Table 2), six degrees of 
freedom provide an excessively large number of variables. 
We therefore focussed on a single modification to the viscos-
ity model: the critical shear rate, 𝛾̇c . This parameter can be 
interpreted as the reciprocal of Tc , the timescale of the phe-
nomenon that is causing shear-dependent behaviour, which 
is predominantly RBC aggregation (and disaggregation) 
and RBC deformability (Cokelet 1987). This interpretation 
is complicated by the fact that the timescales of aggregation 
(10–20 s), disaggregation (almost instantaneous) and cell 
deformation ( ≈ 0.06 s ) are very different (Cokelet 1980). 
Furthermore, aggregation timescales are dependent on local 
shear, the protein content in the plasma (or in this case Dextran 
concentration in the suspending medium) and the aggregabil-
ity of the red blood cells. For the original data in whole blood, 
the parameter Tc decreases from ≈ 10 min at low haemato-
crit to 0.2 s at a haematocrit of 0.6, a remarkably large range 
(Figure S2d). Notably, in the absence of aggregation (hav-
ing suspended the RBCs in saline), Cokelet (1987) reported 
a reversed correlation between Tc and haematocrit, with Tc 
being ≈ 6 orders of magnitude lower at low haematocrit. We 
posit therefore that the explicit interpretation of this parameter 
should be taken only lightly when extrapolating the model to 
3D confined blood flows. Finally, it should be noted that the 
Quemada model was derived for a cone and plate rheometer 
with constant shear rate and may not be directly translatable 
to environments with high shear gradients acting over length 
scales comparable to individual cells. With all this in mind we 
take an empirical approach to find the optimal viscosity param-
eters, modifying the intrinsic viscosity term k according to

where � = 1, 2, 3, 4 or 5. For a given value of �  , the value of 
𝛾̇c is increased by a factor of � 2 , implying a reduction in the 
time constant associated with shear dependence (see Figure 

(18)k =

k0 +
k∞

𝛤

√

|𝛾̇|

𝛾̇c

1 +
1

𝛤

√

|𝛾̇|

𝛾̇c

Table 3   Cases selected for the 
inverse rheology process

Case up(mm∕s) Q∗
1

Q∗
2

1 0.81 0.24 0.29
2 1.20 0.16 0.39
3 1.90 0.36 0.46
4 2.22 0.49 0.70
5 3.29 0.25 0.54
6 3.92 0.25 0.37
7 7.10 0.32 0.43
8 7.85 0.33 0.64
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S2d). This ultimately has the effect of increasing viscosity at 
lower haematocrit (Fig. 3b) and increasing the sensitivity of 
the viscosity to shear rate (Fig. 3e) or ‘enhancing’ the shear 
thinning behaviour.

Exclusion layer thickness. As described above, the size of 
the exclusion layer at the vessel wall remains an open ques-
tion. To recapitulate, this is not the ‘cell-free layer’ caused 
by migration of RBCs away from the wall, but a region 
defined by the geometry of the RBCs, with uncertainty aris-
ing due to deformation and orientation of individual RBCs. 
For each case and value of �  , we consider � = 1, 2, 3, 4 or 5 
pixels (which corresponds to 0.3, 0.9, 1.5, 2.1 or 2.7 μm tak-
ing the centre of pixel). These dimensions should be inter-
preted relative to the length scale of RBCs ( ≈ 8 × 2 μm ) and 
the relative location of the cell barycentre, which is depend-
ent on cell orientation (Fig. 3c, f). The effect of increasing � 
will be to introduce an increasingly large lubrication layer at 
the vessel wall, which like �  would lead to blunter velocity 
profiles. However, while �  would enhance ‘skewness’ of 
the measured velocity profiles by enhancing viscosity away 
from the channel centre, � would decrease it by imposing 
symmetric viscosity conditions at each wall.

Evaluation. In the inverse process, we find single values of � 
and �  that minimise the overall error between the experimental 
and numerical velocity profiles for all eight cases in Table 3. 
Quantification of the error is carried out by calculating a sin-
gle representative value for the error of the simulation in each 
branch. Velocity profiles were first normalised by the average 
velocity in that branch to give

(see, for example, Fig. 4a). Defining u∗
j,piv

 as u∗
j
 for the experi-

mental data, a normalised velocity error profile can be cal-
culated according to

(see, for example, Fig. 4d). The RMS value of e∗
j

(

n∗
j

)

 is then 
calculated as a measure of how well a given numerical 
velocity profile matches the experimental velocity profile 
u∗
j,piv

 over the N PIV vectors in the velocity profile:
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= u
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j

(
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(
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j
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Fig. 4   a, b Sample normalised velocity profiles in outlet branch for 
a case with up = 1.9mm∕s , Q∗

1
= 0.33 and Q∗

2
= 0.44 . Profiles using 

baseline (a) and maximal (b) modifications applied during the inverse 
rheology process are compared to final parameters and the Newtonian 
solution. d, e Errors relative to the experimental data for the same 

cases. c Haematocrit profiles with exclusion zones of � = 0.3, 1.5 and 
2.7 μm . Note values are scaled to yield equal branch haematocrit. f) 
Relative viscosity profiles, showing similar shapes but significant dif-
ference in magnitude for � = 1, 3 and 5
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The magnitude of RMS

(

e∗
j

)

 is not easily interpreted when 
considered alone; a relative error, E∗ , is therefore defined as 
follows

with RMS

(

e∗
j,a

)

 corresponding to RMS

(

e∗
j

)

 for a Newtonian 
fluid based on the analytical solution (Bruus 2008). The 
value of E∗ , varies between 0, indicating a perfect match to 
experimental data, and 1, indicating the error when a New-
tonian fluid is assumed. 

