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Abstract: PVC injection molding has constrained temperature and shear rate owing to its temperature
sensitivity and high viscosity, as well as its low conductivity. Many challenges are associated with the
PVC injection molding process used for producing PVC fittings with a multi-cavity mold. Once filling
imbalance occurs, the gates and/or runner of the mold should be changed by machine tools, which is
time- and cost-intensive. Using Moldex3D and the Taguchi method, this study reveals an approach
to eliminate imbalanced filling of multi-cavity molds for PVC injection molding. The injection rate
optimization of the filling stage is successfully verified to reduce the imbalance. Furthermore, the
temperatures of the molded PVC fittings are only slightly increased by the change in injection rate.
The temperatures of fittings in the filling and packing are lower than the degradation temperature of
PVC. This approach may help technicians to obtain pilot-run samples for the optimization of molding
parameters and ensure degradation-free PVC molding.

Keywords: filling balance; imbalance; injection molding; PVC; molding flow analysis; Taguchi
method; optimization

1. Introduction

Polyvinyl Chloride (PVC) is one of the most widely used polymers due to its versatile
nature; it is a durable and long-lasting material used for hundreds of healthcare and con-
struction products around the world. This material accounts for about 20% of all plastic
manufactured world-wide, second only to polyethylene [1]. PVC’s flow characteristics
lend themselves to extrusion for pipes and continuous parts. Early trials conducted using
PVC in injection molding applications met with very unsuccessful results due to the higher
viscosity of the melt polymer during the filling stage in plastic injection molding. PVC
injection molding meets defects on molded parts which are similar to the other plastics [2].
A different characteristic of PVC injection molding is that the melt PVC is sensitive to
temperature, and the thermo-viscoelastic effect gives an additional temperature increase
due to this higher shear rate in injection molding [3]. Under a high temperature, melt
PVC often decomposes and burns during the injection molding process [4]. Until the low-
viscosity PVC compounded for injection molding in the 1980s, injection-molding-grade
PVC gradually contributed parts utilized in healthcare, industrial, and consumer goods [5].
High-flow PVC for injection molding has made significant contributions to healthcare
and consumer goods, for instance, the fittings of the blood pipelines for hemodialysis in
healthcare, transportation pipelines for chemicals in industry, and water pipelines in the
consumer market. The fittings of these pipelines directly connect as adaptors and/or veer-
ing connect as elbows to the extruded PVC pipes. These fittings are mainly manufactured
via a PVC injection molding process. However, the ranges of the melt temperature and
filling rate in PVC injection molding are limited due to PVC degradation [6]. Under the
real settings of the machine specifications, simulations by molding flow software have been
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successfully implemented to derive molding parameters for practical operations [7–11]. To
avoid PVC degradation during injection molding, simulations may also help to construct a
successful set of parameters to enhance the molding efficiency by examining the tempera-
ture distribution of the cavity during the filling stage [12]. The taper of the sprue for PVC
injection molding may also induce degradation [13].

