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Background: High-throughput metagenomic sequencing technologies have

shown prominent advantages over traditional pathogen detection methods,

bringing great potential in clinical pathogen diagnosis and treatment of

infectious diseases. Nevertheless, how to accurately detect the difference in

microbiome profiles between treatment or disease conditions remains

computationally challenging.

Results: In this study, we propose a novel test for identifying the difference

between two high-dimensional microbiome abundance data matrices based on

the centered log-ratio transformation of the microbiome compositions. The test

p-value can be calculated directly with a closed-form solution from the derived

asymptotic null distribution. We also investigate the asymptotic statistical power

against sparse alternatives that are typically encountered in microbiome studies.

The proposed test is maximum-type equal-covariance-assumption-free

(MECAF), making it widely applicable to studies that compare microbiome

compositions between conditions. Our simulation studies demonstrated that

the proposed MECAF test achieves more desirable power than competing

methods while having the type I error rate well controlled under various

scenarios. The usefulness of the proposed test is further illustrated with two

real microbiome data analyses. The source code of the proposed method is

freely available at https://github.com/Jiyuan-NYU-Langone/MECAF.

Conclusions: MECAF is a flexible differential abundance test and achieves

statistical efficiency in analyzing high-throughput microbiome data. The

proposed new method will allow us to efficiently discover shifts in

microbiome abundances between disease and treatment conditions,

broadening our understanding of the disease and ultimately improving

clinical diagnosis and treatment.

KEYWORDS

microbiome data, relative abundances, high-dimensional compositional, differential
abundance analysis, sparse alternatives
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1 Introduction

The human microbiota, a collection of microbes living on or

inside human bodies, has been shown to play a fundamental role

in human health and diseases, including diabetes, cancer, and

obesity (Turnbaugh et al. (2007); Ursell et al. (2012)). Recently,

the metagenomic next-generation sequencing (mNGS)

technique has been introduced in the clinical diagnosis of

infectious diseases (Gu et al. (2019); Dulanto Chiang and

Dekker (2020); Govender et al. (2021)) and emerged as a

revolutionary technique to replace/supplement traditional

culture-based and molecular microbiologic techniques: i)

mNGS allows the parallel sequencing of hundreds of samples

per run; ii) it provides an unbiased detection of bacteria, viruses,

fungi, and parasites collectively; iii) this culture-free technology

enables the identification of new species and others.

In microbiome studies, it is of general research interest to

study the microbiome profiles/features between different disease

treatments or conditions. Various statistical methods have been

proposed recently for examining differential abundances (DAs)

(Anderson (2014); Cao et al. (2018); Zhao et al. (2018); Banerjee

et al. (2019); Lin and Peddada (2020)). These methods can be

categorized into univariate and multivariate approaches

depending on whether microbial features are analyzed

individually or in a set-based fashion. For example, Lin and

Peddada (2020) proposed ANCOM-BC under a linear

regression framework to conduct DA analysis for the assessed

taxa individually. DESeq2 (Love et al. (2014)) and edgeR

(Robinson et al. (2010)), two popular differential expression

gene analysis methods, are commonly used for differential

abundance analysis. However, multiple comparison procedures

need to be conducted afterward for these univariate methods,

which largely hinders the statistical power (Hu et al. (2018)).

Alternatively, we can assess the microbial features as a set in

order to enhance the statistical power. Typically, the microbial

abundances are normalized toward the total counts to make the

microbial proportions [or called relative abundances (RAs)]

comparable between samples. The normalized data have a

summation of the features equal to one, termed compositional

in microbiome studies (Mandal et al. (2015); Gloor et al. (2017)).

Directly applying standard multivariate statistical methods

developed for unconstrained data to compositional data may

result in inappropriate or misleading inferences. Cao et al.

(2018) proposed a two-sample test for assessing the difference

between two high-dimensional microbial composition matrices

and treating all microbial features (the microbiome profile) as a

set. Banerjee et al. (2019) proposed an adaptive test for

comparing microbiome compositions from two independent

groups. Zhao et al. (2018) developed a generalized Hotelling

test for paired microbiome composition data comparison. These

methods can be applied to the full microbiome profiles and also

microbial features that belong to the same upper-level

taxonomic rank, gene family, or functional pathway.
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Nevertheless, they either need a strong assumption that the

covariance matrices of compared compositions are equal (Cao

et al. (2018)) or require time-consuming permutations to

determine the statistical significance (Zhao et al. (2018);

Banerjee et al. (2019)).

To address this challenge, we propose a two-sample

maximum-type equal-covariance-assumption-free (MECAF)

test. This multivariate differential abundance test statistics

relaxes the equal covariance assumption required by the test

proposed by Cao et al. (2018). The closed-form formula of the

asymptotic null distribution largely resolves the computational

burden in microbiome analysis. The method can be applied to

analyze both taxonomic and functional profiles including

microbial taxa (operational taxonomic units (OTUs), strains,

etc., from either shotgun metagenomic or 16S rRNA amplicon

sequencing technique), functional pathways, and gene families.