Optimisation process. The purpose of the inverse pro-
cess described here is to identify the optimal values of �  
and � that apply to all experimental cases (using only a 
small subset), rather than different values for each case. 
The latter approach would provide reduced errors, but 
amount to a localised data fitting process. Furthermore, 
the same blood sample was used for all cases, so a fixed 
value of �  is necessary for consistency. Instead, identify-
ing globally optimised values of �  and � based on a small 
sub-sample provides a self-consistent model that can be 
applied to the broader data set. All permutations of each 
of the eight flow condition cases (Table 3), five values of 
�  and five values of � required 200 simulations. For each 
branch of each case, E∗ , was calculated independently. 
The minimum value of E∗ across all branches was then 
ultimately used to select the final values of �  and � to use 
in the forward modelling stage of the analysis.

(21)RMS
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√

1
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j
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(22)E∗ =
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e∗
j

)

RMS
(

e∗
j,a

)

2.2.4 � Forward modelling

Having optimised for �  and � we can use the model to 
investigate questions of interest for the whole data set of 38 
experimental cases.

Relative importance of viscosity model and exclusion 
region. All experimental cases were run using four models 
with different combinations of pre- and post-optimisation 
values of �  and � (Table 4). The first model (baseline) pro-
vides the outputs of the simulation pre-optimisation: with-
out an exclusion layer ( � = 1 ) and with the viscosity model 
parameters previously reported ( � = 1 ). This is compared to 
the fully optimised model, and models with optimised �  and 
pre-optimised � and vice versa. The results of these simula-
tions are used to investigate how much the inverse rheology 
process improved the results, what the relative contribution 
of �  and � was and whether it differed between branches.

Fig. 5   Characterisations of asymmetry of haematocrit (a) and velocity (b). c Demonstrates high degree of inverse correlation between the two 
parameters. Black lines show mean value. Branches are daughter 1 (D1), daughter 2 (D2), middle (M), outlet (O) and parent (P)

Table 4   Models for investigating the roles of �  and �

Model � �(μm) Description

Baseline 1 0.3 Unmodified inputs
�-only 1 1.5 Exclusion layer modification only
� -only 3 0.3 Viscosity layer modification only
Optimised 3 1.5 Fully optimised model

Table 5   Models for evaluation of the relative importance of haemato-
crit and shear rate on the viscosity model

Model Shear rate Haematocrit Description

H, 𝛾̇ Local Local Fully optimised model
H, 𝛾̇ Uniform Local Uniform shear rate applied

H, 𝛾̇ Local Uniform Uniform haematocrit applied



347Continuum microhaemodynamics modelling using inverse rheology﻿	

1 3

Relative importance of shear rate and haematocrit in 
the viscosity model. Two additional models were run for all 
cases: one with uniform haematocrit and one with uniform 
shear rate using the optimised �  and � (see Table 5). For the 
uniform haematocrit model (green), the average value of the 
haematocrit was set throughout each branch, with 0 set in the 
exclusion layer. For the uniform shear model (red), a single 
value of shear rate, 𝛾̇ = Qp∕w

3 (often termed pseudo-shear 
rate), was entered into Eq. (18) throughout.

2.3 � Statistical analysis

To analyse the difference between different models described 
in Tables 4 and 5, the nonparametric Kruskal–Wallis and 
Dunn–Sidak post hoc tests were applied. Pearson’s correla-
tion coefficient was used for evaluating correlations between 
asymmetry indices (Fig. 5).

3 � Results

In order to provide a foundation for the inverse rheology pro-
cess, Fig. 4 shows sample velocity, haematocrit and viscosity 
profiles. The outlet branch is selected for this sample case, 
in which the experimental velocity profile (shaded grey) is 
asymmetric, being skewed towards the outer wall (Fig. 4a). 
The cause of this asymmetry is the haematocrit distribution 
(Fig. 4c), which is skewed towards the inner wall, result-
ing in larger local viscosities for n∗ < 0 (Fig. 4f). Figure 4a 
shows the baseline model, corresponding to a haematocrit of 
zero immediately at the wall and the original viscosity model 
( � = 0.3 μm , � = 1 , purple). Although the model picks up 
some of the asymmetry and ‘bluntness’ of the experimental 
data, it is not blunt enough (as evidenced by the greater peak 
normalised velocity compared to the experimental data). The 
Newtonian velocity profile is provided for reference (black 
line) and is both symmetric and less blunt than the experi-
mental data. As a point of comparison, the optimised model 
( � = 1.5 μm , � = 3 , blue) is provided (details of the optimi-
sation results are provided Sect. 3.1). The optimised model 
recapitulates the experimental data far more effectively 
than the baseline model, although neither fully captures the 
velocity behaviour near the outer wall. To evaluate the per-
formance of the modelling, Fig. 4d shows the error in the 
normalised velocity relative to the measured velocity at each 
vector location [Eq. (20)]. The optimised model is within the 
uncertainty of the experimental data for the majority of the 
velocity profile, whereas there are significant deviations for 
the baseline model.

At the other extreme, Figs. 4b and e show the equivalent 
plots for the maximal model, which demonstrates the upper 
bound of the amendments made in the optimisation process 

( � = 2.7 μm , � = 5 ). The velocity profile is too blunt, with 
negative e∗ across most of the channel (Fig. 4e).

The viscosity profiles (Fig. 4f) provide insight into the 
cause of the differences in velocity between models. For 
all models, the viscosity profile is both asymmetric (due to 
haematocrit-dependent effects) and has a peak at n∗ ≈ 0.05 , 
corresponding to the location of minimum shear rate at the 
apex of the asymmetric velocity profile. However, despite 
large differences in the magnitude of the predicted local 
viscosity in the channel centre, the apparent viscosity of 
all models is similar, with the baseline and maximal model 
having values 4% and 10% higher than the optimised model, 
respectively. This indicates that viscosity gradients play a 
larger role in determining the shape of the velocity profile 
than absolute values of viscosity.

