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SUMMARY
Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human

striatal function and dysfunction in Huntington’s disease and dystonia. MGE/CGE-like neural progenitors have been generated from

human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurode-

velopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal

interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuronmarkers at themRNA and protein level

and displayedmaturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated

into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the

potential for hPSC-derived striatal interneurons as an invaluable tool inmodeling striatal development and function in vitro or as a source

of cells for regenerative medicine.
INTRODUCTION

Themedial ganglionic eminence (MGE) and caudal gangli-

onic eminence (CGE) give rise to cortical, striatal and

hippocampal interneurons, as well as globus pallidus pro-

jection neurons and cholinergic basal forebrain neurons.

These cells are crucial for cortical and basal ganglia func-

tion; and their dysfunction has been implicated in diseases

such as epilepsy, schizophrenia, autism, Huntington’s dis-

ease (HD), and dystonia (Lewis, 2012; Powell et al., 2003;

Reiner et al., 2013; Zikopoulos and Barbas, 2013). Given

the correct patterning cues, human pluripotent stem cells

(hPSCs) can differentiate into any cell type in the body,

providing an excellent in vitro tool for the study of human

neural development and function. On this topic, there has

been much interest in using hPSCs to generate cortical or

hippocampal GABAergic interneurons (Cambray et al.,

2012; Kim et al., 2014; Maroof et al., 2010; Nicholas

et al., 2013), and some efforts to produce cholinergic fore-

brain neurons (Bissonnette et al., 2011; Crompton et al.,

2013). However, little attention has been paid to striatal

interneurons despite their important role in dystonia and

HD (Capetian et al., 2014; Reiner et al., 2013).

While interneurons comprise only 5%–10% of rodent

striatal neurons, they make up more than 20% of primate

striatal neurons, suggesting a more important role in pri-

mates than in rodents (Graveland and DiFiglia, 1985; Wu

and Parent, 2000). The remaining striatal population are

the projecting medium spiny neurons (MSNs), born in

the adjacent lateral ganglionic eminence (LGE). Proof-of-

principle studies showing functional improvement in HD
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animal models have used whole ganglionic eminence

(WGE) comprising both LGE andMGE fetal tissue (Kendall

et al., 1998; Palfi et al., 1998). Interneurons will likely be

essential for modeling striatal function with hPSCs, and

may help transplanted hPSC-derived LGE-like cells to

differentiate into MSNs and integrate in vivo for the treat-

ment of HD.

Striatal interneurons fall into four main subtypes

with distinct molecular and functional characteristics.

Parvalbumin (PV)- and somatostatin (SST)-expressing

GABAergic interneurons and choline acetyltransferase

(ChAT)-expressing cholinergic interneurons are born in

the MGEmarked by transcription factor NKX2.1. Most cal-

retinin (CR) interneurons arise fromCOUP-TFII-expressing

progenitors in the CGE (Butt et al., 2005; Marin et al.,

2000). The only known molecular profile that reliably dis-

tinguishes MGE-derived striatal and cortical interneurons

in vivo is co-expression ofNKX2.1 and LHX6.While cortical

interneurons switch off expression of NKX2.1 on post-

mitotic upregulation of LHX6, striatal interneurons

maintain expression of both transcription factors into

adulthood (Nobrega-Pereira et al., 2008).

The common developmental origin of cortical and stria-

tal interneurons indicates that differentiating hPSCs

toward cortical interneurons should also produce striatal

interneurons. Here we show the production of GABAergic

interneurons of each subtype in vitro from human embry-

onic stem cells (hESCs), which demonstrated maturing

electrophysiological properties. Upon transplantation

into the neonatal rat striatum, hESC-derived neural

progenitors differentiated into striatal CR and cholinergic
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interneurons and showed region-specific morphology de-

pending on where they settled.
RESULTS

HESC-Derived MGE- and CGE-like Progenitors Give

Rise to Striatal Interneuron-like Cells In Vitro

hESCs seeded in a monolayer underwent neural induction

by dual-Smad inhibition, with rostral fate facilitated by

WNT signaling inhibitor, XAV939. This was followed by

combinatorial treatment of sonic hedgehog (SHH) and

purmorphamine to induce ventral forebrain identity. We

performed qPCR analyses at days 20 (D20) and 45 (D45)