The performance of the proposed MECAF test is demonstrated

through simulation studies and applications to the shotgun

metagenome sequencing study of Clostridium difficile infection

(CDI) (Vincent et al. (2016)) and the 16S rRNA amplicon murine

microbiome study of type I diabetes (T1D) (Livanos et al. (2016)).

The rest of this article is as follows. In Section 2, we briefly

introduce the novel test statistics MECAF for conducting a two-

group comparison of microbiome compositions, carry out

extensive simulations to estimate the empirical type I error

rate and statistical power for the proposed test in comparison

with competing methods, and further conduct two real data

applications. We conclude with a discussion in Section 3.

Notation, test hypothesis, and the asymptotic properties of the

MECAF test are given in the last section. All the theoretical

derivations are detailed in the Supplementary Material.
2 Results

2.1 The MECAF test

We consider the comparison of high-dimensional microbiome

compositions from two independent groups. We propose an

independent two-sample test named MECAF, which 1) is derived

based on the centered log-ratio (CLR) transformed compositions, 2)

has the aim to test the null hypothesis of equal mean vectors for the

microbial features against unequal mean vectors, and 3) does not

require the assumption of equal covariance matrices between

groups. The equation of the test statistics and corresponding

asymptotic null distribution is given in Section 4.
2.2 Simulation studies

2.2.1 Simulation setup
We conducted extensive simulations to evaluate the numerical

performance of the proposed MECAF test compared with
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competing methods under various scenarios. The simulation

parameters were set up similarly to those in Cao et al. (2018)

for the case of two independent samples in order to generate

microbiome composition data. The log transformation of

microbiome absolute abundance data L1 and L2 was first

generated from the multivariate Gaussian distribution by

assuming that L1i ∼i : i : d :
N(m1

L,S
1
L) and L2i ∼i : i : d :

N(m2
L,S

2
L). Then the

raw absolute abundance A1, A2, relative abundances R1, R2, and

CLR transformation of RA matrices X1, X2 can be generated

accordingly with certain transformations detailed in the Methods

section. We specify the location and covariance parameters for

distributions N(m1
L,S1

L) and N(m2
L,S2

L) detailed as follows so that

simulation data matrices can be generated with various covariance

structures under the null and alternative hypotheses.
Fron
• Specification of location parameters m1
L and m2

L.

Following Cao et al. (2018), the components of m1
L

were drawn from the uniform distribution Uniform

(0,10). Each component of m2
L was set by m2

L : j = m1
L : j −

djs
1
2
L : jj(

log   p
n )

1
2 . Here, dj represents the signal, i.e., the

difference in CLR means for component j between two

groups. s=⌞0p⌟,⌞0.05p⌟,⌞0.1p⌟⌞0.2p⌟ , and ⌞0.2p⌟
components (taxa) and randomly chosen from p

components to be the s igna l taxa and the

corresponding sj ‘s were randomly drawn from Uniform

½−2 ffiffiffi
2

p
, 2

ffiffiffi
2

p �. The other sj ‘s were set as 0. We can see

that s= ⌞0p⌟ corresponds to the null hypothesis setting

and s= ⌞0.05p⌟,⌞0.1p⌟,⌞0.2p⌟ represent three alternative

hypothesis settings. When s becomes larger, there are

more signal taxa in the microbiome compositions. sL:jj is
the jth diagonal component of the covariance matrix S2

L

with specifications as follows.

• Specification of covariance matrices S1
L and S2

L. We

included two types of covariance matrices, i.e., a

banded covariance matrix SB and sparse covariance

matrix SS with the same parameters as those in Cao

et al. (2018). Three scenarios were considered to assess

the impact of equal vs. unequal covariance matrices

be tween two groups in the compar i son of

compositional mean vectors. Specifically, in Scenario 1,

the covariance matrices of groups 1 and 2 are set as S1
L =

SB, and S2
L = SS to represent the setting with unequal

covariance matrices between groups; equal banded

covariance matrices were considered in Scenario 2, i.e.,

S1
L = S2

L = SB; and equal sparse covariance matrices

were considered in Scenario 3, i.e., S1
L = S2

L = SS.
2.2.2 Competing methods
In this article, we mainly focus on the comparisons of

multivariate differential abundance approaches. By assuming
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that covariance matrices for the CLR of compositions are

equal , i .e . , S1
X = S2

X , Cao et a l . (2018) proposed a

test for hypothesis (1) as TMEC = max  
1≤j≤p

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 + n2

r �X1
j − �X2

jffiffiffiffiffiffiffiffiffiffi
ŝ 0 : jj

q )2, where

ŝ 0 : jj =
1

n1+n2
½o

n1
i = 1(X1

ij − �X1
j )

2 +o
n2
i = 1(X2

ij − �X2
j )

2�. Since this is a

maximum-type test with an equal covariance assumption, we

denote it as the MEC test in this article. In addition, we also

assessed the performance of the MEC statistics applied to the

raw RA, the log transformation of RA, and the original AA.