As will become clear in the following analyses, the 
asymmetry in each branch of the channel plays a key role in 
determining the efficacy of the optimisation and the relative 
importance of the exclusion layer, viscosity model, haema-
tocrit and shear rate. It is therefore useful to first consider 
the extent of asymmetry in each branch using the haema-
tocrit and velocity skewness indices [Eqs. (12) and (13)] 
plotted in Fig. 5. For example, the haematocrit skewness 
in the outlet branch is negative (Fig. 5a, indicating a higher 
haematocrit for negative n∗ , as shown for the sample case 
in Fig. 4c), with a mean value of −0.12 . This value means 
that 62% of the RBCs are on the negative n∗ side of the axis, 
closer to the inner wall. The corresponding values of veloc-
ity skewness in the outlet branch are positive (Fig. 5b), with 
a mean value of 0.04, indicating that the average location 
of peak velocity is 0.04w away from the channel centre at 
n∗ = 0.04 , consistent with Fig. 4a, b. There is negative cor-
relation between the direction of haematocrit and velocity 
asymmetry (Fig. 5c) when analysing for all cases for the out-
let branch, with a correlation coefficient of −0.38 ( p = 0.02 ). 
The same correlation is observed to varying degrees for all 
branches except the parent branch (which is symmetric, see 
Table 6). Considering all branches together, the correlation 
coefficient is −0.94 ( p < 10−6 ), indicating that the asymme-
try in the velocity distribution is predominantly dependent 
on the haematocrit distribution.

Table 6   Parameters for evaluation of relative importance of viscosity 
parameters

Branch Correlation coefficient, � p-value

All − 0.94 < 10−6

Daughter 1 − 0.32 0.05
Daughter 2 − 0.72 < 10−6

Middle − 0.81 < 10−6

Outlet − 0.38 0.02
Parent − 0.11 0.50
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As the exclusion layer ( � ) is applied at all walls, it will 
inhibit asymmetry. By contrast, increasing �  increases local 
dependence on shear rate and hence enhances asymmetry. 
Both amendments will increase bluntness, by increasing the 
viscosity near the channel centre relative to the walls. Given 
the varying extents of asymmetry shown in Fig. 5, it is there-
fore expected that the optimal values of � and �  may differ 
between branches.

3.1 � Inverse rheometry results

Grids showing the average E∗ , [Eq. (22)] over the 8 cases 
for the inverse analysis are shown in Fig. 6. As a result of 
the combined effects of � and �  on bluntness, the minimum 
error values for each branch in Fig. 6 lie along the diagonal 
from top left to bottom right.

The flow in the parent branch follows a long ( ≈ 200w ) 
straight section, so is symmetric, and thus, the experimental 
data are best captured using � = 1 and � = 2.7 μm (Fig. 6f). 
While it could be that the parent branch has a true cell-
free layer, having had sufficient distance upstream for RBC 
migration to produce a CFL, this would not be the case 
in the other branches following perturbation of the RBC 

distribution in the bifurcations. Note that the absolute mag-
nitude of E∗ , in the parent branch is also higher than for 
other branches because the average error of the Newtonian 
profile (also being symmetric) is lower in this case.

Daughter Branch 1 is the most asymmetric branch 
(Fig. 5), and correspondingly high �  and low � yield the 
best results (Fig. 6b). The daughter 2, middle and outlet 
branches all display characteristics somewhere between 
these two extremes (Fig. 6c–e). There is therefore not a sin-
gle solution that is optimal for all branches, indicating a 
level of complexity not fully captured by the current mod-
elling approach. To achieve a model that minimises error 
for all 5 branches on average, the mean across all branches 
was calculated (Fig. 6a). The average of all branches yields 
a minimum value of 0.267 at � = 1.5 μm , � = 3 , which is 
taken as the optimised model.

If the exclusion layer had not been accounted for (i.e. the 
first column of each panel in Fig. 6), then � = 5 would have 
been selected (as it represents the smallest value in the first 
column of Fig. 6a). In this context, daughter 1 and outlet 
branches would perform well, while the parent, middle and 
daughter 2 branches would perform less well. Conversely, if 
the baseline viscosity model had been used (i.e. bottom row 
of each panel in Fig. 6), then � = 2.7 μm , would have been 

Fig. 6   Outputs from inverse rheology approach, for all branches and 
each branch individually. E∗ , is quantified as RMS of the error in nor-
malised velocity (e.g. Fig. 4d, e) for the model relative to the New-
tonian solution. Values shown are the average of all 8 sample cases. 
All display diagonal a trend, as expected because both modifications 

have the same effect on bluntness. Due to the characteristics of each 
branch, optimal parameters differ. a Average across all branches. 
� = 3 and � = 1.5 μm result in the minimum error, marked ‘ �  and � ’. 
Mustard and Teal boxes indicate what the tuning would have yielded 
if only � or �  was considered, respectively. b–f Individual branches
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selected (as it represents the smallest value in the bottom 
row of Fig. 6a) and the daughter and outlet branches would 
perform much less well. In either case, the optimisation 
would not have converged, so would require more extreme 
modifications, which would amplify the differences between 
branches. Thus, the combination of both the exclusion layer 
and modification to viscosity model parameters reduces the 
error overall.

3.2 � Forward results

3.2.1 � Evaluation of efficacy of inverse rheology

To further investigate how the parameters �  and � inter-
act in different branches, all 38 cases were simulated using 
the four models described in Table 4 (Fig. 7). The baseline 
model (purple) provides the results prior to optimisation. As 
demonstrated in Fig. 4a, these simulations reproduce some 
characteristics of the experimental data, but the predicted 
velocity profiles are not sufficiently blunt. The mean E∗ , for 
the baseline model was 0.38, indicating a greater than 60% 
improvement relative to the Newtonian solution (Fig. 7a). 
The optimised model ( �,�  : blue) had a mean E∗ , of 0.25, 
with 0.31 and 0.28 for the �-only (yellow) and � -only (teal) 

models, respectively. The Kruskal–Wallis test with the 
Dunn–Sidak post hoc tests indicated statistically significant 
differences between all groups ( p < 0.001 ), indicating that 
both parameters contribute to the improvement in the per-
formance of the modelling overall.