of differentiation. At D20, SHH-treated cultures showed a

marked increase of MGE markers NKX2.1 and LHX6, and

decrease of dorsal forebrain markers PAX6, EMX1, and

EOMES compared with untreated controls (Figure 1A; Table

S1). Little change was observed for CGE marker COUP-TFII

between conditions. At D45, NKX2.1, and LHX6 expres-

sion remained highly elevated in SHH-treated cultures,

and COUP-TFII expression significantly increased to nearly

three times that of control cultures (Figure 1B). Expression

of interneuron subtype marker PV was five times higher in

SHH-treated samples, but the marginal increase in SST

expression was not significant. In contrast, CR expression

was significantly lower in SHH-treated cultures, falling to

20% of that of controls. Expression of genes specific to re-

gions other than the MGE or CGE were reduced or similar

in SHH-treated cultures compared with controls. The

transcript levels of MGE and post-mitotic interneuron

marker genes in SHH-treated cultures were higher at D45

than those of D20; and were either similar or higher than

those of 15-gestational-week human fetal MGE, apart

from LHX6 and PV (Figure S1A).

Striatal and cortical interneurons express distinct guid-

ancemolecules such that they respond differently tomigra-

tory cues and settle in the striatum or cortex (Nobrega-Per-

eira et al., 2008; Villar-Cervino et al., 2015). EPHB1 and

EPHB3––expressed by striatal interneurons––and cortical

interneuron marker NRP1, showed increased mRNA levels
Figure 1. Differentiation of hESCs into Striatal and Cortical Inter
(A–C) qPCR data presented as gene expression fold-change of SHH-trea
on a logarithmic y axis. Day 45 samples were also analyzed for their e
Data are presented as mean fold-change ± SEM from three independe
with equal variance not assumed.
(D–F) Representative immunocytochemistry images of H7 control a
bars, 100 mm.
(G–I) Images were counted for MGE and CGE progenitor markers (G a
are mean ± SEM from independent experiments performed in H7 (n = 3
(n = 3) and H7-tauGFP (n = 2) for day 60.
*p < 0.05, ***p < 0.001, one-way ANOVA (COUP-TFII, SST, CR), Krusk
post hoc Bonferroni (NKX2.1).
in SHH-treated cultures comparedwith controls (Figure 1C;

Table S1). This shows that SHH treatment led to increased

transcription ofMGE- andCGE-derived interneuron genes,

andnotably elevated levels ofmRNAspecific to both striatal

and cortical interneuron guidance molecules.

Preferential induction of MGE fate in SHH-treated cul-

tureswas confirmedat theprotein level by immunostaining

of interneuron and progenitor markers. Most cells in D20

SHH-treated cultures expressed NKX2.1, and around a

quarter of cells expressed ASCL1 and OLIG2 (Figures 1D,

1G, and 1I; Table S2). COUP-TFII expression was around

22% in both conditions, but in SHH-treated cultures its

expression pattern appeared opposite to that of NKX2.1,

with few cells expressing both proteins (Figure 1D). No sta-

tistical difference was found in the number of cells express-

ing FOXG1, a marker for all forebrain neural progenitors

(Figures 1D and 1G). At D60, there was a higher proportion

of SST+ cells in those treated with SHH (SHH 6.3% ± 1.3%,

Ctrl 1.3% ± 0.5%, p < 0.001) (Figures 1E and 1H). PV+ cells

were detected in three out of six experiments in SHH-

treated cultures (1.5%±0.9%)butnever observed in control

cultures. CRwas expressed in 3%–4%of cells in both condi-

tions. SHH-treated culturesmaintained agreaterproportion

of NKX2.1+ cells at D60, but presented a significant drop of

30% compared with D20 (Figures 1F and 1I). GAD67+ cells

were widely observed in SHH-treated cultures, in visibly

greater numbers than in controls (Figure 1F). Comparable

numbers of MAP2+ and NeuN+ neurons were detected in

the control and SHH-treated cultures (Figure S1B), suggest-

ing that SHH treatment did not affect overall neuronal

production. Together, these results confirm the generation

of neurons resembling cortical and striatalGABAergic inter-

neurons of different subtypes.
HESC-Derived Interneurons Develop Mature

Electrophysiological and Morphological Properties

In Vitro

We next assessed the functional maturation of hESC-

derived neurons using whole-cell patch-clamp electro-

physiology (Figure 2A). HESC-neural derivatives were
neurons In Vitro
ted samples relative to untreated controls on days 20 (A) and 45 (B)
xpression of cortical and striatal interneuron-specific markers (C).
nt experiments performed in H7 cells. *p < 0.05, two-sample t test

nd SHH-treated cultures at days 20 (D) and 60 (E and F). Scale

nd I) and interneuron subtype markers (H and I). Data presented
), H7-tauGFP (n = 2), H9 (n = 1), and iCas9 (n = 1) for day 20 and H7