These three tests are obtained by replacing the CLR data used by

MEC, i.e., Xg, with Rg, log (Rg), and Ag,g = 1,2, denoting by MEC-

Raw, MEC-Log, and MEC-Oracle, respectively. MEC-Oracle is

considered the benchmark method in the simulation study

(under equal covariance matrices assumption), as the true

difference is simulated for the log-absolute abundances.

P e rmuta t i ona l mu l t i va r i a t e ana l y s i s o f va r i ance

(PERMANOVA) is a popular multivariate analysis method

widely adopted in community-level microbiome data analysis

(Anderson (2014)). We therefore included PERMANOVA,

which tests the null hypothesis that the centroid and the

spread of the microbiome profiles are equivalent for the

compared groups.

We set the sample size in the first group as n1 = 100 and

increased the sample size in the second group n2 from 200 to

300. We increased the number of components (taxa) p 100 to

300 to demonstrate different relationships between n = n1 + n2
and p. We set the significance level as a = 0.05 in the simulation,

and 1,000 replications were conducted to evaluate the empirical

type I error rate and statistical power of the assessed methods

under various settings.

2.2.3 Simulation results
Figure 1 shows the numerical performance of assessed

methods under Scenario 1, where unequal covariance matrices

are considered. All competing methods that require equal

covariance matrix assumption, i.e., MEC-Oracle, MEC-Log,

MEC-Raw, and MEC, have inflated type I error rates. The type

I error rate of MEC approaches 0.25 when p = 150 and p = 200.

This indicates that MEC-type tests are not applicable to data

with unequal matrices. In comparison, the proposed MECAF

test can control the empirical type I error rate around the

nominal level of 0.05. The statistical power of MECAF

increases with the proportion of signal taxa. The results of

PERMANOVA are not shown in Figure 1, since the

corresponding type I error rate and statistical power are all

equal to 1 under this scenario. This is because the abundance

data were generated from unequal covariance matrices and

therefore violate the null hypothesis tested by PERMANOVA.

Simulation results for equal banded covariance and equal

sparse covariance scenarios are depicted in Figures 2 and 3,

respectively. As expected, all assessed methods have a well-

controlled type I error rate under these simulation settings.

MECAF and MEC achieved statistical power comparable to
frontiersin.org
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that of MEC-Oracle, with sparsity measure s ranging from

⌞0.05p⌟⌞0.2p⌟ to ⌞0.2p⌟. This indicates the statistical efficiency
of the MECAF test. In comparison, MEC-Log, MEC-Raw, and

PERMANOVA have evidently smaller power than MEC-Oracle

for all settings of the two scenarios.

In summary, MECAF has a well-controlled type I error rate

for two group comparisons of mean composition vectors either

with equal or unequal covariance matrices. The statistical

power is desirable under all scenarios with various

sparsity measures.
Frontiers in Cellular and Infection Microbiology 04
2.3 Applications to two
microbiome studies

Here, we first apply the proposedMECAF test to the shotgun

metagenomic sequencing data from the CDI study (Vincent

et al. (2016)). Since the test is also applicable to microbiome

abundance data generated from the 16S rRNA amplicon

sequencing technology, we further illustrate our proposed

method in a murine microbiome study of T1D [Livanos

et al. (2016)].
A

B

C

FIGURE 1

Simulation results for Scenario 1: unequal covariance matrices between compared groups. The empirical type I error rate (H_0: 0p) and
statistical power under three sparsity measures (Ha:0.05p, 0.1p, and 0.2p) for MECAF and competing methods MEC-Oracle, MEC-Log, MEC-
Raw, and MEC. A horizontal line with a = 0.05 indicates the significance level. The number of taxa and sample sizes were set as follows: (A) (p,n1,n2) =
(100,100,200); (B) (p,n1,n2) = (150,100,300); (C) (p,n1,n2) = (200,100,300).
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2.3.1 Analysis of the Clostridium difficile
infection metagenomic dataset

Vincent et al. (2016) conducted a prospective study to

investigate the intestinal microbiota dynamics over time

among 98 hospitalized patients at risk for CDI, a leading

infectious cause of nosocomial diarrhea. Patients were

followed up to 60 days, and a total of N = 229 fecal samples

(averaging 2.34 samples per subject) were examined by the

shotgun metagenomics sequenc ing pla t form. The

bioinformatics pre-processing steps were detailed by Vincent

et al., 2016, and the processed microbial counts and metadata are

available in the R package “curatedMetagenomicsData” (Version

1.16.1) from the Bioconductor by running the function

curatedMetagenomicData(‘VincentC_2016.metaphlan_bugs_list.

stool’,dryrun = FALSE) (Pasolli et al. (2017)). Zero counts were

imputed with 0.5 before converting counts to relative
Frontiers in Cellular and Infection Microbiology 05
abundances for taxa from taxonomic ranks of phylum, class,

order, family, genus, and species (strains). In this secondary data

analysis, we aim to examine whether there are shifts in the

microbial relative abundances between patients with CDI or

asymptomatic C. difficile colonization (CDI group, N = 8

subjects) and patients without (control group, N = 90 subjects)

i) upon hospitalization (baseline), ii) at 1 week of hospitalization,

and iii) over 1 week of hospitalization. The latest sample at each

time window was included for each patient.