The relative importance of each parameter, however, 
varies between the branches. This can be interpreted from 
the reduction in E∗ , for the �-only and � -only models (yel-
low and teal symbols, respectively) relative to the baseline 
model. For example, in daughter Branch 1 (Fig. 7b), the �
-only model reduced E∗ , only marginally and with border-
line statistical significance ( p = 0.03 ). The � -only model, 
however, yields an average E∗ that is not significantly larger 
than for the optimised model ( p = 0.7).

For the middle and outlet branches (Fig. 7d, e), both 
single-parameter ( �-only and � -only) models induce simi-
lar reductions in E∗ and are additive. (The optimised model 
performs better than either single-parameter model.) Differ-
ences between all models in these branches are statistically 
significant, except between the single-parameter models. 
In daughter Branch 2 (Fig. 7c), both the single-parameter 
models reduce the error ( p < 0.001 ), by a similar amount 
( p = 0.3 ), but the combined model is less effective than 
either individual model and only marginally better than the 

Fig. 7   Beeswarm plots showing how the parameters � or �  independently affect E∗ , for all branches and each branch individually. Due to the 
characteristics of each branch, the relative importance of � or �  differ. Horizontal black lines indicate mean



350	 J. van Batenburg‑Sherwood, S. Balabani 

1 3

baseline model ( p = 0.02 ). In the parent branch, the single-
parameter models and the optimised model all significantly 
reduce E∗ , compared to baseline, but they are not signifi-
cantly different from one another ( p > 0.1).

In summary, the parent and daughter 2 branches (which 
have the lowest asymmetry) can be reasonably captured 
using either single-parameter model, and no improvement 
is achieved by the combination. However, for the three 
branches with the most asymmetry, optimisation of both � 
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and �  yields a reduction in E∗ ,. This highlights the impor-
tance of including data from branching networks, rather 
than straight channels only, when optimising fluid models 
for blood.

Despite the differences between the branches, it is clear 
from this analysis that the inverse rheology modelling (on a 
small subset of the data) is efficacious in better recapitulat-
ing the local haemodynamics than the baseline model, for 
which the exclusion zone is very small, and the viscosity 
model is based on previously defined parameters without 
modification.

3.2.2 � Investigation of simulated haemodynamics 
in sequential bifurcations

With the optimised settings, we consider the haemodynam-
ics in the channel in a sample case with ( up = 3.8mm∕s , 
Q∗

1
= 0.25 and Q∗

2
= 0.25 ). The simulated velocity distribu-

tions for the whole domain are visualised in Fig. 8a, along 
with profiles in each branch. Comparing the simulated data 
(blue) with the experimental measurements (grey shading), 
the model performs well overall. The velocity in the parent 
branch is symmetric, but in all other branches, the velocity 
is skewed towards the outer wall of the bifurcation (negative 
n∗ for the daughter branches and positive n∗ for the middle 
and outlet branches). The white lines on Fig. 8a show the 
streamlines (calculated from the simulation), which aid in 
the visualisation of the flow distribution. The thick white 
lines (and vertical dashed black lines on the profiles) indi-
cate the separating streamlines, which divide where the fluid 
separates into the daughter branches.

Figure 8b shows the haematocrit distribution throughout 
the domain, with the imposed 1.5 μm exclusion layer visible 
as the thin orange band adjacent to all walls. At the apex of 
each of the bifurcations, the RBC concentration increases, 
and this region of elevated haematocrit near the inner wall 
persists downstream. In daughter Branch 1, the flow enter-
ing the branch is sampled from a symmetric distribution 
with a low haematocrit at the wall. Hence, in addition to 

the elevated haematocrit at the inner wall, there is a large 
region of low concentration at the outer wall. The shaded 
region indicates the approximate haematocrit distribution 
one would expect by advection alone based on simple con-
servation laws. This was produced by a simple mapping 
process based on the separating streamlines, given in the 
Supplemental Information with the sole purpose of provid-
ing an intuitive reference. The mapping predicts the down-
stream haematocrit distribution relatively well, but does not 
account for the region of reduced haematocrit at the inner 
wall ( n∗ = 0.5 ) induced by the modelling of the exclusion 
layer. Similar characteristics can be observed in the middle 
branch.

In the branches of the second bifurcation (middle, daugh-
ter 2 and outlet), the dashed lines correspond to haematocrit 
mapping from the middle branch. In the outlet branch, the 
mapping from both the parent and middle branches are quite 
good matches of the measured profile (blue line), except 
the exclusion region at the inner wall. In daughter Branch 
2, for which the flux from the parent branch was bounded 
on both sides by streamlines, the mapping from the par-
ent branch (shaded region) predicts the average value, but 
not the exclusion layer at either wall. This analysis suggests 
that RBC advection alone predicts the distributions of RBC 
concentration moderately well for the present data, but it 
cannot reproduce the exclusion layers at the inner walls of 
the bifurcation.

The simulated distribution of shear rate at z∗ = 0 for the 
same case is shown in Fig. 9a. The shear rates vary in the 
range 1–1000 s−1 and are asymmetric with minimum val-
ues in the range 3–30 s−1 aligned with the location of the 
maximum velocity (Fig. 8a). Together, the haematocrit and 
shear rate distributions determine the distribution of viscos-
ity predicted by the model (Fig. 9b). The viscosity profile in 
the parent branch increases gradually towards the channel 
centre, with a small peak corresponding to the location of 
minimal shear. In the other branches, there are two peaks: 
one corresponding to the location of minimum shear and the 
other corresponding to the location of maximum haemato-
crit. This analysis highlights the complexity of the haemo-
dynamic environment and the challenge for continuum 
approaches: if the haematocrit is not accurately modelled, 
then estimating the viscosity distribution correctly will not 
be possible.