al-Wallis test (FOXG1, ASCL1, OLIG2, PV), and two-way ANOVA with
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Figure 2. hESC-Derived MGE/CGE-like Progenitors Become Functional GABAergic Neurons
(A) Schematic of whole-cell patch clamp of H7-tauGFP+ neurons co-cultured with primary mouse astrocytes.
(B) Basic membrane properties at days 45 (n = 25) and 60 (n = 16–19). RMP, resting membrane potential.
(C) Representative traces of spontaneous activity (left). Post-synaptic potentials and action potentials were counted over 2 min (right:
D45, n = 14; D60, n = 14).
(D) Representative traces of evoked activity from current injection steps (left). The maximum number of evoked spikes was quantified in
each cell (right: D45, n = 23; D60, n = 19).
(E) Overlaid averaged traces of all D45 (blue, n = 15) and D60 (red, n = 16) first evoked spikes.
(F) Amplitude and half-width of first evoked spikes.
(G) Schematic illustrating second pipette for focal application of glutamate or GABA onto patched cell.
(H) Representative traces showing glutamate- (Glut, 100 mM) and GABA (100 mM)-evoked currents (left) and their quantification (right:
Glut, n = 5; GABA, n = 14).

(legend continued on next page)
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co-cultured with mouse astrocytes from passage 2 to pro-

mote neuronal maturation. An H7 derivative line that

constitutively expresses a cytoplasmic TauGFP fusion pro-

tein was used for easier identification of human neurons

(Pratt et al., 2000). First, using current clamp we measured

intrinsic membrane properties at differentiation D45 and

D60. The mean resting membrane potential decreased

significantly, indicating functional maturation of the cells

(Figure 2B; Table S3). However, there was no significant

change in input resistance, membrane time constant, or

capacitance of the cells.

To assess the intrinsic excitability of our hESC-derived

neurons and their ability to form functional synapses, we

calculated the frequency of spontaneous events (action

potentials and post-synaptic potentials) and evoked spikes

(Figures 2C and 2D; Table S3). Most cells displayed sponta-

neous activity and fired evoked trains of action potentials,

but there was no significant change in the mean frequency

of either over time. However, comparison of individual

action potential kinetics revealed a 35% reduction

in mean spike half-width––indicating an increase in the

number of voltage-gated ion channels in the cell

membrane––despite only a modest increase in mean spike

amplitude (Figure 2F).

Striatal neurons are subject to both glutamatergic input

from the cortex and thalamus, and GABAergic input from

local connections. We tested the effects of focally applied

glutamate and GABA in our D60 neurons using voltage

clamp (Figure 2G). Held at �45 mV, glutamate evoked in-

ward currents in three out of five cells (Figure 2H; Table

S3). At a holding potential of �70 mV, all cells responded

to GABA with an inward current driven primarily by

GABAA receptors, verified by blocking with picrotoxin.

Finally, we investigated the molecular and morpholog-

ical development of the hESC-derived neurons. Post hoc im-

munostaining confirmed that 60.6% of GFP+ cells in the

cultures expressed GAD67 (Figure 2I). During patch-clamp

recordings, neurons were filled with Alexa Fluor 555

(100 mM) and imaged in situ for reconstruction using

Neurolucida 360 (Figure 2J). Sholl analysis revealed signifi-

cantly increased neurite complexity at D60, shown by a

greater number of intersections up to 300 mm (Figure 2K).

The significant difference in total neurite lengthwas driven

entirely by the growth of branches, while mean primary

neurite length remained constant (Figure 2L; Table S3).
(I) Post hoc immunocytochemistry of AF555-filled neurons to confirm
(J) AF555-filled neurons were imaged and traced post hoc in Neurolu
(K) Quantification of Sholl analysis intersections compared by two-w
(L) Total neurite length was divided into primary path length (white)
number of cells from three independent experiments and all data plo
except for (K) were done by two-sample t test.
*p < 0.05, **p < 0.01, ***p < 0.001.
Together, these data show that hESCs can differentiate

into functional, morphologically complex neurons

expressing relevant neurotransmitter receptors in vitro,

making them a suitable platform with which to study neu-

ral functional development.