Figure 4 shows the available samples at each assessed time

window (Figure 4A), the number of taxa observed at each

taxonomic rank (Figure 4B), the differential abundance test

results of the MECAF test, and competing methods

(Figures 4C). A p-value of<0.05 was indicated as statistically

significant. Of note, MEC-Oracle was not included in the

comparison since the absolute abundance data required by
A

B

C

FIGURE 2

Simulation results for Scenario 2: same banded covariance matrix between compared groups. The empirical type I error rate (H_0: 0p) and
statistical power under three sparsity measures (Ha:0.05p, 0.1p, and 0.2p) for MECAF and competing methods MEC-Oracle, MEC-Log, MEC-
Raw, and MEC. A horizontal line with a = 0.05 indicates the significance level. The number of taxa and sample sizes were set as follows: (A) (p,
n1,n2) = (100,100,200); (B) (p,n1,n2) = (150,100,300); (C) (p,n1,n2) = (200,100,300).
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MEC-Oracle are unobservable in real data. The results of

MECAF indicate significant differences in the microbiome

compositions between CDI and control patients at baseline

and week 1. The significance is consistent for most of the

taxonomic ranks, and a stronger signal is depicted at the lower

ranks. The difference though seems to disappear after 1 week of

hospitalization, where only the test at the species (strain) level is

significant. In comparison, MEC does not detect significant

differences in microbiome compositions except at the species

and strain levels at baseline and over 1 week, with less stringent

p-values reported. At week 1, MEC detects microbial

composition differences at the family, genus, and species

(strain) levels but not at the phylum, class, or order level.

MEC-Raw and PERMANOVA have similar results as MEC,
Frontiers in Cellular and Infection Microbiology 06
and MEC-log reported similar results as those of MECAF with

higher p-values. In summary, we observe more consistent

findings from the MECAF test over six taxonomic ranks. The

corresponding p-values are in general smaller than those of

competing methods, indicating statistical efficiency gain over

other methods.

We further assessed the type I error rate of competing

methods using the baseline data of the control subjects (N =

90). To achieve this, we randomly split the dataset into two

groups and conducted DA tests between the mock groups. A

total of 1,000 replications were carried out to calculate the

empirical type I error rate as shown in Table 1. As expected,

all assessed methods are able to control the type I error rate

below the nominal level of 0.05.
A

B

C

FIGURE 3

Simulation results for Scenario 3: same sparse covariance matrix between compared groups. The empirical type I error rate (H_0: 0p) and
statistical power under three sparsity measures (Ha:0.05p, 0.1p, and 0.2p) for MECAF and competing methods MEC-Oracle, MEC-Log, MEC-
Raw, and MEC. A horizontal line with a = 0.05 indicates the significance level. The number of taxa and sample sizes were set as follows: (A) (p,
n1,n2) = (100,100,200); (B) (p,n1,n2) = (150,100,300); (C) (p,n1,n2) = (200,100,300).
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2.3.2 Analysis of the MICE 16S rRNA amplicon
microbiome data

Livanos et al. (2016) carried out a murine microbiome

study to investigate the effect of early-life antibiotic exposure

on the alteration of gut microbiota composition. Here, we re-

examined the 16S microbiome abundance profile from the

early-life sub-therapeutic antibiotic treatment (STAT) group

and the control group that received no antibiotic exposure. The

abundances were compared between the two groups at each of
Frontiers in Cellular and Infection Microbiology 07
the four assessed time points, i.e., weeks 3, 6, 10, and 13, for

female and male mice using the MECAF test and

competing methods.

The available samples and number of taxa observed are

shown in Figures 5A, B, which illustrate the circumstance of n< p

(number of samples< number of taxa) most often encountered

in microbiome data analysis. The differential abundance analysis

results from the phylum to genus rank are depicted in

Figures 5C, 6 for female and male mice, respectively. The
TABLE 1 Empirical type I error rate with real data from the CDI study.

