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Organic acidemias (OAs) are inherited metabolic disorders caused by deficiency of enzymatic activities in the catabolism of amino
acids, carbohydrates, or lipids. These disorders result in the accumulation of mono-, di-, or tricarboxylic acids, generally referred
to as organic acids. The OA outcomes can involve different organs and/or systems. Some OA disorders are easily managed if
promptly diagnosed and treated, whereas, in others cases, such as propionate metabolism-related OAs (propionic acidemia, PA;
methylmalonic acidemia,MMA), neither diet, vitamin therapy, nor liver transplantation appears to preventmultiorgan impairment.
Here, we review the recent developments in dissecting molecular bases of OAs by using integration of mass spectrometry- (MS-)
based metabolomic and proteomic strategies. MS-based techniques have facilitated the rapid and economical evaluation of a broad
spectrumofmetabolites in various body fluids, also collected in small samples, like dried blood spots.This approach has enabled the
timely diagnosis of OAs, thereby facilitating early therapeutic intervention. Besides providing an overview ofMS-based approaches
most frequently used to study the molecular mechanisms underlying OA pathophysiology, we discuss the principal challenges of
metabolomic and proteomic applications to OAs.

1. Introduction

The term “inborn errors of metabolism” (IEMs) was coined
by Garrod in 1908 to describe genetically determined con-
ditions, such as alkaptonuria, albinism, pentosuria, and
cystinuria [1]. Nowadays IEMs represent genetic disorders
that are caused by alterations of a specific enzymatic reaction.
Although individually rare, IEMs collectively account for
a significant proportion of genetic illnesses, particularly in
children. IEMs can be pleiotropic and can involve virtually
any organ or system. Initial clinical presentation can occur
any time from prenatal development through adulthood, and
specific environmental triggers are crucial to determine an
individual patient phenotype [2].

One of the primary challenges presented by IEMs is their
extreme diversity, which has always made them difficult to

classify. Currently, IEMs are categorized according to the
affected organ (as in “neurological” or “hepatic” diseases)
or to the affected organelle (e.g., “mitochondrial,” “peroxi-
somal,” or “lysosomal” disorders) or to the age of presen-
tation (neonatal or adult-onset IEM). Because each of these
approaches is informative, no single, universal classification
system exists [3].

The genetic basis of IEMs is extremely heterogeneous and
can involve any type of genetic defect: one or more point
mutations, deletions or insertions, or genomic rearrange-
ments (see Supplementary Table 1 in SupplementaryMaterial
available online at http://dx.doi.org/10.1155/2016/9210408).
Mutations can occur in coding or regulatory sequences, and
mutations occurring in different genes can affect the same
pathway.The pathogenesis of IEM can generally be attributed
to the loss- or gain-of-function of mutant proteins (usually
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Table 1: Multisystem involvement in OAs.

Hearth Skeletal muscle Liver Pancreas Kidney Brain
MSUD + + + + ++
PA + + + + ++
MMA + + + + + ++
IVA + + + + +
GA I + + + + +
𝛽-KTD + + + + +
HMG-CoA lyase D + + + + +

enzymes or transporters), which in turn are able to alter a
specific metabolite flux within a determined cell pathway.

The biological effects of IEM mutations can be mediated
by four main processes: (a) direct toxicity of accumulating
upstreammetabolites; (b) deficiency of downstreammetabo-
lites; (c) feedback inhibition or activation by the metabolite
on the same or different pathway; and (d) diversion of
metabolic flux to secondary pathways [3].

Organic acidemias or organic acidurias (OAs) are inher-
ited metabolic disorders caused by deficiency of enzymatic
activities in the catabolism of amino acids, carbohydrates, or
lipids [4, 5]. These disorders result in the accumulation of
mono-, di-, or tricarboxylic acids, generally referred to as or-
ganic acids.They includemaple syrup urine disease (MSUD),
propionic acidemia (PA), methylmalonic acidemia (MMA),
isovaleric acidemia (IVA), 3-hydroxy-3-methylglutaryl-CoA
(HMG-CoA) lyase deficiency, beta ketothiolase deficiency
(𝛽-KTD), and glutaric acidemia type I (GA I). Among OA
common clinical symptoms there are a toxic encephalopathy,
with seizures, hypotonia, lethargy, coma, vomiting, respi-
ratory distress, and poor feeding in the neonatal period.
For specific OAs, clinical features may occur in the older
child or adolescence determining progressive neurologic
deterioration, loss of intellectual function, ataxia, Reye syn-
drome, recurrent ketoacidosis, or psychiatric symptoms.
The OA outcomes can involve different organs and/or
systems; the multisystemic nature of the different OAs
is showed in Table 1. Therapy, often imperfect at best,
includes dietary manipulation to reduce the enzyme sub-
strate and/or administration of appropriate vitamins to
increase the residual activity of the mutant enzyme and/or
increase of the excretion of potentially toxic metabolites by
providing glycine and/or L-carnitine and, in some cases,
by supplying enzyme in the form of liver transplantation
[6–8].