Transplanted hESC-Derived MGE/CGE-like

Progenitors Give Rise to Striatal Interneuron-like Cells

in Rat Striatum

We next explored the potential of the cells to adopt a

striatal interneuron phenotype in vivo. D20 MGE/CGE-

like progenitors, derived from the GFP+ H7 line, were

transplanted into the right striatum of rat pups im-

mune-suppressed with cyclosporine A. At 6 weeks post-

transplantation (WPT), GFP+ cells were found in the

striatum, septum, and hippocampus of four out of six re-

cipients, and were confirmed to always co-label for HuNu

despite some variation in GFP brightness (Figures 3A and

S2). Neuronal morphology complexified over time, with a

significant increase in the number of primary neurites by

20 WPT in the striatum and septum (Figures 3B and 3C).

Cells in the striatum and septum also developed a signif-

icantly greater number of branch points and neurite

terminations, indicating a difference in morphological

development between cells that settled in the different re-

gions (Figure 3C). These observations suggest that envi-

ronmental cues had an impact on neuronal morphology,

and that transplanted cells integrated themselves structur-

ally within the host brain.

Immunostaining of the grafted brains revealed that

around half of surviving cells had differentiated into

post-mitotic neurons by 6 WPT, demonstrated by NeuN

staining, which did not change at 12 or 20 WPT (Figures

4 and S2). Consistent with this, we observed Nestin stain-

ing in more than 40% of GFP+ cells at 20 WPT, suggesting

protracted neuronal differentiation in vivo (Figure 4C).

NKX2.1 expression remained stable in a third of GFP+ cells

over time, and there was no difference across the brain re-

gions in which cells settled (Figure 4). Again this indicates

that many cells had differentiated by 6 WPT, and either

that a pool of cells remained NKX2.1+ progenitors, or

that they maintained its expression––as would mature

striatal interneurons in normal development (Nobrega-Per-

eira et al., 2008) We observed synaptophysin+ puncta con-

firming the presence of synapses on transplanted cells,
GAD67 (white) expression. Scale bars, 15 mm.
cida.
ay ANOVA with post hoc Bonferroni correction.
and branch length (gray) (D45, n = 15; D60, n = 18). n represents
ts show mean ± SEM of the cells recorded. All statistical analyses
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although we cannot conclude whether these were from

host innervation (Figure S2).

Looking at interneuron subtype-specific markers, CR was

widely expressed throughout the grafts at 12 and 20 WPT,

both inthe striatal graft cores and inmorphologicallymature

neurons in the striatum, septum, and hippocampus (Figures

4B and 4C). Neither PV nor SSTexpression were observed in

anyGFP+cells,unlike sistercultures thatmatured invitro (Fig-

ure 1). However, ChAT––a cholinergic interneuron marker

not observed in vitro but normally present in the stria-

tum––was expressed in a small number of striatal GFP+ cells

at 12 and20WPT (Figures 4B and4C).GAD67washighly ex-

pressed throughout the grafted cells, corroborating the

GABAergic identity of the CR+ neurons (Figure 4C). Finally,

we ruled out any unwanted effects of cyclosporine A on

the differentiation and survival of the cells, by treating

in vitro cultures for up to 7 weeks (Figure S3). These results

show that hESC-derived MGE/CGE-like progenitors have

the capacity to differentiate into cells resembling striatal in-

terneurons in vivo, as well as adopting septal and hippocam-

pal interneuron-like fates having settled in these regions.
DISCUSSION

In this study, we have shown that hESCs can differentiate

into striatal interneurons. In vitro, MGE/CGE-like progeni-

tors gave rise to SST+, PV+, and CR+ neurons, which

normally populate the cortex, striatum, and hippocampus.

After transplantation into the neonatal rat striatum, they

produced striatal interneuron-like cells expressing CR and

ChAT. Consistent with this, both EPHB1/3 (striatal) and

NRP1 (cortical) transcripts were present in our cultures

(Marin et al., 2001; Villar-Cervino et al., 2015). Thus,

striatal transplantation of hESC-derived MGE or CGE

progenitors results in a bias toward striatal interneuron

fate, rather than cortical interneuron fate following cortical

transplantation.

The discrepancies between interneuron subtypes ob-

tained in culture and in the rat striatum are intriguing.

Neuronal differentiation in vivo was delayed in compari-

son with in vitro cultures––a phenomenon we have
Figure 3. Transplanted MGE/CGE-like Progenitors Adopt Region-S
(A) Representative immunohistochemistry images of H7-tauGFP+ (gr
and counterstained with DAPI (blue) at 6, 12, and 20 weeks post-tr
Visible GFP+ cells were traced using Neurolucida and representative e
(B) Sholl profiles comparing cells in each brain region at 6, 12, and 20
SEM of n = 9–26 cells.
(C) The number of primary neurites, branch points, and terminatio
Horizontal bars show significant differences across time points color-c
green, hippocampus) and black vertical bars show significant differ
***p < 0.001.
observed previously in hESC-MSN transplantation (Arber