The complexity of the chemistry of PVC in thermal degradation calls for several
lumping procedures to handle it. Many studies have aimed to constrain the degradation
of PVC in injection molding. One of the approaches is to add heat stabilizers into the
PVC. Traditional added fillers, such as lead and/or calcium zinc, mixed with PVC may
increase the temperature of PVC degradation and decrease the release rate of hydrogen
chloride (HCl) from PVC. However, the PVC industry made a voluntary commitment to
replace lead-based stabilizers by the end of 2015 [14]. Organic-based stabilizer is thus an
approach to successfully decrease the HCl release rate from PVC [15]. Another approach
is to absorb HCl, which is the start of the degradation chain reaction [16,17]. By using
nanometer particles of silica to absorb HCl, it was verified that the degradation temperature
was thereby elevated, with a minor effect on color change of the compounded sample [18].
By simulation of the temperature distribution in the filling stage, molding parts can be
produced under degradation-free conditions in injection molding. A filling simulation
of PVC injection molding must be very particular due to its high viscosity and high
temperature sensitivity. The viscosities of the melt PVC in the runners and gates of a
mold with multiple cavities are of different levels, even when the runners and gates of the
cavities are laid out in a geometric arrangement. These different viscosities in the gates
and runners are induced by the non-symmetric distribution of the shear rate, which leads
to imbalanced flow fronts into symmetric cavities in the geometry. Two principal factors
affect filling imbalance in injection molding: the shear rate distribution of the melt polymer
and the temperature distribution of the mold [19]. Simulation is desired to handle this
phenomenon of imbalanced filling effectively [20]. Via the three procedures of response
surface methodology, the Taguchi method, and artificial neural networks, the filling balance
can be optimized on the basis of the injection rate, melt temperature, mold temperature,
and geometry of the runner. The artificial neural network approach is the most efficient
optimization procedure to solve the imbalance phenomenon [21].

By the Taguchi method and an artificial neural network, a set of optimal process
parameters can be derived. The most important factor of the injection parameters affecting
filling imbalance is the shear rate of the melt polymer [22]. A “melt flipper”, which is a
melt rotation technology, was inserted at the intersection of the primary and secondary
runners to reduce the shear rate variation across the melt [23,24]. The numerical results
showed that this flipper reduced the imbalance in an “H”-patterned eight-cavity runner
system [25]. Geometrically balanced multi-cavities of a mold do not ensure uniform filling
in injection molding. Under a greater filling pressure, the firstly filled cavity may induce
leakage of the melt polymer. Polymer leakage occurs in the form of plastic burrs associated
with the molded parts acquired under this filling imbalance in plastic injection molding.
Filling imbalance can also lead the firstly filled cavity to an over-packing situation [7].
The short-shot technique by an empirical approach [10,11] can reveal filling imbalance.
Based on the revealed results, the sizes of the runners and/or gates of the mold can be
changed using machine tools via a traditional trial-and-error approach. In the design
phase, simulation is an essential approach to define the sizes of the runners and gates of a
multi-cavity mold.

Before injection molding, molding flow simulations, in the early stage of the design
phase, reveal not only the temperature distribution under degradation of PVC injection
molding, but also the filling imbalance of multiple cavities of the mold. Using the simulation
results, the design details on the mold dimensions can be changed to optimize the design,
and the operation parameters for real trials can be enhanced for successful molding. Once
filling imbalance is present within the injection mold, the mold must be dismantled to
change the sizes of runners and/or gates using machine tools, which increases the cost of
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time and tooling. More efforts are required to address filling imbalance in PVC injection
molding thanks to its temperature sensitivity affecting the viscosity of the melt polymer.
Beyond changes to the sizes of runners and gates, this study aims at constructing a multi-
stage injection rate method in the filling stage using Moldex3D [26] to reduce the filling
imbalance of a multi-cavity mold for PVC injection molding. Based on existing imbalanced
PVC fittings, the numerical model under the PVC properties, injection parameters, and
machine is compared. Using the Taguchi method to optimize the molding parameters, a
new setting for a multi-stage injection rate is established and implemented to reduce filling
imbalance in the multi-cavity mold. With this new injection rate setting, experimental
injection-molded PVC fittings are then used to verify the numerical results.