Some OA disorders are easily managed if promptly diag-
nosed and treated, but, in others cases, functional deteriora-
tion of brain and other organs with high energy demands are
quite common [9]. In this regard, it has been suggested that
the formation of the toxic metabolites may occur within the
brain [9]. Moreover, the energetic functional impairment of
other organs or systems in OAs may be related to a preferen-
tial accumulation of mitochondrial intermediates within this
same organelle, before leaving the cell [9].This is particularly
true for OAs related to propionate metabolism such as MMA
and PA, in which neither diet, vitamin therapy, nor liver

transplantation appears to prevent neurologic complications
such as leukoencephalopathy and basal ganglia atrophy
[9].

PA is caused by mutations in either the propionyl-CoA
carboxylase alpha (PCCA) or beta (PCCB) genes, which
encode for the mitochondrial enzyme PCC. Deficiency of
PCC activity leads to accumulation and excretion of pro-
pionate, 3-hydroxypropionate, methylcitrate, and propionyl-
glycine, as well as ammonia and lactate, especially during
metabolic crises [10]. Abnormal mitochondrial structure has
been demonstrated in skeletal muscle, heart, and liver from
PA patients, together with severe impairment of oxidative
phosphorylation [11].

Two enzymatic phenotypes of apoenzyme deficiency are
recognized for MMA, both involving the methylmalonyl-
CoA mutase (MUT): fibroblasts from mut0 patients have no
detectable or residual enzyme activity while those frommut−
patients show amarkedly reduced enzyme activity [12]. MUT
converts L-methylmalonyl-CoA into succinyl-CoA, a Krebs
cycle intermediate. A block at this enzymatic step results in
elevated plasma levels of methylmalonic acid as well in the
accumulation of other propionyl-CoA-derived metabolites,
such as 2-methylcitrate [10]. Patients, carrying mutations in
theMUT gene, typically have severe disease and demonstrate
poor outcomes, with early mortality and substantial lifelong
morbidity [13–15].

MMA can also be triggered by an aberrant intracellular
metabolism ofMUT cofactor, vitamin B12 (also referred to as
cobalamin, Cbl). In particular seven enzymes are responsible
for the transport, processing, and delivery of the appropriate
Cbl form via a mitochondrion-targeted route to MUT [16,
17]. Mutations in any of them define three broad disease
phenotypes: isolated MMA, combined MMA, and homo-
cystinuria [18]. These disorders are classified—either Cbl A,
B, C, D, E, F, or G—and are also clinically and biochemically
heterogeneous [19, 20]. Cobalamin C (Cbl-C) defect is the
most common inborn error of cobalamin metabolism and
causes combined MMA with homocystinuria. Despite phar-
macological treatment with OH-Cbl, betaine, folic acid, and
carnitine, the long-term outcome is in most cases unsatisfac-
tory with progression of neurological and visual impairment,
mainly expressed in form of retinal degeneration and/or
maculopathy.

Here, we review the latest results in dissecting molecular
bases of OAs by using integration of mass spectrometry-
based metabolomic and proteomic strategies. Generally,
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measurements of metabolites in various body fluids are the
current tools for diagnosis. Mass spectrometry (MS) has
facilitated the rapid and economical evaluation of a broad
spectrum of metabolites from small samples, including dried
blood spots. This approach has enabled the timely diagnosis
of OAs, thereby facilitating early institution of therapy.

2. Metabolomic Strategies and Applications in
Organic Acidemias

The term “metabolome” was introduced by Oliver et al.
to indicate “the holistic quantitative set of low molecular-
weight compounds (<1000Da)” [21] in the 1998. However
the study of metabolome has more ancient origin. The word
metabolism originates from Greek language and denotes
“change.” Ancient cultures used urine color, taste, and smell
for diabetes diagnosis, as their change is related to differ-
ent metabolite levels [22]. In 1950s Williams reported the
presence of a interindividual variable but intraindividual
constant metabolic pattern [23]. Despite the fact that the first
experimental evidences supporting the metabolic pattern
analysis might have clinical utility, no further investigation
was performed until the 70s, when a boost came by the
rapid increase of technology in gas chromatography (GC),
liquid chromatography (LC), and MS field. In the 1970s
two key papers published by E. C. Horning and M. G.
Horning and by Pauling et al. stated that the functional status
of a complex biological system resides in the quantitative
and qualitative pattern of metabolites in body fluids [24,
25]. Nicholson et al. introduced the term metabonomics to
indicate the profiling of whole metabolic composition in
a living system with simultaneous determination of their
changes resulting frommultiple environmental conditions as
well as genetic background [26].The termmetabolomics was
used, firstly, by Fiehn in 2002, indicating the comprehensive
and quantitative analysis of all metabolites in a system
[27]. Nowadays the terms metabonomics and metabolomics
are used interchangeably and provide a generalised outline
to characterize metabolite profiles of complex biochemical
mixtures. In this regard, metabolomics enables the identi-
fication of the downstream effects caused by the action of
genes and proteins, thus allowing defining what is currently
taking place. Hence, metabolomics not only enables the
identification of disease biomarkers in the form of endoge-
nous metabolites (gene-derived metabolites) and exogenous
metabolites (environmentally derived metabolites) but also
provides unique insights into the fundamental causes of
disease [28].

2.1. Metabolomic Workflow. An appropriate study design is
crucial to ensure the correct data interpretation of metabolic
experiments. The inclusion of a sufficient number of subjects
in each group, the sample collection, the choice of techno-
logical platforms, the processing of generated data, and the
application of various bioinformatic methods are all factors
that maximize analytical power of metabolomic approach
aimed at identifying compounds and pathways of interest
[29].