et al., 2015). CR interneurons appear relatively early in

human cortical development, around gestational week 6,

whereas SST and PV interneurons appear only sparsely

around gestational week 20, perhaps explaining their total

absence from the grafted cells in this study (Maroof et al.,

2013; Nicholas et al., 2013; Zecevic et al., 2011). In the hu-

man striatum, there are three times more CR interneurons

than PV or SST (Wu and Parent, 2000). Studies in mice and

humans have shown that not all CR interneurons are

derived from the CGE, and that most striatal CR interneu-

rons are MGE-derived (Marin et al., 2000; Wang et al.,

2014). Furthermore, research has shown that the host

brain region is able to alter the fate of transplanted cells

to more closely resemble its own (Quattrocolo et al.,

2017). It is therefore reasonable to hypothesize that local

cues favored either the survival of fate-committed CR

and ChAT neurons, or their differentiation from the sur-

viving progenitors. Future work could be designed to

address this question by transplanting MGE/CGE-like pro-

genitors to different brain regions, or at a later time point

when they might be more fate-committed.

Neurotherapeutic strategies for HD may require the in-

clusion of striatal interneurons, as proof-of-concept has

been provided by transplanting WGE––containing both

MGE and LGE––into rodents, monkeys, and human pa-

tients (Barker et al., 2013; Kendall et al., 1998; Lelos et al.,

2016; Palfi et al., 1998). Experimental HD therapy using

hESC-derived MSNs also suggests a potential role for inter-

neurons (Ma et al., 2012;Wu et al., 2018). These hESC-MSN

preparations likely contain interneurons as they are

induced by SHH using paradigms similar to interneuron in-

duction (Ma et al., 2012). Therefore, optimizing striatal

interneuron differentiation, maintenance, and transplan-

tation will be vital for future in vitro and in vivo studies

into striatal development, function and repair.

This article presents an original application for hPSC-

derived MGE/CGE-like interneurons. We have highlighted

a need for better understanding of the mechanisms behind

the fate determination of forebrain interneurons and their

role within the striatum. The stark differences in striatal

interneuron numbers between humans and rodents
pecific Morphologies
een) hESC-derived progenitors and neurons stained for HuNu (red)
ansplantation, in the striatum, septum, and hippocampus of rats.
xamples are shown on the right. Scale bar, 50 mm.
weeks. Data presented are mean number of intersections per shell ±

ns were compared by two-way ANOVA with post hoc Bonferroni.
oded to their respective brain regions (blue, striatum; red, septum;
ences between brain regions at 20 weeks. *p < 0.05, **p < 0.01,

Stem Cell Reports j Vol. 12 j 191–200 j February 12, 2019 197



Figure 4. Transplanted MGE/CGE-like Progenitors Differentiate into Striatal Interneurons
(A–C) Representative immunohistochemistry images of brain sections from 6 (A), 12 (B), and 20 (C) weeks post-transplantation, with GFP+

(green) transplanted cells and DAPI (blue).
(D) NKX2.1 (blue: 6 weeks, n = 6; 12 weeks, n = 5; 20 weeks, n = 3) and NeuN (orange: 6 weeks, n = 5; 12 weeks, n = 3; 20 weeks, n = 3) were
counted as a percentage of HuNu+ and GFP+ cells, respectively. Two-way ANOVA reported no significant differences. Str, striatum; SVZ,
subventricular zone; hip, hippocampus; sep, septum.
Scale bars, 100 mm (A–C, top two panels), 250 mm (C, bottom three panels).
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indicates that we should be looking for such answers in hu-

man cells.
EXPERIMENTAL PROCEDURES

HESC Culture and Differentiation
Three independent hESC lines (H7, H9, and iCas9-HUES9) and an

H7 derivative line (H7-tauGFP) were used in this study. Routine

hESC culture and interneuron differentiation methods, and the

derivation of the H7-tauGFP+ cells are provided in Supplemental

Experimental Procedures.

Transplantation
All animal work was done in compliance with the European Direc-

tive 2010/63/EU on the protection of animals used for scientific

purposes. All surgical procedures and injection coordinates are

described in Supplemental Experimental Procedures.

Statistical Analyses
All data were collected from at least three independent experi-

ments, and are presented as mean ± SEM. Data were tested for

normality with the Shapiro-Wilk test, and for equal variance

with the Levene test, before performing statistical analyses by un-

paired t test, ANOVAor non-parametric alternatives as stated in the

figure legends. Post hoc Bonferroni test was applied following

ANOVA to correct for multiple comparisons. All statistical tests

were performed in Origin (OriginLab) or SPSS (IBM).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, three figures, and three tables and can be found with

this article online at https://doi.org/10.1016/j.stemcr.2018.12.014.
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