2. Materials and Methods

The polymer in this study is a rigid PVC of Suspension S-60 [27], from Formosa
Plastic co. Suspension S-60 is a standard material used for the injection molding of PVC
fittings [28]. The following are some of the properties used for the simulation: density,
1400 kg/m3; coefficient of thermal conductivity, 0.08 W/(m ◦C); and Vicat softening Tem-
perature, 76 ◦C. The PVC was measured using a differential scanning calorimetry (DSC)
instrument (TA Instruments Discovery DSC 25, New Castle, DE, USA) under a nitrogen
atmosphere. Suspension S-60 PVC was heated to 240 ◦C under a ramp of 10 ◦C/min, held
isothermally for 1 min, cooled to 25 ◦C at a rate of 10 ◦C/min, held isothermally for 1
min, and heated to 250 ◦C again at 10 ◦C/min for the melting temperature measurements.
As shown in Figure 1a, the Suspension S-60 PVC analyzed via DSC presented starting
melt temperatures of about 109.9 ◦C; a peak melting temperature occurred at 111.1 ◦C. The
heating enthalpies of the first and second peaks were 9.7526 J/g and 0.1043 J/g, respectively.
The glass transition temperature was 74.9 ◦C. Figure 1b depicts the PvT data (Pressure,
Volume, Temperature) of Suspension S-60 PVC measured using a pvT-500, GÖTTFERT
(Buchen, Germany). The specific volume of Suspension S-60 PVC varies with pressure
and temperature. Under zero pressure, the specific volume can change significantly at the
77 ◦C encountered during processes such as the injection molding of PVC. The significant
changes in specific volume in this figure gradually increase with respect to the endured
pressure. In Figure 1c, the specific heat curve of Suspension S-60 PVC was also measured
using the previously mentioned DSC instrument. Below 75 ◦C, the specific heat of PVC is
constant. The specific heat increases when the temperature is greater than 75 ◦C. The maxi-
mum value of the specific heat of PVC occurred at 207 ◦C. Thermo-gravimetric analysis
was applied to derive the degradation temperature of PVC using a Netzsch STA 409PC.
Suspension S-60 PVC showed weight loss at 210 ◦C in Figure 1d. Careful control of the PVC
temperature below this temperature may avoid thermal degradation of the PVC. Figure 1e
shows that the shear rate and temperature of the S-60 PVC are negatively proportional to
their viscosity.

Below 110 ◦C, the thermal conductivity of PVC is 6.254 × 10−4 (W/cm ◦C), while from
110 to 170 ◦C, the function of thermal conductivity of melt PVC is 5.698 + 0.005055T (W/cm ◦C).
The thermal conductivity of melt PVC is 8.024 × 10−4 (W/cm ◦C) once the temperature is
greater than 190 ◦C. The viscosity of this Suspension S-60 PVC is given by the modified
Cross model [26] as

η
( g

cm sec

)
= η0/

[
1 +

(
η0

.
γ

τ∗

)(1−n)]
(1)

where

η0

( g
cm sec

)
= 1.17 × 1011 exp

[
−17.9709(T − 346.74)

(T − 295.14)

]
.
γ is the shear rate of molten PVC, n = 0.257813, τ∗

(
N

cm2

)
= 28.2, and T is the temperature

of the molten PVC in degrees Kelvin.
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Figure 1. Rheological properties of Suspension S-60 PVC, Formosa Plastic Co. (a) DSC heating 
curves; (b) P-v-T curves; (c) specific heat curve; (d) thermo-gravimetric analysis results; (e)viscosity. 
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Figure 1. Rheological properties of Suspension S-60 PVC, Formosa Plastic Co. (a) DSC heating curves;
(b) P-v-T curves; (c) specific heat curve; (d) thermo-gravimetric analysis results; (e) viscosity.

Figure 2 shows the molding parts of twelve PVC fittings. Each fitting has a 32 mm
outer diameter and a 90◦ elbow for water supply. The thickness of this fitting is 3.5 mm. The
diameter of primary runners is 10 mm, and the secondary runners are 8 mm in diameter
for the outer four cavities and 7 mm in diameter for the others. The filling gates of the
twelve cavities are 3.0–4.2 mm. Figure 2a shows an isometric view of the molded parts
including the runners and the core of the sprue. Figure 2b shows the top side of the molded
90◦ elbows. The whole sizes of the molded parts are 302 mm in length, 200 mm in width,
and 60 mm in height. The pitch of the cavity is 22 mm. The bottom side of the molded 90◦

elbows is shown in Figure 2c. Figure 2d presents an isometric view of cooling channels
within the core plate and molded parts, as well as the runner. Straight cooling pipes
compose the cooling channels around the molded parts. The cooling channel within the
cavity plate is shown in Figure 2e.