Two different strategies, named targeted and untar-
geted metabolomics, can be adopted, for this purpose (Fig-
ure 1). Targeted metabolomics is a specific and quantitative
approach that enables the evaluation of a limited number of
metabolites based on an a priori hypothesis [30].

On the other hand, untargetedmetabolomics is a nonspe-
cific approachwhosemain aim is to determinate thewhole set
of metabolites detectable in a fluid or tissue, thus providing a
functional fingerprint of the pathophysiological state of the
body.

Whereas metabolic targeted and targeted procedures
indicate what is happening at a biochemical level, the success
of metabolomics in biomarker translation, with respect to
other omics techniques, resides in the robustness of the
adopted protocols and instrumentations, in the highly quan-
titative aspect, easily adapted to new assays and already
located in many clinical testing laboratories.

Many successful studies have been conducted using urine,
plasma, or serum samples. Urine metabolome better reflects
kidney pathophysiological changes, while metabolome in
whole blood, plasma, and serum is more related to systemic
changes. The advantage of metabolomic analysis is to use
noninvasive or minimally invasive sample collection pro-
cedure. Urine, in fact, easily and noninvasively collected,
represents an “open system” that includes the intermediate
metabolites, thus reflecting specific metabolic processes [31].
Dried blood spot samples, collected on a suitable inert
paper matrix, are also a convenient method for metabolic
profiling, thus allowing an easier sample collection, storage
and transport [32]. Interestingly, dried blood spot sample
does not require a number of preanalytical steps (sample
preparation, storage, freezing, and transportation on dry
ice), thus considerably simplifying the experimental design
[33]. Moreover, it has been reported that the metabolite
profiles from blood spots are similar to those obtained from
more abundant protein-depleted plasma [34, 35]. However
sample collection, storage, and pretreatment could have a
negative impact on the outcome of the analysis resulting in
incorrect identification of biomarkers. A standard operating
procedures need to be considered for the biofluids used for
each metabolomic study.

Due to the huge diversity of chemical structures and the
large differences in abundance, there is no single technol-
ogy available to analyze the entire metabolome. The most
appropriate methodology may be selected as a compromise
between the chemical selectivity, sensitivity, and speed of
the different techniques. In addition to MS, also nuclear
magnetic resonance (NMR) is used in order to analyze a
large number of metabolites (up to 20–50) simultaneously
[17, 18], because it requires minimal sample pretreatment and
provides highly reproducible quantitative results. However,
as analytical limits the NMR is able to mainly determine
the high abundant analytes but not less abundant ones,
present in a complex matrix. On the contrary the deep power
of MS consist of its easiness to be coupled to separation
techniques LC-MS, GC-MS, and LC-MS/MS, thus providing
(a) the determination of wide spectrum of compounds with
several physicochemical properties and different abundance
(picomolar and nanomolar range) and (b) high sensitivity
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Figure 1: Schematic view of metabolomic methods. Samples deriving from body fluids (i.e., urine, plasma, and blood) are source for
metabolomics. Two different strategies can be adopted. Targeted metabolomics allows the quantitation of a limited number of metabolites
based on an a priori hypothesis. Untargeted metabolomics allows the determination of all the metabolites detectable in biofluids, without
an a priori hypothesis. Biological interpretation of qualitative and quantitative alterations of metabolomics dataset correlates the metabolite
patterns to biological pathways and cellular processes.

and selectivity [36]. As for LC-MS, combination of two com-
plementary chromatographic separations such as reversed-
phase LC (RPLC) and hydrophilic interaction LC (HILIC) is
often used to ensure the coverage of a large set of metabo-
lites [37, 38]. Recently, ultrahigh performance LC (UHPLC)
and two-dimensional LC techniques are successfully used
in metabolomics studies allowing a huge improvement of
the chromatographic resolution. Conversely, the use of GC
technique is more stringent thus demanding the application
of derivatization steps in the sample preparation process
for the analysis of polar and nonvolatile compounds. Since
each technique provides broad coverage of many classes of
organic compounds, it is useful in a metabolomics approach
to complement each other.

As for processing of generated data, statistical analysis has
a great impact on metabolite identification and quantitation
and on the resulting biological interpretation. Two common
statistical approaches may be adopted: the unsupervised
method such as principal components analysis (PCA) and the
supervised method, including partial least squares (PLS). In
particular, PCA involves the transformation of the variables
into a set of unrelated orthogonal components, with the first
and a subsequent component explaining the largest and smal-
ler amount of variance in the data, respectively. PCA helps
to identify outliers in metabolomic experiments and also

identify other technical issues that could produce variability
in the data. PLS models correlate a feature of interest with
the entire metabolomic dataset, and hence the components
of a PLS model indicate how much the particular metabolite
contributes to statistical significance of a specific dataset [39].

In order to obtain biological interpretation of whole
metabolomic dataset, it is important to correlate metabolites
belonging to the same metabolic pathway or chairing com-
mon quantitative changes. Hence, metabolomic data can be
clustered into different “network” of metabolic pathways, in
which nodes represent experimental and known metabolites
[40]. Moreover, the availability of public repositories includ-
ing metabolites within functional route, for example, Kyoto
Encyclopedia of Genes and Genomes (KEGG), also allows
performing pathway analysis [41].