3.2.3 � Importance of shear and haematocrit

Finally, we use the model to investigate the relative 
importance of haematocrit and shear rate in the model-
ling approach. Using the optimised model, simulations 
were carried out with uniform shear rate ( H, 𝛾̇  ) or uni-
form haematocrit ( H, 𝛾̇ ) (Table 5). The resulting veloc-
ity, haematocrit and viscosity profiles demonstrate the 

Fig. 8   Velocity and haematocrit results, showing middle plane 
of the channel and profiles in each branch for sample case with 
up = 3.8mm∕s , Q∗

1
= 0.25 and Q∗

2
= 0.25 and the 9th lowest error 

averaged over all branches. a Normalised velocity profiles for final 
model (blue), Newtonian fluid (black)   and  experiments (shaded 
grey). Dashed vertical black lines in parent branch indicate loca-
tions of separating streamlines. On the planar view, thin white lines 
indicate streamlines and the thick streamlines indicate the separating 
streamlines. b Haematocrit distribution in the centre plane. Blue lines 
show experimental measured distributions used in the model. Dashed 
vertical black lines in parent branch indicate separating streamlines. 
Coloured shading indicates mapping of haematocrit profile from par-
ent branch (Bifurcation 1). Coloured dashed lines in middle, daughter 
2 and outlet branches indicate mapping of haematocrit profile from 
middle branch (Bifurcation 2)

◂
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Fig. 9   Shear rate magnitude and viscosity results, showing middle 
plane of the channel and profiles in each branch for samples case 
with up = 3.8mm∕s , Q∗

1
= 0.25 and Q∗

2
= 0.25 . a Shear rate profiles 

for final model. Dashed lines in parent branch indicate locations of 
separating streamlines. On the planar view, thin white lines indicate 
streamlines and the thick streamlines indicate the separating stream-

lines. b Viscosity distribution in the centre plane. Dashed lines in 
parent branch indicate separating streamlines, and coloured shading 
indicates proportion of haematocrit profile that enters the downstream 
branches. Downstream branches show haematocrit from parent 
branch linearly mapped onto local coordinate system, as described in 
Supplemental Information: mapping analysis
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role of each parameter (Fig. 10). The model with uniform 
shear rate (red line) results in velocity profiles (Fig. 10a) 
that are very similar to the optimised model, with small 
deviations in the channel centre (Fig. 10d). The uniform 
haematocrit model, which still includes the exclusion 
layer (Fig. 10c), performs poorly, producing velocity pro-
files that are both symmetric and not sufficiently blunt 
(Fig. 10b, e). The differences between the viscosity pro-
files (Fig. 10f) clearly highlight the role of each of the 
two parameters.

Considering all 38 cases, the uniform haematocrit 
model ( H, 𝛾̇ ) has a mean E∗ of 0.47 (Fig. 11), almost 
double the 0.25 for the optimised model ( p < 10−6 ). 
The mean E∗ , for uniform shear rate ( H, 𝛾̇  ) model was 
0.26, which is not statistically different from the opti-
mised model ( p = 0.99 ). This relationship holds in all 
branches. Furthermore, results from the optimised and 
uniform shear rate models are insignificantly different 
( p > 0.4 ) for all branches except daughter Branch 1, 
which was marginally improved by accounting for shear 
rate distribution ( p = 0.04 ). Overall, this indicates that 
the spatial distribution of RBCs is likely the dominant 

factor in determining the viscosity distribution in micro-
scale haemodynamics.

4 � Discussion

Blood rheology is extremely complex to model due to 
the complex interplay between RBC deformation, inter-
actions of RBCs with each other and the vessel walls, 
and microstructures that form within the flow. Model-
ling approaches typically characterise blood viscosity as 
a single scalar, with a local value related to shear rate 
and volume fraction of the disperse phase (haematocrit). 
Due to the non-Newtonian nature of blood, models of its 
viscosity have typically been based on rheometry measure-
ments in constant shear configurations (such as cone and 
plate or Couette rheometers), where a single shear rate can 
be explicitly stated for a given measured value of viscos-
ity. However, due to the microstructural characteristics of 
blood and RBC migration in branching networks, such 
approaches may not be directly applicable. Although a 
number of groups have developed microstructural models 

Fig. 10   Sample normalised velocity profiles in daughter Branch 1 for 
a case with up = 2.3mm∕s , Q∗

1
= 0.42 and Q∗

2
= 0.41 . Profiles using 

uniform shear rate (a) and uniform haematocrit (b) are compared 
to final parameters and the Newtonian solution. d–e Errors relative 
to the experimental data for the same cases. c Haematocrit profiles 

show how uniform haematocrit is applied, still including the exclu-
sion zones. Uniform shear approach uses 𝛾̇ = up∕w = w = 46 s−1 . 
f Viscosity profiles, showing the influence of each parameter in the 
predicted viscosity profile
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(Giannokostas et al. 2021; Moyers-Gonzalez et al. 2008; 
Tsimouri et al. 2018), validation of these with experimen-
tal data has been limited to simple geometries.

Even with a validated viscosity model, a transport equa-
tion is also required to capture the heterogeneous distri-
bution of RBCs. One of the most widely used models for 
multicomponent mixtures such as blood is the diffusive flux 
model developed by Leighton and Acrivos (1987) and fur-
ther advanced by Phillips et al. (1992), which accounts for 
particle collisions and spatially varying viscosity. The model 
was originally developed for particles, but has been applied 
to blood flow in a number of studies (Chebbi 2018; Man-
sour et al. 2010; Schenkel and Halliday 2020). The model 
accounts for RBC flux with terms for diffusion induced by 
both viscosity gradient and shear rate, but there is no explicit 
term for particle migration away from the wall (although it 
can arise due to migration down a shear rate gradient). As 
formulated, the model therefore appears to be straightfor-
ward, with a single empirical parameter for each term along 
with an effective particle radius. However, Mansour et al. 
(2010) found that parameters that included distance from the 
wall were required, and it is likely that validation in complex 
geometries would generate need for further complications.