The filling gates 4.2–5.0 mm in diameter allow the high-viscosity molten PVC material
to flow into the mold cavity. The diameter of the primary runner is 9.8 mm, and those of
the secondary runner are 8.0 mm for the outer four cavities and 6.0 mm for the inner eight
cavities. Each fitting elbow of a cavity is 32.7 cm3 in volume. The gates and runner have a
volume of 46.2 cm3. The solid mesh of the molded parts has 268,440 elements. The mesh of
the cold runner has 36,814 elements. As shown in Table 1, the initial injection parameters
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were a mold temperature of 40 ◦C, a PVC melt temperature of 175 ◦C, a filling time of
12.197 s, a cooling time of 40 s, a mold opening time of 5 s, and a cycle time of injection
molding of 57.8 s.
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Figure 2. Injection-molded PVC elbows: (a) isometric view of the twelve fittings and runners; (b) top
view of the twelve fittings and runners (302 mm × 200 mm × 60 mm); (c) bottom view of the twelve
fittings and runners; (d) isometric view of the cooling channel within the core plate; (e) isometric
view of the cooling channel within the cavity plate.

Table 1. Initial injection molding parameters of Suspension S-60 PVC for fittings.

Parameter Value

Mold temperature (◦C) 40
Filling pressure (max) (MPa) 173.4
Filling rate (max) (mm3/s) 376,000

Melt temperature (◦C) 175
Filling time (s) 12.197

Filling rate of 1st stage (ram 227.7–217.6 mm) (%) 16
Filling rate of 2nd stage (ram 217.6–175.5 mm) (%) 7.6
Filling rate of 3rd stage (ram 175.5–131.4 mm) (%) 12.5

Filling rate of 4th stage (ram 131.4–0 mm) (%) 15
V/P switch (at ram) (mm) 12

Filling volume (mm3) 438,600
Packing time (s) 10

Packing pressure (MPa) 121.38
Cooling time (s) 40

Cooling channel temperature (◦C) 30
Mold opening time (s) 5

Cycle time (s) 57.8
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Within the experiment and simulation, a 260-ton CI-260E injection machine
(Creator, Kaohsiung, Taiwan) was used. This molding machine has screw diameters
of 66 mm in the feed section, 85 mm in the transition section, and 77 mm in the melting
section; a maximum screw stroke of 225 mm; a maximum injection pressure of 173.4 MPa;
and a maximum injection weight of 626 g. The revolution speed of the screw is 25 rpm. The
simulation analysis was performed using Moldex3D software. Following the pvT model in
Figure 1b, the melt PVC is a compressible and generalized non-Newtonian fluid under the
modified Cross model in Equation (1). In the filling phase, the velocity and temperature are
specified at the mold inlet. On the mold wall, the non-slip boundary condition is applied,
and a fixed mold wall temperature is assumed. The finite volume method was used to
discretize the Navier–Stokes equation based on the pressure-based decoupled procedure
and solve the transient flow field in a complex three-dimensional geometry in Moldex3D.
Modeling the flow field in Moldex3D is an iterative decoupled procedure for coupling
velocity and pressure, in which the linearized momentum equations are solved for an initial
estimated pressure field, followed by the solution of the pressure correction equation. Then,
the mass fluxes and pressure are corrected in iterative calculations until the prescribed
convergence condition [9].