Method Taxonomic rank

Phylum Class Order Family Genus Strains

MECAF 0.033 0.045 0.038 0.032 0.023 0.016

MEC 0.032 0.044 0.038 0.032 0.023 0.016

MEC-Log 0.029 0.041 0.031 0.035 0.021 0.013

MEC-Raw 0.011 0.013 0.002 0.003 0.003 0.000

PERMANOVA 0.049 0.056 0.046 0.051 0.052 0.048
fronti
CDI, Clostridium difficile infection.
A B

C

FIGURE 4

DA analysis of the CDI metagenomic dataset. (A) The number of samples and microbial reads are summarized. (B) Number of observed taxa at
each of the taxonomic ranks. (C) p-Values of DA test with MECAF and competing methods at baseline, 1 week, and over 1 week. p-Values were
–log10 transformed to better illustrate the statistical significance where the vertical line of -log100.05 indicates a p-value equal to 0.05. DA,
differential abundance; CDI, Clostridium difficile infection.
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result from MECAF indicated that in female mice, the

abundance profile is significantly different in the STAT group

from the control group from week 3 to 6 for almost all

taxonomic ranks. The significance is weaker at weeks 10 and

13, indicating the recovery of gut microbiota in the STAT mice

upon maturation. In comparison, a significant difference is

detected by MECAF in male mice over the four assessed time

points. This result is consistent with Livanos et al. (2016) in

which the alpha- and beta-diversity measures were compared

between groups over time. MEC has similar results to MECAF.

MEC-Log did not detect significance in female mice from weeks

6 to 10 for most of the taxonomic ranks. MEC-Raw and
Frontiers in Cellular and Infection Microbiology 08
PERMANOVA either did not detect significant differences

(female mice from weeks 3 to 10) or reported weaker signals

(male mice, weeks 3, 10, and 13).
3 Discussion

In this article, we propose a novel test named MECAF for the

two-sample test of high-dimensional compositions. The test

statistics is developed based on the centered log-ratio

transformation of the compositions following Aitchison (1982)

and Cao et al. (2018). The asymptotic null distribution of the test
A B

C

FIGURE 5

DA analysis in female mice of the murine microbiome study. (A) The number of samples and microbial reads are summarized separately for
female and male mice. (B) Number of observed taxa at each of the taxonomic ranks. (C) p-Values of DA test with MECAF and competing
methods at four assessed time points. p-Values were –log10 transformed to better illustrate the statistical significance where the vertical line
of -log100.05 indicates the significance level. DA, differential abundance.
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statistic is derived, and the power against sparse alternatives is

investigated. The derived null distribution allows for the closed-

form solution of statistical significance and largely resolves the

computational burden. Simulation results show that the proposed

method is evidently more powerful than competing methods when

the covariance matrices differ between groups, and comparable

performance is achieved when the groups have equal covariance.

Two real data applications have illustrated the usefulness of the

proposed method.

The comparisons of competing methods have focused on

multivariate approaches only since they are not directly

comparable with univariate approaches (such as ANCOM-BC,

DESeq2, and edgeR). We admit the limitation of the MECAF test

that it is used as the first screening step of microbiome analysis

for the examination of the global shift of microbiome profiles.

Other regression models that are built upon Dirichlet

distribution or generalized Dirichlet distribution [Tang and

Chen (2019); Liu et al. (2020)] have distinct features from

differential abundance methods discussed herein. For example,

they allow for covariate adjustment, feature selections, repeated

sampling, etc., which is beyond the scope of this article.
Frontiers in Cellular and Infection Microbiology 09
The MECAF test extends the MEC proposed by Cao et al.

(2018) by relaxing the assumption of equal covariance matrix

structure between groups. Therefore, MECAF can be applied to a

wider set of circumstances. In the real data applications, we

applied MECAF to compare the microbiome abundances

aggregated to each taxonomic rank. In practice, we can also

apply MECAF to assess the composition of a given sub-tree or a

subset of the microbiome taxa (Shi and Li (2017)). As a future

direction, we will aim to extend the MECAF test to

accommodate repeated measures from each individual for

group comparisons.
4 Methods

4.1 Notation and specification of
test hypothesis

In this article, we consider microbiome compositions

from two independent groups. The notation used in this

manuscript is summarized in Table 2. Specifically, for subject i
FIGURE 6

DA analysis in male mice of the murine microbiome study. p-Values of DA test with MECAF and competing methods at four assessed time
points are shown. p-Values were –log10 transformed to better illustrate the statistical significance where the vertical line of -log100.05 indicates
the significance level. DA, differential abundance.
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from group g(g = 1,2), denote the ng independently observed

composition vectors as fRg
i = (Rg

i1,…,Rg
ip)

⊤, i = 1, 2,…, ngg with

length of p, and the jth component (taxon) of the vector Rg
i as R

g
ij,

where Rg
ij ∈ (0, 1). Of note, zero proportions are imputed by a

pseudo-positive proportion prior to conducting the analysis.