An alternative approach was implemented by Xu and 
Kleinstreuer (2019) who used a two-fluid model, with 
terms explicitly representing interaction between the 
phases, shear-induced diffusion and the lift force at the 
wall. Calibration of the empirical parameters in these 
models was carried out based on dedicated experiments 
to investigate lift (Abkarian et al. 2002; Grandchamp et al. 
2013). This approach of determining terms for different 
RBC transport phenomena and tuning parameters based on 
prior studies is complicated by the fact that local haema-
tocrit, shear rate and viscosity are intricately connected. 
Therefore, decomposition to obtain model parameters may 
produce numerical results that struggle to match experi-
mental data in geometries with heterogeneous shear and 
haematocrit distributions.

To address the general problem of the interactions 
between RBC transport and viscosity, this study demon-
strated a data assimilation approach for modelling blood 
flow in arteriolar-/venular-scale microvessels, which are 
too large for computationally expensive finite RBC model-
ling approaches and too complex for zero-dimensional net-
work modelling approaches. We exploited high-resolution 
experimental data to reduce the parameter space and used 

Fig. 11   Beeswarm plots showing the relative importance of shear rate and haematocrit, for all branches and each branch individually. Due to the 
characteristics of each branch, the relative importance of shear rate and haematocrit differ. Horizontal black lines indicate mean
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an ‘inverse rheology’ approach in a geometry representing 
a small section of the microvasculature.

4.1 � Classification/terminology

We referred to this approach as ‘inverse rheology’, a term 
originally defined by Bandulasena et al. (2011) for a study 
with a simple shear thinning Xanthan gum solution. As 
blood rheology inherently involves the influence of RBC 
distribution, accounting for the exclusion layer within the 
optimisation approach under a definition of ‘rheology’ is 
appropriate. This method could be considered as a form of 
data assimilation, as it incorporates experimental and com-
putational inputs to address shortfalls (Hayase 2015). An 
important distinction is that we do not combine the CFD 
and experimental data on a case-by-case basis, but rather use 
the average error between numerical and experimental data 
sets to choose optimal model parameters, which can then be 
applied to the main data set without further iteration. This 
approach is similar to the use of training data sets in machine 
learning approaches.

4.2 � Insights from the results

In the inverse phase, we optimised for two factors, the vis-
cosity model and the size of the exclusion layer. The interac-
tion between them required statistical analyses to choose an 
optimal model, which demonstrates the value of separating 
momentum and transport equations as proposed here.

4.2.1 � Viscosity models

We used a single-phase continuum approach with the Que-
mada model to define the local viscosity, based on local 
haematocrit and shear rate. However, the general framework 
used in this study is equally applicable to other viscosity 
models that are fully empirical or incorporate microstruc-
tural components (Kaliviotis et al. 2018), viscoelasticity 
(Giannokostas et al. 2021) or other factors.

Comparison with data in long straight tubes (Chebbi 
2018; Mansour et al. 2010; Moyers-Gonzalez et al. 2008; 
Sriram et al. 2014; Xu and Kleinstreuer 2019), a typical 
approach in model development, does provides some valida-
tion of model efficacy. However, as local viscosity and local 
haematocrit are inherently correlated, identifying a unique 
combination of transport and viscosity model parameters in 
straight vessels (wherein the viscosity and haematocrit are 
also spatially correlated) is impractical. A critical feature of 
the current study is the asymmetry in the haematocrit and 
velocity distributions, imparted by the bifurcating geometry, 
which is not captured in simpler models. Even so, the opti-
mised value of �  in the current model should be interpreted 
as the value that minimises the numerical error for this 

specific blood sample in this particular geometry, rather than 
providing a ‘correct’ viscosity model for future experiments. 
Further investigation of different blood samples with viscos-
ity directly measured and calculated using the optimisation 
process are required to improve understanding.

4.2.2 � Exclusion layer

Our inverse approach also optimised for the size of the 
exclusion layer, which cannot be determined a priori, due 
to the deformability of RBCs and their different potential 
orientations near the wall (Fig. 3). The results yielded a 
parameter combination that minimised the average value 
across all branches, but demonstrated differences between 
branches depending on the extent of asymmetry. An ideal 
model would produce similar improvements for all branches, 
so it can be concluded that further development is required 
to improve upon the model applied in this study. One route 
to investigate will be whether the exclusion layer should be 
applied uniformly throughout the domain. In particular, at 
the inner walls of the bifurcation, RBCs are pushed against 
the wall and each other, and may thus infringe upon the 
exclusion layer thickness that was optimal for analysis over-
all. Better accounting for heterogeneity in this parameter 
could improve the performance of the model. A larger range 
of topographical layouts and improved near wall optical res-
olution would be necessary to support these developments.

It is worth restating that the exclusion layer used here is 
not the same thing as the cell-free layer (CFL) that is widely 
discussed. The origin of the CFL is migration of RBCs away 
from the vessel wall, which occurs over length scales of 
many channel widths (Carr and Xiao 1995; Pries et al. 1989; 
Ye et al. 2016). As such, immediately downstream of the 
bifurcation at the inner walls, there will not be a CFL, but 
there may be an exclusion zone. Given that RBCs can pack 
to concentrations of almost 100%, it is worth investigating 
whether the practical size of the exclusion zone is dependent 
on haematocrit and shear rate itself (due to their effects on 
RBC deformation).

4.2.3 � Relative importance of shear and haematocrit

The results of the forward modelling (following optimisa-
tion) demonstrated that the most important parameter was 
the haematocrit distribution and that accounting for local 
distributions of shear rate did not significantly benefit the 
model in recapitulating the shape of the experimental veloc-
ity profiles. It may therefore be possible to use simpler vis-
cosity models in which shear rate is a less critical parameter, 
which would simplify the analysis overall. Note that increas-
ing �  , while scaling the shear rate, can also be interpreted 
as increasing the relative importance of H for a given shear 
rate, explaining why optimisation of �  improved the model 
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outcomes (Fig. 7). The magnitude of the shear rate is still 
an important parameter, as it determines both shear-induced 
migration and diffusion, and with pressure measurements 
to help validate viscosity calculations its specific role will 
become clearer.