According to the injection parameters and machine, the molded parts under 75%
and 98% filling by short-shot testing are presented in Figure 5. A 75% short-shot sample
was produced by the injection machine, shown in Figure 5a. This 75% short-shot of the
experimental injection PVC fitting was compared to the flow front on the top side of the
PVC molded parts via a numerical approach, as shown in Figure 5b. The profile of the
experimental PVC molded parts agrees qualitatively with the simulated flow front of the
parts. In Figure 5c, the profile of the top surface of the PVC molded fittings produced by
about 98% short-shot testing indicates a close fit with the numerical flow front, as shown in
Figure 5d. The outer four cavities of the mold are totally filled with melt PVC. However, the
inner eight cavities are short-filled with melt PVC. This filling imbalance in the multi-cavity
mold provides significant evidence of the prediction accuracy of the experimental and
numerical results.

For improvement of the filling imbalance, a traditional approach is to enlarge the sizes
of the gates and secondary runners of the mold to better balance the filling. In this study,
the injection rates of four stages during filling were set at several levels according to the
Taguchi experimental plan to reducing filling imbalance beyond the enlargements of gates
and runners. The optimized four stages of filling rates at three different levels are selected
and tabulated in Table 2. The interactions between the parameters were not considered in
this study. The levels of the parameters were selected based on the empirical operations
and discussions through the injection molding process. From the number of parameters
and number of levels in Table 3, the use of the experimental layout L9 model was carried
out to derive the responses by smaller-is-better signal to noise (S/N ratio) estimation. The
effects induced by the noise factor, the uncontrolled factor in system, should be minimized
since the noise is the result from all errors encountered in experiment. A higher value of
S/N ratio indicates a minimum effect of the noise factor [29,30]. By S/N ratio, Taguchi
method identifies the control factors and then moves the mean to target a smaller effect
of the S/N ratio for optimization of the levels of control factors. In this study, the smaller
differential imbalance fillings indicate better values, the corresponding S/N ratio (dB) is

− 10log10 ∑n
i=1

yi
n

where n is the number of replications and y is the experimental value [31].
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Table 2. Injection molding parameters of Suspension S-60 PVC.

Parameter Level 1 Level 2 Level 3

1st stage injection rate (%) 10 30 50
2nd stage injection rate (%) 10 25 40
3rd stage injection rate (%) 30 50 70
4th stage injection rate (%) 30 50 70

Table 3. L9 orthogonal array.

Trial
Number

1st Stage
Injection Rate

Level

2nd Stage
Injection Rate

Level

3rd Stage
Injection Rate

Level

4th Stage
Injection Rate

Level

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

3. Results and Discussion
3.1. Time Delay of an Imbalance in Filling

In the trial simulation following the plan in Table 3, the time of the filling front in
the Trial 1 simulation was 7.228 s and the time delay of filling was 0.195 s, as shown in
Figure 4a. The delay time of filling means the time difference between the final filled front
and the first filled front. The molten PVC spread to all twelve cavities within 7.228 s under
10%, 10%, 30%, and 30% injection rates at the first to fourth stages of filling, respectively.
The ratio of time delay to filling time is noted as the percentage of filling time delay of
imbalance, at 2.77%. Across all nine simulation trials, the maximum filling temperature,
filling time, time delay of imbalance, and percentage of filling time delay of imbalance are
listed in Table 4.

Table 4. Defect determination in the 9 experiments based on Moldex3D simulation results.

Trial Number
Max. Filling
Temperature

(◦C)
Filling Time (s)

Filling Time
Delay of

Imbalance (s)

Percentage of
Filling Time

Delay of
Imbalance (%)