Then the compositional constraints can be expressed aso
p

j=1
Rg
ij =

1, i = 1,…, ng ; g = 1, 2. Obviously, Rg
i represents compositions

that lie in the p - 1 dimensional simplex fSp−1 = (r1,…, rp) : rj >

0, j = 1,…, p,o
p

j=1
rj = 1g. R1 and R2 are the observed data matrices

of dimension n1 × p and n2 × p, respectively, from the two

groups. Let fAg
i = (Ag

i1,…,Ag
ip)

⊤, i = 1,…, ng g = 1, 2g denote

the ng unobserved absolute abundances of the microbiome. The

numerical relationship between the absolute abundance matrix

and composition matrix is as follows:

Rg
ij =

Ag
ij

op
j=1A

g
ij

, i = 1,…, ng ; j = 1,…, p; g = 1, 2,

where Ag
ij is the jth component of Ag

i . Suppose the log

transformations of Ag
i , denoted by Lgi , are i.i.d. from

distributions with mean vectors mg
L = (mg

L : 1,…,mg
L : p)

⊤ = E½Lg �
and covariance matrices Sg

L = (s g
L : kj)k,j=1,…,p = covðLg , Lg), g =

1, 2. Cao et al. (2018) introduced a testable hypothesis to

compare the log-mean absolute abundance vectors through the

observed compositional data R1 and R2 by exploiting the CLR

transformation of the compositions. Denote the CLR

transformation of Rg
ij by

Xg
ij = log  

Rg
ijQp

j=1 R
g
ij

� �1=p

0
B@

1
CA, i = 1,…, ng ; j = 1,…, p; g = 1, 2:
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Assume that the CLR vectors fXg
i = (Xg

i1,…,Xg
ip)

⊤, i = 1, 2,…

, ngg are i.i.d. from distributions with mean vectors mg
X = (mg

X : 1,…

, mg
X : p)

⊤ = E½Xg �, and covariance matrices Sg
X = (s g

X : kj)k,j=1,…,p =

covðXg ,Xg), g = 1, 2: Then the testable hypothesis under the

definition of compositional equivalence [please see Definition 1 in

Cao et al. (2018)] is

H(1)
0 :m1

X = m2
X versus H(1)

1 : m1
X ≠ m2

X : (1)

In this work, we consider another testable hypothesis of

compositional equivalence as follows. It is straightforward that

o
p

j=1
m1
X : j = 0, ando

p

j=1
m2
X : j = 0, m1

X = m2
X holds if and only if for j∈{1,

…,p−1} , as m1
X : j = m2

X : j. Therefore, an equivalent hypothesis that

only considers the first p - 1 components is

H(2)
0 :m1

X : j = m2
X : j for any j

∈ 1,…, p − 1f g versus H(2)
1 :m1

X : j

≠ m2
X : j for at least one j ∈ 1,…, p − 1f g : (2)

In the following, we will introduce our proposed test

specifically for hypothesis (2). We also investigate the

theoretical properties of the test statistics.
4.2 The proposed MECAF test

Cao et al. (2018) proposed one maximum-type two-sample

test for high-dimensional compositions by assuming that the

covariance matrices of two groups are equal (see equation 9 of

Cao et al. (2018)). In practice, it is unable to assess the

assumption if ma1X = S2
X or not. Thus, we consider a more

general setting, where the equal covariance assumption is not

required. For j∈{1,⋯,p} th component (taxon), let �X1
j = 1

n1 o
n1

i=1
X1
ij ,
TABLE 2 Notation summary.

Notation Description

g Group indicator, g = 1,2

ng Sample size for group g

i ith sample, i = 1,2,…,n1 for group 1, and i = 1,2,…,n2 for group 2

p Number of taxa in the microbiome data matrix

Rg Observed microbial relative abundances (RAs) for group g with dimension ng × p

Rg
i Observed RA for subject i for group g

Ag Unobserved microbial absolute abundances (AAs) for group g with dimension ng × p

Lg Unobserved log transformation of AA (log-AA) for group g with dimension ng × p

Lgi , m
g
L , and Sg

L Unobserved log-AA for subject i from group g, and Lgi i : i : d : from distribution with mean mg
L and covariance matrix Sg

L

Xg Observed centered log-ratio transformation of relative abundances of group g with dimension ng × p

Xg
i , m

g
X , and

Sg
X

Observed centered log-ratio (CLR) transformation of RA for subject i from group g, and Xigi.i.d. from distribution with mean mg
X and covariance matrix

Sg
X
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and �X2
j = 1

n2 o
n2

i=1
X2
ij is the average of the CLR transformation of

relative abundances. Our proposed test is given as follows:

TMECAF = max  
1≤j≤p−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 + n2

p �X1
j − �X2

jffiffiffiffiffiffi
ŝ jj

q
0
B@

1
CA

2

,

where ŝ jj =
n1+n2
n1

ŝ 1
X : jj +

n1+n2
n2

ŝ 2
X : jj, and ŝ g

X : jj =
1
ng o

ng

i=1
(Xg

ij −
�Xg
j )

2, g = 1, 2. We name it the MECAF test. As a maximum-type

test statistic, it is in general better than sum-of-squares type

statistics under sparse alternatives (Tony Cai et al. (2014)). The

assumption of the equal high-dimensional covariance matrices for

two groups is relaxed to allow for wider applicable conditions.