Moreover, a proper validation of the obtained results rep-
resents an important challenge of metabolomic investigation.
Hence, it is pivotal to compare the analytical data between
different studies and/or laboratories.

2.2. Metabolomic Applications to OAs. In the last decade
metabolomic approaches were applied in the investigation of
IEMs to better understand the molecular processes underly-
ing their development. The recent literature showed the big
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Table 2: Biomarker in OAs identified in DBS by LC-MS/MS analysis.

Primary markers Secondary markers Ratios

MSUD Val ↑
Ile/leu ↑

PA C3 ↑ Gly ↑ C3/C0; C3/C4; C3/C16
MMAmut C3 ↑ Gly ↑ C3/C0; C3/C4; C3/C16
MMA CblA and B C3 ↑ Gly ↑ C3/C0; C3/C4; C3/C16
MMA CblC and D C3 ↑ Gly ↑; Met ↑; C16:1OH ↑ C3/C0; C3/C4; C3/C16
IVA C5 ↑

GA I C5DC ↑ C5DC/C4; C5DC/C8;
C5DC/C12; C5DC/C3DC

𝛽-KTD C5:1 ↑ C5OHn/↑
HMG-CoA lyase D C5OH ↑ C6DCn/↑
n means normal level, ↑means increase.

potential and impact of these approaches especially for
diseases characterized by a-symptomatic development.

An example of diagnosis of pre- and a-symptomatic
diseases is represented by the targetedmetabolomic approach
applied to newborn screening for inherited metabolic dis-
orders. The IEMs including OAs were diagnosed by using
tandem mass spectrometry since the 1990s [42, 43]. More
than 70differentmetabolic diseases can be diagnosed bymea-
suring metabolites extracted from a single dried blood spot
(DBS) collected within 48–72 hours of birth. The standard
MS newborn screening procedure allows the determination
of amino acids and acylcarnitines in semiquantitative mode,
by using LC-MS/MS analytical platform. Table 2 shows the
biomarkers (amino acids, amino acid ratios, acylcarnitines,
and acylcarnitine ratios) analyzed on DBS by LC-MS/MS
which are used in the diagnosis of OAs. As shown, pro-
pionylcarnitine increases in several diseases: consequently,
a second-tier test performed on the DBS by LC-MS/MS
analysis is performed to quantitate methylmalonic acid and
propionic acid in order to discriminate between MMA and
PA [44]. Urinary organic acids performed by GC-MS or
acylglycines measured by LC-MS/MS analysis are then used
to confirm the abnormal profile [45, 46]. Table 3 shows
organic acids and acylglycine identified in OAs.

Dénes et al. [47] explored a new area in the newborn
screening field to improve sensitivity and specificity. The
authors demonstrated that the high-resolution mass spec-
trometry (HR-MS) provides higher metabolome coverage
comparable to that of canonical LC-MS/MS approaches.
These results can reduce false-positive rate. Suspected pos-
itive cases, in fact, require confirmatory testing, which
increase analytical burden on the metabolic diagnostic lab-
oratories. Besides the detection of amino acids and acyl-
carnitines, the novel method was also capable of the semi-
quantitative determination of highly specific disease markers
including various organic acids, acylglycines, or even carbo-
hydrates. Routine application of the method was expected to
decrease the number of second samples requested as well as
the number of second-tier or confirmatory tests. However
the high cost of the instrumentation and the need of high

qualified personnel involved in the running of the equipment
limit the applicability in routine analysis.

Wojtowicz et al. [48] used a GC ×GC-MS analytical plat-
form, whose separation power is elevated, to improve analyte
detectability of pathological markers of OAs in urine sample.
The procedure consists of the following steps: (a) spectral
peaks were chosen according to their ratio signal to noise
(𝑆/𝑁 > 200); (b) peaks of interest (metabolic biomarkers of
pathology, in this case) are exported to the reference, which is
a set of information containing the retention times and mass
spectrum of each analyte, among other data; (c) the reference
is used to search for each analyte in the unknown sample
and for the quantification of positively identified analytes. To
create a reference applicable for the diagnoses, markers were
imported from different samples where the given metabolite
was present. The data processing strategy provided signif-
icant time-savings compared to classical manual approach.
However this kind of instrumentation is not widely employed
in diagnostic laboratories, due to high cost and need of
bioinformatic expertise to data interpretation.

Moving to untargeted examples, Wikoff et al. used untar-
geted LC-MS analysis to simultaneously profile thousands of
metabolites on plasma of MMA and PA patients in order
not only to characterize the metabolomic pattern of the
these two diseases but also to define the specific difference
between them [49]. They performed a profiling approach,
including new nonlinear time correction, peak-finding, and
integration methods to allow semiquantitative comparison
between healthy individuals and patient populations. The
study included plasma samples from healthy adults with
(𝑛 = 3) and without (𝑛 = 3) carnitine supplementation,
healthy children with (𝑛 = 3) and without (𝑛 = 12)
carnitine supplementation, children with mut0 MMA (𝑛 =
15), and children with PA (𝑛 = 9). The authors chose a
dual analytical platform: LC-MS to determinate unknown
metabolite from methanolic plasma sample extracts and LC-
MS/MS to confirm the identifiedmetabolites by their specific
mass fragmentation pattern. An intriguing result of this study
is the significant increase in 𝛾-butyrobetaine concentrations
in patients withMMA and PA, which has not been previously
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Table 3: Organic acids and acylglycines in OAs.