1 183.25 7.228 0.231 3.30
2 185.86 5.958 0.497 9.10
3 183.14 3.690 0.357 10.70
4 187.26 5.044 0.021 0.42
5 184.94 2.874 0.095 3.42
6 185.35 4.071 0.266 6.99
7 188.40 4.319 0.012 0.28
8 187.55 3.808 0.094 2.53
9 186.04 3.523 0.213 6.44
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parameters are chosen through the injection process for the evaluation of the selected tem-
perature increases. Additionally, based on the number of parameters and number of lev-
els, an L9 orthogonal array is selected, as shown in Table 4. To reduce multi-cavity filling 
imbalance, the “the smaller the better” quality characteristic was chosen [21]. The signal-
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Figure 4. Top view of the filling time and time delay of imbalance by Moldex3D simulation following
the L9 orthogonal array: (a) Trial 1, filling time 7.228 s; (b) Trial 2, filling time 5.958 s; (c) Trial 3, filling
time 3.69 s; (d) Trial 4, filling time 5.066 s; (e) Trial 5, filling time 2.874 s; (f) Trial 6, filling time 4.071 s;
(g) Trial 7, filling time 4.319 s; (h) Trial 8, filling time 3.808 s; (i) Trial 9, filling time 3.523 s.

3.2. Optimization via the Taguchi Method and Verification

In manufacturing process, Taguchi method has been widely employed to optimize
the process parameters for output quality [32]. Based on the literature review, the control
parameters are chosen through the injection process for the evaluation of the selected
temperature increases. Additionally, based on the number of parameters and number of
levels, an L9 orthogonal array is selected, as shown in Table 4. To reduce multi-cavity filling
imbalance, the “the smaller the better” quality characteristic was chosen [21]. The signal-to-
noise ratios were calculated and tabulated in Table 5. The next step was to determine the
Taguchi response table to find the most significant parameters from the selected parameters
and their optimum levels, shown in Table 6. The optimum level is, hence, the highest value
of each parameter. In Table 6, the best level of each injection rate is indicated by the bottom
line. To reduce the imbalance time delay, we should set the 1st stage injection rate at level 3,
the 2nd stage injection rate at level 1, the 3rd stage injection rate at level 3, and the 4th stage
injection rate at level 3.
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Table 5. Signal-to-noise ratios for “the smaller the better” quality characteristics.

Trial
Number

1st Stage
Injection

Rate Level

2nd Stage
Injection

Rate Level

3rd Stage
Injection

Rate Level

4th Stage
Injection

Rate Level
S/N

1 1 1 1 1 −10.37
2 1 2 2 2 −19.18
3 1 3 3 3 −20.60
4 2 1 2 3 7.57
5 2 2 3 1 −10.68
6 2 3 1 2 −16.89
7 3 1 3 2 −11.10
8 3 2 1 3 −8.07
9 3 3 2 1 −16.17

Table 6. Taguchi response table.

Level
1st Stage

Injection Rate
Level

2nd Stage
Injection Rate

Level

3rd Stage
Injection Rate

Level

4th Stage
Injection Rate

Level

L1 −15.86 0.83 −9.74 −11.72
L2 −8.35 −11.38 −11.41 −8.16
L3 −3.42 −17.08 −6.48 −7.75

Difference 12.44 16.25 5.03 3.97

Simulation verification is an essential procedure to derive the optimization result
based on the optimal levels of parameters. The filling fronts at 50%, 70%, 90%, and 99.6%
are shown in Figure 5. The inner eight cavities show greater spreading of the fronts at
50% and 70% filling. The fronts of the outer four cavities catch up to this spread, such that
the fronts of all cavities are at nearly the same spread in Figure 5c,d. The time delay of
these optimized injection rates is 0.008 s, which is a percentage of 0.19%. This time delay
and percentage with the optimized parameters are smaller than those in Trial 7 of the L9
orthogonal array. By the Taguchi method, the filling imbalance is successfully reduced to a
near-zero value. This study thus shows an approach to eliminate imbalance in multi-cavity
filling beyond the enlargement of gates and runners using machine tools.
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Figure 5. Flow fronts of different filling percentages under optimization of the injection rate to
achieve balanced filling of a multi-cavity mold: (a) 50% filling; (b) 70% filling; (c) 90% filling; (d) 97%
filling; (e) time delay 0.008 s.