We successfully derived the asymptotic null distribution of

TMECAF given by

Pr (2 − log  (p − 1ð Þ)−1)−1 TMECAF − hp + log  4 −
log   4

2log   (p − 1)

� �� �
< t

� �

! exp  ( − exp  ( − t)),

for any real number t as n1,n2,p!∞ , where hp = 2 log  (p −

1) − ½log  ( log  (p − 1)) + log  (4p)� + log   (log   (p−1))+log   (4p)
2log   (p−1) . Denote

qa as the (1 - a) -quantile of the derived distribution function

exp(-exp(-t)). Namely, qa = -log [log (1-a)-1]. We can define an

asymptotic a-level test denoted by

F1 :a = I TMECAF ≥ 2 −
1

log   (p − 1)

� �
qa + hp + log  4 −

log   4
2log   (p − 1)

� �
:

The null hypothesis H(2)
0 is rejected whenever F1:a = 1. We

also prove that the power of test Pr(F1:a = 1) converges to 1

under some settings and H(2)
1 as n1,n2,p!∞ . All the detailed

proof is given in the Supplementary Material.

Data availability statement

The metagenomics abundance data of the CDI study is readily

available through the R package “curatedMetagenomicsData”(Version

1.16.1) from the Bioconductor (https://bioconductor.org/packages/

release/data/experiment/html/curatedMetagenomicData.html). The

16S rRNA amplicon sequencing data from the murine T1D study is

publicly available at EBI with accession number ERP016357.

Ethics statement

No ethics approval or consent to participate was required for

this study.
Author contributions

ZL developed the proposed method and performed

theoretical proof and simulation studies and manuscript
Frontiers in Cellular and Infection Microbiology 11
writing. XY performed simulation and real data analyses and

manuscript writing. HG performed theoretical proof and

manuscript writing. TL performed simulation analyses. JH

conceptualized the ideas for the proposed method,

simulations, and real data analyses and performed manuscript

writing. All authors contributed to the article and approved the

submitted version.
Funding

HG is funded by the Young Talents Project of Scientific

Research Plan of the Hubei Provincial Department of Education

(Grant No. Q20212506). JH is partly supported by NIH National

Institute on Minority Health and Health Disparities under

Award Number U54MD000538, and NIH National Institute

on Aging under Award Number R33AG057382.
Acknowledgments

The authors would like to thank the reviewers and editors for

their valuable comments and suggestions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fcimb.2022.988717/full#supplementary-material
frontiersin.org

https://bioconductor.org/packages/release/data/experiment/html/curatedMetagenomicData.html
https://bioconductor.org/packages/release/data/experiment/html/curatedMetagenomicData.html
https://www.frontiersin.org/articles/10.3389/fcimb.2022.988717/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2022.988717/full#supplementary-material
https://doi.org/10.3389/fcimb.2022.988717
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2022.988717
References
Aitchison, J. (1982). The statistical analysis of compositional data. J. R. Stat. Soc:
Ser. B Methodol 44, 139–160. doi: 10.1111/j.2517-6161.1982.tb01195.x

Anderson, M. J. (2014). Permutational multivariate analysis of variance
(permanova) (Wiley statsref: statistics reference online), 1–15.

Banerjee, K., Zhao, N., Srinivasan, A., Xue, L., Hicks, S. D., Middleton, F. A., et al.
(2019). An adaptive multivariate two-sample test with application to microbiome
differential abundance analysis. Front. Genet. 10, 350. doi: 10.3389/
fgene.2019.00350

Cao, Y., Lin, W., and Li, H. (2018). Two-sample tests of high-dimensional means
for compositional data. Biometrika 105, 115–132. doi: 10.1093/biomet/asx060

Dulanto Chiang, A., and Dekker, J. P. (2020). From the pipeline to the bedside:
advances and challenges in clinical metagenomics. J. Infect. Dis. 221, S331–S340.
doi: 10.1093/infdis/jiz151

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017).
Microbiome datasets are compositional: and this is not optional. Front. Microbiol.
8, 2224. doi: 10.3389/fmicb.2017.02224

Govender, K. N., Street, T. L., Sanderson, N. D., and Eyre, D. W. (2021).
Metagenomic sequencing as a pathogen-agnostic clinical diagnostic tool for
infectious diseases: a systematic review and meta-analysis of diagnostic test
accuracy studies. J. Clin. Microbiol. 59, e02916–e02920. doi: 10.1128/
JCM.02916-20

Gu, W., Miller, S., and Chiu, C. Y. (2019). Clinical metagenomic next-generation
sequencing for pathogen detection. Annu. Rev. Pathol. 14, 319. doi: 10.1146/
annurev-pathmechdis-012418-012751