4.2.4 � Sensitivity of the Current Model

Regarding sensitivity of the optimisation, although the com-
bination of �  and � that produced the minimum average E∗ , 
was selected, there were eight other combinations that were 
within 5%, and in particular � = 4 and � = 0.9 μm was 
within 2.5%. The selection of �  and � could also be depend-
ent on the method of error calculation, the specific cases 
selected for ‘training’ and the corresponding flow param-
eters, and statistical approaches used. Here, the mean was 
used rather than the median, as it is inherently more sensi-
tive to outliers, so will reduce the maximum error from the 
cases used in the inverse stage. Overall, the selected optimal 
parameters could be sensitive to the specifics of the data 
set used, including number of branches, their relative asym-
metry, etc. Machine learning tools, such as those recently 
demonstrated by Cai et al. (2021), may be an efficient route 
to a more robust optimisation.

4.3 � Limitations of the experimental data

Numerical models are only as good as their inputs, so it is 
important to consider uncertainties in the experimental data.

4.3.1 � Particle image velocimetry for RBCs

Application of μPIV algorithms to images of flowing RBCs 
is able to produce vector fields, but validation of the accu-
racy of the outcomes is difficult, due to the challenges of 
measuring local RBC velocities or even flow rates by other 
means. As the RBCs are not neutrally buoyant tracer parti-
cles and do not produce Gaussian distributions of illumina-
tion, the analyses used for true μPIV data sets using tracer 
particles do not apply. Hence, parameters such as the depth 
of correlation (Olsen and Adrian 2000) are ill-defined. Poe-
lma et al. (2012) highlighted how depth of focus depends on 
RBC vs tracer particles, magnification and velocity, but the 
results do not provide a framework that could easily be used 
to accurately re-scale measured velocities. Indeed, such a 
framework is impractical due to differences in optical prop-
erties between set-ups (light source and how it is focussed on 
the sample, in vivo vs in vitro, magnification, etc.). Here, we 
assumed that the calculated value of the velocity was 33% 
too low, corresponding to a depth of correlation that spans 
the whole depth of the channel (Poelma et al. 2012). This 
may mean that there is a systematic error in the absolute val-
ues of the velocities considered here. This is accounted for 

in comparisons between cases by normalising the velocity 
profiles. The possible error introduced by scaling the shear 
rate in the viscosity model is accounted for in the optimisa-
tion process by the factor �  which scales the shear rate in 
the model.

4.3.2 � Velocity profile comparisons

Only a single velocity profile in each branch at a fixed dis-
tance from the bifurcation was used for comparing velocities 
between experimental and numerical models in the present 
study. This is because the whole channel was captured in a 
single frame, requiring a single dt for all branches despite the 
wide range of velocities present. By analysing each branch 
independently, an interrogation window with a long axial 
length enabled measurement of axial velocities over a large 
range, but such an approach would not work in the multi-
directional flow around the bifurcations. For future stud-
ies, acquisitions with multiple dt values (Hain and Kähler 
2007) would enable full domain measurements of sufficient 
resolution. Whole domain comparisons between numerical 
and experimental profiles could then provide more specific 
identification of optimal parameters.

4.3.3 � Haematocrit measurement

The measurement of haematocrit distribution also has inher-
ent uncertainties. Although a calibration process was car-
ried out (Sherwood et al. 2014a), the input haematocrit was 
scaled based on red cell screening and Fåhraeus effect data 
from previous studies in different geometries (Gaehtgens 
et al. 1978; Pries et al. 1990). Counting of RBCs can be car-
ried out at low concentrations ( < 10 %) (Roman et al. 2016), 
but direct sampling of tube haematocrit would be required 
for higher levels. It is therefore possible that the actual 
tube haematocrit was higher or lower than reported here. 
Although this is not explicitly accounted for in the optimisa-
tion process, changing �  changes the relative importance of 
H, and thus implicitly accounts for it.

A major motivation to improve understanding and the 
ability to model microvascular blood flow is the investiga-
tion of how changes to RBC properties, such as increased 
aggregation and decreased deformability, play a role in 
blood flow regulation and dysregulation. The key mechani-
cal stresses involved in this process are the transmural pres-
sure and shear stress. In vivo measurement of either of these 
is currently impractical, so a numerical model, validated 
with experimental data, will provide valuable insight.

4.3.4 � Square microchannel model

The experimental data used in the present study was 
acquired in square channels of constant width and depth, 
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which is a simplification of the rounder cross sections and 
sequentially reducing diameters of in vivo microvessels. This 
limitation arises from the constraints of existing microfab-
rication processes to create round channels on the scale of 
microvessels. Micromilling with a ball-end bit (Carugo et al. 
2012) can produce round channels down to 100 μm , but will 
become increasingly difficult for smaller sizes. Fenech et al. 
(2019) recently reported an elegant technique to produce 
channels of varying sizes with rounded cross section, but 
still with approximate right angles at the base. Fiddes et al. 
(2010) described a technique for introducing liquid silicone 
oligomer to a prefabricated microchannels to convert square 
cross-sectional straight channels into round ones. Abdelga-
wad et al. (2011) subsequently used a similar technique in 
more complex channels for cell trapping. This approach 
could potentially offer a solution for future studies.