Urinary organic acids detected by GC-MS Urinary acylglycines detected by LC-MS/MS

MSUD

2-Keto-isocaproic acid ↑
2-OH-isovaleric acid ↑
2-Keto-isovaleric acid ↑
2-Keto-3-methylvaleric acid ↑
2-OH-3-methylvaleric acid ↑

PA 3-OH-propionic acid ↑ Tiglylglycine ↑
Methylcitric acid ↑ Propionylglycine ↑

MMA Methylmalonic acid ↑
Methylcitric acid ↑

IVA 3-Hydroxyisovaleric acid ↑ Isovalerylglycine ↑

GA I Glutaric acid ↑ Glutarylglycine ↑
3-OH glutaric acid ↑

𝛽-KTD 2-Methyl-3-OH butyric acid ↑ Tiglylglycine ↑
2-Methyl-acetoacetic acid ↑

HMG-CoA lyase D 3-Methyl-glutaconic acid ↑
↑means increase.

reported. 𝛾-Butyrobetaine is converted to L-carnitine by 𝛾-
butyrobetaine hydroxylase, localized in liver, kidney, and
brain in humans [50]. Increase of 𝛾-butyrobetaine may arise
by inhibition of 𝛾-butyrobetaine hydroxylase by metabo-
lites accumulating in these defects. Alternatively, propionyl
carnitine, which accumulates in PA and MMA, inhibits 𝛾-
butyrobetaine transport across the plasma membrane in
liver [51] and thus plasma concentrations. The authors also
suggested that C6:1 (or methyl C5:1) was increased in PA
relative to MMA, while isovaleryl carnitine was increased in
MMA and PA.These results seem to be promising but should
be reinforced by the enrollment of higher number of samples.

Finally, an untargeted metabolomic approach was tested
by Miller et al. [52] to study 21 different IEMs, including
OAs, using three different but complementary mass spec-
trometry platforms: (a) GC-MS; (b) LC-MS in positive ion
mode; and (c) LC-MS in negative ion mode. The authors
emphasized the need to have more accurate and speed
diagnosis methods to improve therapeutical action. For all
analytic methods, metabolites were identified by matching
the ion chromatographic retention index, accurate mass,
and mass spectral fragmentation signatures with reference
library entries, created from authentic standard metabolites
by means of the same analytical procedure [53]. The primary
advantage of this kind of approach is the simultaneous
detection of more than 400 endogenous analytes. Results
reported consistent detection of key biomarkers across many
specimens with clear segregation of disease-related analyte
levels between unaffected versus affected individuals in nearly
all cases tested. Overall this analysis provided excellent
coverage of the amino acids and acylcarnitines performed
by targeted methods; however a number a relevant plasma
compounds like homocysteine and methylmalonic acid were
not identified. As the authors stated, the initial proof-of-
concept study is encouraging, but further improvements are
needed to test reproducibility of this platform across multiple
independent analysis.

In this regard, the recent technological advancements
in MS may certainly promote the automation of the MS-
based metabolomics analysis, thus allowing (a) reducing
costs, (b) increasing throughput, (c) ensuring greater repro-
ducibility, substantially cutting down on sample-handling
errors, and (d) encouraging a greater focus on the absolute
quantification. So the automation of technologies represents
a great improvement especially when a high number of
metabolomic analyses is required to reduce the number of
false positives (normal sample reported as abnormal) and
false negative (abnormal sample reported as normal). To date,
the most successful example of metabolomic application to
OAs is represented by metabolic targeted methods utilized
in the newborn screening. Not only does MS-based newborn
screening help in diagnosing or even predicting disease, but
also the same techniques can also be used to determine the
optimal therapy and monitor or customize the therapeutic
dose. One of themain reasons for the success and widespread
adoption of high-throughput MS-based screening is the very
low sample costs.

However, a major limit of the metabolomic strategies is
actually the limited number of identified metabolites due
to the small metabolite coverage obtained by the so far
developed MS profiling methods. It is well known that bio-
logical interpretation has to be performed on a high number
of metabolites. It is challenging to get a good biological
interpretation based on only fragments of the overall picture.

3. Proteomics Strategies and Applications in
Organic Acidemias

Proteomics has the potential to complement metabolomics
and contribute to a better understanding of disease processes.
The term “proteome”was first used byWilkins et al. in 1996 to
indicate snapshots of protein composition from a particular
tissue or organism, at defined time points and under given
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physiological (or pathological) conditions [54]. A qualitative
proteomic analysis is focused on the study of proteins present
in various types of biological materials, in particular to
identify their functions, structures, and interaction sites or
posttranslationalmodifications (PTMs) [55, 56]. Towards this
aim, a multitude of MS-based proteomic approaches have
been developed, and although proteomic studies represent
a fruitful field in molecular research, comprehensive quan-
titative descriptions of biological systems at protein levels are
more recent [57]. In fact, the fast-evolvingMS techniques, the
identification, and quantitation of all of the proteins in a bio-
logical system are still an experimental challenge. However,
successful impact of proteomics in biomedical science has
prompted clinicians to use innovative proteomic technology
into clinical research, thus considering its application to the
translational medicine. This has indeed triggered the burst
of clinical proteomics, thus allowing (a) the unravelling the
disease-related molecular mechanisms and (b) the identi-
fication of new disease biomarkers to be used in clinical
applications for diagnosis, for evaluation of therapy outcomes
and for follow-up analyses [58–60]. Clinical proteomics,
in fact, enable the quantitative and qualitative profiling of
proteins and peptides that are present in clinical specimens
like body fluids, cells, and tissues [61, 62].