3.3. Temperature, Shear Rate and Pressure Distributions

The shear rate of melt PVC during the filling stage may enhance the temperature
of the molten PVC. Figure 1d indicates that the weight loss increases at 210 ◦C. The
temperature distribution of the molding parts during the filling and packing stages was
therefore fundamentally examined. In Figure 6, the melt PVC in barrel of injection machine
has 175 ◦C in temperature and 112.7 MPa in injection pressure at point 1. At the end of
filling stage, the average and maximum temperatures of parts in cavity are 109.8 ◦C and
188.3 ◦C, respectively, meanwhile, the average and maximum pressures of parts are 10.1
and 55.3 MPa, respectively. Then, the parts under the packing pressure of 121.4 MPa are
cooled until the end of packing. At point 3, the average and maximum temperatures of
parts are 96.4 ◦C and 177.0 ◦C, respectively. The molded parts are then cooled down to
47.8 ◦C in average temperature and 135.8 ◦C in maximum temperature at the end of cooling
stage. The molded parts are then ejected from the mold and cooled down to ambient
temperature at point 5 of the figure.

Figure 7a shows that the maximum temperature of the parts and runners is 190.5 ◦C.
If we exclude the runners, the parts show a maximum temperature of 180.3 ◦C on the
gates and within the parts in the filling stage (Figure 7b,c) and a maximum temperature of
175.0 ◦C in the packing stage (Figure 7d). The shear rates of melt PVC on gates are much
higher than the others, the temperature of gates are thus enhanced by the shear rates [33].
These temperatures are lower than the degradation temperature. Optimization of the
injection rate would thus successfully eliminate filling imbalance and ensure degradation-
free molten PVC in the filling and packing stages of injection molding. The shear rate
may decrease the viscosity of melt PVC, however, in Figure 7e the maximum shear rate
is 2800 (1/s). For detailed examination the distribution of shear rate in clipping view of
the molded parts depicted in Figure 7f, the maximum shear rate occurred in the gates.
The average shear rate of molded parts in cavity during filling stage is 8.9 (1/s). By the
maximum and average shear rates, the viscosity respect to the shear rate and temperature
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in Figure 1d indicates the viscosity of melt PVC is from 100,000 to 190,000 (g/cm s) which is
much higher than the ones of general polymers in injection molding. Figure 7g,h dedicate
40 MPa in the maximum pressure of PVC parts at the end of filling stage although the
injection pressure is 112.7 MPa. The gradient of pressure of melt PVC is high due to its
high viscosity.
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Figure 7. Temperature and pressure distributions of molded parts: (a) temperatures of the runners
and parts at the end of filling stage; (b) temperature of parts at the end of filling stage ; (c) clipping
view of the temperature distribution of parts at the end of filling stage; (d) temperature of parts in
the packing stage; (e) shear rate distribution during filling stage; (f) clipping view of the maximum
shear rate during filling stage; (g) filling pressure distribution of molded parts; (h) clipping view of
the filling pressure distribution of molded parts.

4. Conclusions

Beyond making changes to the sizes of runners and gates of a mold using machine
tools once a filling imbalance occurs, this study presented an approach to set a multi-stage
injection rate in the filling process by way of Moldex3D and the Taguchi method. The
verified results show that the filling imbalance in the multi-cavity mold for PVC injection
molding was successfully eliminated. Besides this, the temperatures of the molded parts
were only slightly increased by the injection rate. The temperatures of the parts in the
filling and packing stages were far from the degradation temperature. This approach may
help technicians to obtain pilot-run samples to optimize molding parameters and ensure
degradation-free PVC molding.

Author Contributions: Conceptualization and methodology, software, validation, formal analysis
and investigation, H.-H.T.; data curation, J.-W.L., S.-H.C. and J.-J.L.; writing—original draft prepa-
ration, review and editing, H.-H.T. and S.-J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Nan Ya plastics Corp., Taiwan (Grant No. I01-111-E018,
Mar. 2022).