The constant depth geometry used in the present study, 
however, proffers some significant advantages, in that it sim-
plifies the haematocrit measurement (which would other-
wise require correction for local channel depth) and allows 
the assumption of no z∗ axis forces. This is necessary for 
computing 3D distributions of haematocrit and velocity, and 
correspondingly flow rates. For round channels, this assump-
tion would not be valid. Hence, an extension of the current 
experimental techniques to round channels would require 
PIV acquisition at multiple z∗ planes, as well as adjustments 
of the transmitted light data used to calculate the haematocrit 
for account channel depth. Work is currently underway to 
develop and validate such an experimental system.

Aside from the cross-sectional area, the microchannel 
used in this study had only straight channels without the 
tortuosity and curvature that will also affect the distribution 
of RBCs. Specific characterisation of the effects of these 
parameters on RBC velocity and haematocrit distributions 
will be carried out in future studies, along with investiga-
tions at length scales other than 50 μm.

4.3.5 � Wall shear stress

Wall shear stress is a critical parameter in blood flow regula-
tion, as it is sensed by endothelial cells as an input to bal-
ance vasodilatory (e.g. nitric oxide) and vasoconstrictive 
(e.g. endothelin-1) molecules that regulate vascular tone 
(Cho and Cho 2011; Schmetterer and Wolzt 1999). Wall 
shear stress cannot be measured, so must be inferred. It is 
the product of the local viscosity and shear rate, so is often 
calculated assuming plasma viscosity at the wall (Namgung 
et al. 2016; Reneman et al. 2006) or by assuming Poiseuille 
flow (Nagaoka and Yoshida 2006). However, as noted by 
Merrill (1969) the CFL is not always present. Although there 
may be an exclusion layer throughout, the velocity within it 

and the effect of RBCs pressed against or rolling along the 
wall is not clear. Furthermore, the endothelial surface layer 
will also play a key role in vivo (Potter and Damiano 2008; 
Pries 2005) and so even an accurate model of the blood itself 
will not provide the full picture. Nonetheless, experimental 
measurements of pressure drop (which can provide infor-
mation via a force balance with WSS) will provide further 
insight into true values of WSS. The current study is also 
limited to producing time- or phase-averaged values of WSS 
and cannot reproduce the transient fluctuations introduced 
by individual RBCs, which can be significantly higher than 
time-averaged values (Freund and Vermot 2014). However, 
whether such transient WSS fluctuations on endothelial 
cells have the physiological importance requires further 
investigation.

4.3.6 � Pressure distribution

The pressure distribution is important because the transmu-
ral pressure (the pressure across the vessel wall) is the main 
input signal for the myogenic response, whereby arteriolar 
smooth muscle cells contract in response to increased pres-
sure to help regulate vascular tone. Pressure distributions 
in the present model were predicted within the model, but 
not analysed further, because experimental data on these 
is required for further validation. The apparent viscosity 
is inherently related to the pressure distribution and cor-
respondingly to the branch-wise distribution in average 
haematocrit (i.e. the Zweifach–Fung ‘law’). Knowledge of 
the pressure will therefore become more important in larger 
networks and when modelling RBC transport.

4.3.7 � Different blood samples

Changes to the behaviour of RBCs have been reported 
for various microvascular diseases Agrawal et al. (2016); 
Connes et  al. (2016); Depond et  al. (2020); Dintenfass 
(1982). For example, in diabetes, RBC deformability is 
decreased due to glycosylation of the RBC membrane and 
cytoplasm (Tomaiuolo 2014; Vekasi et al. 2001), and RBC 
aggregation is increased (Cho and Cho 2011; Le Dévéhat 
et al. 2004; Kostova et al. 2012), likely due to elevated 
plasma fibrinogen levels (Bembde 2012).

Whether a simple model such as that applied here is able 
to capture changes in deformability and aggregation remains 
to be seen. Chien (1970) proposed that the two phenom-
ena both affect blood viscosity via the same mechanism: a 
change in the effective cell volume. The current approach 
provides a framework to investigate this idea and thus 
whether the haematocrit distribution alone is sufficient or 
whether additional model complexity is required.
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4.3.8 � Transport modelling within the Inverse Framework

The approach demonstrated here is of course, only half of 
the story, being dependent on experimental measurements 
of haematocrit distribution as an input for the simulations. 
The next step is development of a similar process to opti-
mise empirical parameters for continuum RBC transport. 
Such models must account for RBC migration away from 
vessel walls, the effects of collisions with other RBCs and 
the effects of local viscosity as described above. Each of 
these model components requires empirical parameters, 
which also need to be optimised. Optimising at the same 
time as the viscosity parameters would be difficult due to 
the interdependence between the parameters (Schenkel and 
Halliday 2020) and the sheer size of the parameter space. 
Rather, first optimising rheometric parameters based on 
the measured haematocrit distributions (as in this study), 
then using the optimised viscosity model in an optimi-
sation of transport parameters that match experimentally 
measured haematocrit distributions should yield clear out-
comes. This two-step process would provide a full contin-
uum model that could be optimised on sample geometries 
and then applied to different network geometries without 
the need for further experimental inputs. For example, 
the model could be tuned for a given blood sample using 
in vitro geometries, then applied to 3D networks created 
from segmentation of in vivo imaging data. This has the 
potential to provide a method for efficient and personalised 
modelling of haemodynamics in complete microvascular 
networks.

4.4 � Conclusions

Modelling microscale blood flow is a challenging task 
due to the complexity of both the blood as a fluid and 
the branching networks in which it flows. A large num-
ber of numerical methods have been proposed with vary-
ing degrees of complexity and dependence on empirical 
parameters, but have been inherently limited by the avail-
ability of high-quality experimental data in geometries 
other than long straight tubes. In this study we optimised 
a simple continuum mixture model, using an inverse rheol-
ogy approach that incorporates experimental data in the 
process from the beginning. Comparison with a larger 
data set allowed us to quantitatively evaluate how well 
the model works in a complex geometry. Although there 
is much to do to develop the model into a practical tool, 
the approach described in this study will provide a frame-
work for this development and makes a step towards better 
incorporation of experimental and computational data in 
the study of microhaemodynamics.
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