3.1. Proteomic Workflow. In most quantitative proteomic
workflows, MS-based procedures can be grouped in two
major approaches: labeling and label-free methods [63, 64]
(Figure 2). Among the two approaches, the first provides cer-
tainly themost accurate quantitation through chemical (Two-
Dimensional Differential In-Gel Electrophoresis, 2D-DIGE;
IsotopeCodedAffinity Tags, ICAT; TandemMass Tags, TMT;
Isobaric Tag for Relative and Absolute Quantitation, iTRAQ)
and metabolic (Stable Isotope Labeling by Amino Acids in
Cell Culture, SILAC) labeling [62–69], whereas label-free
methods (Spectral Counting, SpC;MS/MSTotal Ion Current,
MS2 TIC), widely spread for their ease of use, enable relative
quantitation over a large dynamic range in comparison to
labeling approaches [70–73] (Figure 2).

The classical quantitative proteomic methods utilize dyes
coupled to a high-resolution protein separation technique,
such as 2D electrophoresis. In particular, the use of fluores-
cent dyes in 2D-DIGE protocols increases sensitivity, offers a
linear dynamic range, and allows both the quantitative com-
parison of gel-based protein patterns and their identification
by MALDI-TOF or by LC-MS/MS techniques [74, 75].

The other accurate quantitative approaches are based on
stable isotope labeling; in this case, quantitation is achieved
by comparing mass spectrometric signal intensities between
corresponding labeled and unlabeled peptides. Isotope labels
can be introduced chemically (ICAT, iTRAQ, and TMT) or
metabolically (SILAC) into amino acids [67–69].

On the other hand, label-free approaches enable relative
protein quantitation in complex mixture by (a) measuring
the number of acquired MS/MS spectra for all peptides
assigned to a given protein or (b) directly comparing the
mass spectrometric signal intensity, namely, TIC of MS/MS
spectra, assigned to all peptides for a given protein [76–78].

SpC
MS/MS TIC 

SILAC DIGE 
ICAT
TMT 

iTRAQ

Human tissues, primary cells, body fluids

Sample A Sample B

Relative quantitative proteomics

Label-free

Metabolic Chemical

Labeling

Figure 2: Schematic view of quantitative proteomic methods. Sam-
ples deriving frompatients (i.e., tissues, cells, and body fluids) are the
sources for clinical proteomics. Label-free and labeling proteomic
approaches are the two main groups of MS-based strategies aimed
at identifying and quantifying differentially expressed proteins
between two different samples A and B (i.e., cells or tissues fromOA
patients versus healthy controls). Label-free methods include SpC
andMS/MS TIC approaches. On the other hand, the other methods
are based on metabolic labeling, such as SILAC, or chemical such as
DIGE, ICAT, TMT, and iTRAQ.

In clinical proteomic applications, the complex nature
of human proteome represents a major challenge: in fact,
the protein large dynamic range goes from 1–105 or 106 in
cells up to 109–1010 in plasma [79]. Accordingly, accurate
quantitative analysis requires standard operating procedures
for handling of specimens and protein sample preparation,
increased sensitivity for MS identification, and statistical
methods and bioinformatic tools for subsequent interpreta-
tion of quantitative proteomic data. Sample preparation is the
most important step in order to ensure the reproducibility of
proteomic results. As it is well known, no universal protocol
exists for the sample preparation although several strategies
are adapted according to the type of biological sample [80–
83]. In addition to solubilisation procedures of all the proteins
in a sample and to removal of contaminants (nucleic acids,
polysaccharides, polyphenols, lipids, etc.), the conventional
protocols may include depletion of high-abundance proteins
from plasma or enrichment processes for urine samples,
likely affecting the relative abundance among the components
of the protein mixture.

Whatever quantitative proteomic approach is chosen,
after protein separation and/or enzymatic digestion, the
peptide mixture is injected into a mass spectrometer, usually
coupled online with a HPLC. In particular, LC-MS/MS
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Table 4: Summary of proteomic results from specimens of MMACHC patients.

Cellular system Main results MS-based proteomic
technology References

Fibroblasts
Underexpression of proteins related to
apoptosis and metabolism. Overexpression of
oxidative stress proteins

2D-DIGE/MALDI-TOF
and MALDI-TOF/TOF Ebhardt et al., 2006 [87]

Fibroblasts

Differentially expressed proteins related to
cellular metabolism and regulation,
cytoskeleton assembly, neurological system,
cell signaling, and detoxification

2D-DIGE/LC-MS Richard et al., 2011 [89]

Lymphocytes

Deregulation of proteins involved in oxidative
stress and cellular detoxification, energy
metabolism, cytoskeleton organization, and
assembly

2D-DIGE/LC-MS/MS
and MALDI-TOF/TOF Hannibal et al., 2015 [90]

Liver Differentially expressed proteins involved in
energy and carbohydrate metabolism

2D-DIGE/LC-MS/MS
and MALDI-TOF/TOF Caterino et al., 2015 [91]

technologies are routinely used for protein/peptide identi-
fication in human complex samples [81, 84]. In LC-MS/MS
analysis, data are traditionally acquired by Data Dependent
Acquisition (DDA) method, whereby only a defined number
of the most intense species, observed in the survey MS scan,
are selected for fragmentation. Accordingly, this acquisition
method leads to a sample underestimation because of the
exclusion of low intensity species that remain unidentified
[62]. To overcome this issue, Data Independent Acquisition
(DIA) methods are now emerging by alternating low and
high collision energy or by ion isolation and fragmentation
in defined𝑚/𝑧 intervals [85, 86].