Institutional Review Board Statement: Not applicable.

Informed Conssent Statement: Not applicable.



Polymers 2022, 14, 3483 17 of 18

Data Availability Statement: All the data generated or analyzed during this study are included in
the published article.

Conflicts of Interest: The authors declare no conflict of interest with this work.

References
1. Percentage of PVC among Plastics. Available online: https://www.bpf.co.uk/plastipedia/polymers/PVC.aspx (accessed on 7

July 2022).
2. Ahmed, T.; Sharma, P.; Karmaker, C.L.; Nasir, S. Warpage prediction of Injection-molded PVC part using ensemble machine

learning algorithm. Mater. Today Proc. 2022, 50, 565. [CrossRef]
3. Koszkul, J.; Nabialek, J. Viscosity models in simulation of the filling stage of the injection moulded process. J. Mater. Process.

Technol. 2004, 157, 183–187. [CrossRef]
4. Garcia, J.L.; Koelling, K.W.; Xu, G.; Summers, J.W. PVC degradation during injection molding: Experimental evaluation. J. Vinyl

Technol. 2004, 10, 17–40. [CrossRef]
5. Garcia, J.L.; Koelling, K.W.; Summers, J.W. Computational prediction of PVC degradation during injection molding in a

rectangular channel. Polym. Eng. Sci. 2004, 44, 1295–1312. [CrossRef]
6. Weir, S. Predicting surface defects in injection molded PVC components. J. Vinyl Technol. 1994, 16, 231–234. [CrossRef]
7. Yavari, R.; Khorsand, H. Numerical and experimental study of injection step, separation, and imbalance filling in low pressure

injection molding of ceramic components. J. Eur. Ceram. Soc. 2021, 41, 6915. [CrossRef]
8. Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review.

Adv. Polym. Technol. 2016, 37, 429–449. [CrossRef]
9. Chang, R.-Y.; Yang, W.-H. Numerical simulation of mold filling in injection molding using a three-dimensional finite volume

approach. Int. J. Numer. Methods Fluids 2001, 37, 125–148. [CrossRef]
10. Tsai, H.H.; Liao, Y.L. Feasibility Study of the Flatness of a Plastic Injection Molded Pallet by a Newly Proposed Sequential Valve

Gate System. Polymers 2022, 14, 616. [CrossRef]
11. Liao, Y.-L.; Tsai, H.-H. A Comparison of Numerical and Actual Measurements of Large-Scale Rib-Structured Pallet Flatness Using

Recycled Polypropylene in Injection Molding. Polymers 2022, 14, 1631. [CrossRef]
12. Lladó, J.; Sánchez, B. Influence of injection parameters on the formation of blush in injection moulding of PVC. J. Mater. Processing

Technol. 2008, 204, 1–3. [CrossRef]
13. Sánchez, B.; Lladó, J. Surface quality of PVC fittings based on the design of the sprue. J. Mater. Processing Technol. 2008, 207, 1–3.

[CrossRef]
14. Impact of Lead Restrictions on the Recycling of PVC. Available online: https://www.vinylplus.eu/resources/impact-of-lead-

restrictions-on-the-recycling-of-pvc/ (accessed on 10 July 2022).
15. Jubsilp, C.; Asawakosinchai, A.; Mora, P.; Saramas, D.; Rimdusit, S. Effects of Organic Based Heat Stabilizer on Properties of

Polyvinyl Chloride for Pipe Applications: A Comparative Study with Pb and CaZn Systems. Polymers 2022, 14, 133. [CrossRef]
16. Yu, J.; Sun, L.S.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [CrossRef]
17. Xu, Z.; Kolapkar, S.S.; Zinchik, S.; Bar-Ziv, E.; Mcdonald, A.G. Comprehensive kinetic study of thermal degradation of

polyvinylchloride (PVC). Polym. Degrad. Stab. 2020, 176, 109148. [CrossRef]
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