Hu, J., Koh, H., He, L., Liu, M., Blaser, M. J., and Li, H. (2018). A two-stage
microbial association mapping framework with advanced fdr control. Microbiome
6, 1–16. doi: 10.1186/s40168-018-0517-1

Lin, H., and Peddada, S. D. (2020). Analysis of compositions of microbiomes
with bias correction. Nat. Commun. 11, 1–11. doi: 10.1038/s41467-020-17041-7

Liu, T., Zhao, H., and Wang, T. (2020). An empirical bayes approach to
normalization and differential abundance testing for microbiome data. BMC
Bioinf. 21, 1–18. doi: 10.1186/s12859-020-03552-z

Livanos, A. E., Greiner, T. U., Vangay, P., Pathmasiri, W., Stewart, D.,
McRitchie, S., et al. (2016). Antibiotic-mediated gut microbiome perturbation
accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 1–13. doi:
10.1038/nmicrobiol.2016.140
Frontiers in Cellular and Infection Microbiology 12
Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for rna-seq data with deseq2. Genome Biol. 15, 1–21. doi:
10.1186/s13059-014-0550-8

Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., and
Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel method
for studying microbial composition. Microbial Ecol. Health Dis. 26, 27663. doi:
10.3402/mehd.v26.27663

Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D. T.,
et al. (2017). Accessible, curated metagenomic data through experimenthub. Nat.
Methods 14, 1023–1024. doi: 10.1038/nmeth.4468

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). Edger: a
bioconductor package for differential expression analysis of digital gene
expression data. bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616

Shi, P., and Li, H. (2017). A model for paired-multinomial data and its
application to analysis of data on a taxonomic tree. Biometrics 73, 1266–1278.
doi: 10.1111/biom.12681

Tang, Z.-Z., and Chen, G. (2019). Zero-inflated generalized dirichlet
multinomial regression model for microbiome compositional data analysis.
Biostatistics 20, 698–713. doi: 10.1093/biostatistics/kxy025

Tony Cai, T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional
means under dependence. J. R. Stat. Soc: Ser. B Stat Methodol 76, 349–372. doi:
10.1111/rssb.12034

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., and
Gordon, J. I. (2007). The human microbiome project. Nature 449, 804–810. doi:
10.1038/nature06244

Ursell, L. K., Metcalf, J. L., Parfrey, L. W., and Knight, R. (2012). Defining the
human microbiome. Nutr. Rev. 70, S38–S44. doi : 10.1111/j .1753-
4887.2012.00493.x

Vincent, C., Miller, M. A., Edens, T. J., Mehrotra, S., Dewar, K., and Manges, A.
R. (2016). Bloom and bust: intestinal microbiota dynamics in response to hospital
exposures and clostridium difficile colonization or infection. Microbiome 4, 1–11.
doi: 10.1186/s40168-016-0156-3

Zhao, N., Zhan, X., Guthrie, K. A., Mitchell, C. M., and Larson, J. (2018).
Generalized hotelling’s test for paired compositional data with application to
human microbiome studies. Genet. Epidemiol. 42, 459–469. doi: 10.1002/
gepi.22127
frontiersin.org

https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
https://doi.org/10.3389/fgene.2019.00350
https://doi.org/10.3389/fgene.2019.00350
https://doi.org/10.1093/biomet/asx060
https://doi.org/10.1093/infdis/jiz151
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.1128/JCM.02916-20
https://doi.org/10.1128/JCM.02916-20
https://doi.org/10.1146/annurev-pathmechdis-012418-012751
https://doi.org/10.1146/annurev-pathmechdis-012418-012751
https://doi.org/10.1186/s40168-018-0517-1
https://doi.org/10.1038/s41467-020-17041-7
https://doi.org/10.1186/s12859-020-03552-z
https://doi.org/10.1038/nmicrobiol.2016.140
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1038/nmeth.4468
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1111/biom.12681
https://doi.org/10.1093/biostatistics/kxy025
https://doi.org/10.1111/rssb.12034
https://doi.org/10.1038/nature06244
https://doi.org/10.1111/j.1753-4887.2012.00493.x
https://doi.org/10.1111/j.1753-4887.2012.00493.x
https://doi.org/10.1186/s40168-016-0156-3
https://doi.org/10.1002/gepi.22127
https://doi.org/10.1002/gepi.22127
https://doi.org/10.3389/fcimb.2022.988717
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses
	1 Introduction
	2 Results
	2.1 The MECAF test
	2.2 Simulation studies
	2.2.1 Simulation setup
	2.2.2 Competing methods
	2.2.3 Simulation results

	2.3 Applications to two microbiome studies
	2.3.1 Analysis of the Clostridium difficile infection metagenomic dataset
	2.3.2 Analysis of the MICE 16S rRNA amplicon microbiome data


	3 Discussion
	4 Methods
	4.1 Notation and specification of test hypothesis
	4.2 The proposed MECAF test

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