As for quantitative proteomics, studies comparing protein
levels between two different samples are aimed at detecting
differential proteins whose expression significantly changes
between conditions (Figure 2). To determine which protein
variations are statistically significant a high number of repli-
cates are required and appropriate statistical tests are usually
computed for each protein. Such proteomic experiments
generally produce complex data, whose interpretation is per-
formed by means of bioinformatic tools available on the net.
Thewhole data, in fact, are analyzed by using specific software
in order to (a) cluster the identified proteins according to
gene ontology (GO) and/or functional annotation terms; (b)
identify relevant biological networks among the identified
proteins; and (c) define cellular processes affected by the
experimental conditions [87, 88].

3.2. Proteomic Application to OAs. Despite the biochemical
characterization of OAs, the molecular mechanisms under-
lying the pathophysiology of these diseases remain poorly
understood. However, changes that occur at protein level are
now beginning to be explored by using clinical proteomic
approaches. The proteome of MMA is so far the most
explored thus representing the starting point for proteomic
studies applied to OA.

In this context, much of our knowledge arise from (a) ex
vivo studies with fibroblasts fromMMA patients [89, 90]; (b)
in vivo characterization of patients lymphocytes [91]; and (c)
more recently analysis of MMA patient’ livers [92] (Table 4).

To date, few efforts were dedicated to the finding of
molecular signatures and altered cellular pathways, and, as a
consequence, to the identification of useful protein targets for
designing alternative therapies and/or predicting therapeutic
outcomes. A major challenge of clinical proteomic studies
related to rare metabolic diseases is often the small sample
size due to the unavailability of cells or tissues from patients
as well as from age-matched healthy subjects.

To our knowledge, all published studies, related to
the proteome of different MMA forms, apply the labeling
approach 2D-DIGE coupled to MS/MS techniques.

In this context, Richard et al. reported the first pro-
teomic analysis of patients with isolated MMA by using 2D-
DIGE/MS approach, by using MALDI-TOF and MALDI-
TOF/TOF for protein identification [89]. Although the small
sample size (cultured skin fibroblasts from only two MMA
patients), this study represents the first attempt to iden-
tify differential expressed mitochondrial proteins in MMA
patients with cblH or cblD disorder. Nevertheless, the authors
found that proteins related to apoptosis (cytochrome c,
CYC) and metabolism (succinyl-CoA ligase, SUCLG2) were
underexpressed in MMA patients, while oxidative stress
proteins (manganese superoxide dismutase, MnSOD) were
overexpressed. This could be considered a pioneering study
thus leading to hypothesize that a deficit in MUT protein
determines a deregulation of cellular and energymetabolism,
including the involvement of cytochrome 𝑐 release and ROS
overproduction [89].

To partially overcome the small sample size drawback,
Hannibal et al. [90] selected three MMACHC patients,
whose skin fibroblasts were the only sample available, thus
demonstrating that the three related cblC cell lines have
metabolic andmorphological properties suitable to represent
a functional model of cobalamin deficiency type C [90]. By
using fibroblasts from normal patients as genetically unre-
lated controls, Hannibal et al. identified protein expression
differences, by 2D-DIGE and LC-MS, which were exclusively
common to all three cblC fibroblasts sources, thus excluding
interindividual variability. In agreement with Richard et al.
[89], a significant differential expressionwas observed in cblC
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fibroblasts for proteins related to cellular metabolism and
regulation, including cytoskeleton assembly, neurological
system, cell signaling, and cellular detoxification [90]. It is
noteworthy that no protein expression differences between
the normal and cblC fibroblasts were observed upon their
supplementation with OHCbl, towards which MMACHC
patients did not sufficiently respond. Despite the existence
of a strict correlation between the cblC cell model and
MMACHC patient phenotype, this study is limited to patient
fibroblasts and not to other cell types, thus lacking a global
view of protein variations associated with the metabolic
disease.

Interestingly, in a recent study conducted by using 2D-
DIGE and LC-MS/MS or MALDI-TOF/TOF, some of the
results observed in cblC fibroblasts were also confirmed in
MMACHC lymphocytes [91]. As for the sample size of this
proteomic study, it is noteworthy that the lymphocytes were
obtained from 6 MMACHC patients that were compared
with six age-matched healthy subjects.Moreover, the enrolled
cblC patients were under standard therapy (with OHCbl,
betaine, folate, and L-carnitine) showing reduced but still
high levels of both plasma tHcy and urine MMA. Due to
unavailability of control samples under standard therapy,
a limit of this study is that the whole proteomic dataset
reflects not only the pathophysiology of the disease, but
also the molecular effect inducted by the standard multidrug
treatment received by the patients. Nevertheless, in agree-
ment with previous studies on fibroblasts, proteomic analysis
of cblC lymphocytes showed a deregulation of proteins
involved in oxidative stress and cellular detoxification, energy
metabolism, cytoskeleton organization, and assembly. How-
ever, other proteins, for example, those related to intracel-
lular trafficking and protein folding, were also differentially
expressed in cblC lymphocytes, thus leading to hypothesize
the existence of a tissue-specificity. On the other hand, an
underexpression of GSTO1 (glutathione S-transferase omega
1)was observed in cblC lymphocytes, as already shown also by
Hannibal et al. in fibroblasts [90]. Such an evidence suggests
an imbalance of GSH/GSSG metabolism in cblC patients,
as previously demonstrated by Pastore et al. in vivo studies
[93]. In this context, MS could be a convenient platform
for the analysis of protein glutathionylation as PTMs within
MMA patients’ proteome, thus providing useful information
on the disease progression and therapy outcomes, as well as
the severity of the oxidative stress to liver and/or kidneys
in transplanted patients. In this regard recently a proteomic
study was conducted on liver specimens from donors and
MMA patients that underwent elective liver or combined
liver-kidney transplantation [92]. Once again, a challenge of
this study is linked to the availability of healthy donors, here
represented by no sex- and age-matched controls, but show-
ing viable and normal hepatocytes. The authors employed
2D-DIGE technology to identify differentially expressed pro-
teins associated to the liver metabolic impairment observed
in all sixMMApatients diagnosed as vitamin B12 nonrespon-
sive. Accordingly, they found that most of the differentially
abundant proteins were involved in metabolic pathways such
as energy and carbohydrate metabolism, thus suggesting
that a metabolic adaptation occurs to compensate the liver

mitochondrial dysfunction, hallmark in MMA. Moreover,
the metabolic data, showing the reduction of intermediates
of Krebs cycle, provide, together with proteomic results, the
first successful attempt to unravel the pathways underlying
the hepatic metabolic instability. This integrative approach
allowed not only explaining secondary metabolic aspects of
MMA (ketonuria and hyperammonemia), but also targeting
key enzymes/energy substrates for the design of alternative
therapeutic approaches.

To the best of our knowledge, the reported studies clearly
show that the proteomic approach is useful for understand-
ing cellular and metabolic processes underlying OA defect.
Among MS-based techniques, only the 2D-DIGE analysis
platform was utilized to study global protein expression,
thus showing its feasibility also to other metabolic diseases.
Although it is well known that the 2D-DIGE technique
does not detect the whole proteome from a given source in
comparison to LC-MS/MS-based methods, the papers here
reviewed have successfully used this approach as a starting
point to perform differential proteomics on samples derived
from patients with IEMs.

4. Conclusions

Themetabolomic data in OAs, collected to data, derive from
extended newborn screening performed using LC-MS/MS
platform [94, 95]. Metabolomic analysis of OAs allows quan-
tifying specific biomarkers, which facilitate disease diagnosis,
pathogenesis, and therapeutical treatment optimization.

The success of metabolomics in biomarker translation,
with respect to other omics techniques, resides in the robust-
ness of the adopted protocols and instrumentations, in the
highly quantitative aspect, easily adapted to new assays and
already located in many clinical testing laboratories. High
automation of technologies represents a great improvement
especially when a high number of metabolomic analyses
are required. Not only does MS-based newborn screening
help in diagnosing or even predicting disease, but also
the same techniques can also be used to determine the
optimal therapy and monitor or customize the therapeutic
dose. However metabolomic strategies need to improve its
analytical protocols; indeed they lack a standard operating
procedure to analyze biofluids and a proper validation of
the obtained results that allow comparing the analytical data
between different studies and/or laboratories. A major limit
of the metabolomic strategies with respect to other omics
techniques, as proteomics, resides in the reduced number
of identified metabolites. Compared to proteins, metabo-
lites are a very heterogeneous molecular class due to their
different physicochemical properties; so the simultaneous
extraction by biofluids is difficult. This reason prevents a
good biological interpretation of partial obtained data. The
above limit may be overcome by utilizing complementary
MS-based technologies. The future challenge in the study of
OAs metabolomics is to enable simultaneous targeted and
untargeted methods aimed at obtaining sensitive and accu-
rate detection of predetermined metabolites, while allowing
detection and identification of still unknown metabolites.
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Much of our knowledge of protein changes in OAs arose
from proteomic analysis with fibroblasts, lymphocytes, and
liver from MMA patients by using 2D-DIGE technology
coupled to MS. These clinical proteomic studies are chal-
lenged by specimen availability from OA patients as well as
healthy subjects. Further investigations, including label-free
proteomic approaches, could be employed for relative protein
quantitation between specimen fromOApatients and healthy
controls for their versatility and the required small amount of
biological samples.

By a global view of protein variations associated with
MMA defect, most of the identified differentially expressed
proteins are involved in energy metabolism, cellular detoxifi-
cation, oxidative stress, and cytoskeleton assembly (Table 4).
Despite these first successful results, the molecular mecha-
nisms underlyingOApathophysiology still remain to be deci-
phered. Therefore, we cannot exclude that increased and/or
decreased cellularmetabolites could regulate epigeneticmod-
ifications andmodulate the activities of key enzymes aswell as
protein PTMs. In this context, MS-based strategies could be
a useful platform for the analysis of PTMs from OA patients,
thus providing which PTMs impact metabolic processes and
cellular functions.
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