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Optical control of polarization in ferroelectric
heterostructures
Tao Li1, Alexey Lipatov 2, Haidong Lu1, Hyungwoo Lee3, Jung-Woo Lee3, Engin Torun4, Ludger Wirtz4,

Chang-Beom Eom3, Jorge Íñiguez5, Alexander Sinitskii 2 & Alexei Gruverman 1

In the ferroelectric devices, polarization control is usually accomplished by application of an

electric field. In this paper, we demonstrate optically induced polarization switching in

BaTiO3-based ferroelectric heterostructures utilizing a two-dimensional narrow-gap semi-

conductor MoS2 as a top electrode. This effect is attributed to the redistribution of the photo-

generated carriers and screening charges at the MoS2/BaTiO3 interface. Specifically, a two-

step process, which involves formation of intra-layer excitons during light absorption followed

by their decay into inter-layer excitons, results in the positive charge accumulation at the

interface forcing the polarization reversal from the upward to the downward direction.

Theoretical modeling of the MoS2 optical absorption spectra with and without the applied

electric field provides quantitative support for the proposed mechanism. It is suggested that

the discovered effect is of general nature and should be observable in any heterostructure

comprising a ferroelectric and a narrow gap semiconductor.
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The characteristic feature of the ferroelectric materials is the
presence of the reversible spontaneous polarization that
can be switched by an electric field1. Switchability of fer-

roelectric polarization enables control of a number of
polarization-dependent electronic, mechanical, optical, and other
functional properties, which forms the basis of their device
applications2. The most recently reported effects of this nature
include ferroelectrically induced resistive switching phenomena
and the associated memristive behavior3, electrical control of
antiferromagnetic domains4, modulation of the electronic trans-
port in 2D semiconductors5–7 and phase transitions at magnetic
complex oxide interfaces8,9, Although polarization reversal is
typically realized via application of an electric field, recently it has
been shown that mechanical stress and chemical environment can
also be used as external stimuli for polarization control10–12.

Among the most important properties of ferroelectrics is their
strong interaction with light, which gives rise to a variety of the
photo-induced phenomena coupled to polarization. This includes
experimentally observed effects, such as photovoltaic behavior13

and photostriction14,15, as well as expected but not demonstrated
features, such as optically generated interface metal-insulator
transitions16. Other reported optically enabled effects include
UV-induced domain pinning17,18, increased imprint19,20, domain
wall displacement by varying the polarization angle of a laser21,
THz radiation via optically induced modulation of polarization22.
These observations provide tangible reasons for investigation of
the interaction between light and ferroic order parameters and for
development of nanostructures with the physical functionality
controlled by light.

In this paper, we report optically induced switching of polar-
ization in the hybrid MoS2/BaTiO3/SrRuO3 tunnel junctions23

realized via photo-absorption in two-dimensional MoS2—a
transition metal dichalcogenide semiconductor, characterized by
a strong and fast photoresponse. Monolayer MoS2 has a direct
optical gap of ~1.9 eV, while bulk MoS2 shows indirect bandgap
of ~1.2 eV24–26. Further, taking advantage of the MoS2 photo-
sensitivity, we demonstrate that optical excitation also leads to a
sizable change in the perpendicular-to-plane electronic transport

in the MoS2/BaTiO3/SrRuO3 tunnel junctions—an effect that we
term as optical electroresistance effect (OER). The observed
effects may open possibilities for remote control of the electronic
properties of ferroelectric-based devices for advanced optoelec-
tronic applications. It should be noted, however, that for any
future applications it is important to find out if the speed of
optical switching could achieve the same scale as polarization
reversal induced by electrical means.

Results
Electrical control of polarization and resistive switching. For
this study, we employ hybrid ferroelectric tunnel junctions (FTJs)
comprised of epitaxial ferroelectric BaTiO3 (BTO) film with the
thickness ranging from 6 to 12 unit cells (u.c.) (i.e., from 2.4 nm
to 4.8 nm) sandwiched between the top MoS2 and bottom SrRuO3

(SRO) electrodes. Details of the growth of the BTO/SRO het-
erostructures on the (001) SrTiO3 substrates by pulsed laser
deposition (PLD)27 are given in Methods section. Multilayer
MoS2 flakes were transferred from the MoS2 single crystal to the
BTO film surface via mechanical exfoliation method using an
adhesive tape28 (see Methods for details). The polarization state
of the BTO and changes in the transport properties of the MoS2/
BTO/SRO tunnel junctions induced by the electrical and/or
optical means have been probed by piezoresponse force micro-
scopy (PFM) and conducting atomic force microscopy (C-AFM),
respectively.

Figure 1a–d shows the results of the electrical polarization
switching in the MoS2/BTO(12 u.c.)/SRO junctions. Preliminary
studies showed that the fabricated BTO films had the polarization
aligned in the direction perpendicular to the surface, and
therefore only 180° inversion of polarization was allowed (see
Supplementary Figure 1). Application of the electrical bias to the
MoS2 flake leads to the reversal of polarization in the BTO film
underneath as evidenced by the contrast inversion in the PFM
phase images (Fig. 1a, c). A reduced PFM amplitude signal for the
upward BTO polarization state (Fig. 1b, d), consistent with our
previously reported results29, is due to the change in the MoS2

80
a b

c d

e

f

MoS2

BTO

P
F

M
 p

ha
se

P
F

M
 a

m
pl

itu
de

0.5 μm

180°

–180°

1.0 a.u.

0.0

40

C
ur

re
nt

 (
pA

)

–40

–80
–0.05 0.00 0.05

Bias (V)

–0.05 0.00 0.05
Bias (V)

Dark

White light

Pup
Pdown

Pup
Pdown

0

80

40

C
ur

re
nt

 (
pA

)

–40

–80

0

Fig. 1 Electrically induced polarization switching in the MoS2/BaTiO3/SrRuO3 junction. a, b PFM phase (a) and amplitude (b) images after application of a
negative voltage pulse (−5 V, 0.5 s) to the MoS2 flake. The 12-u.c.-thick BTO film underneath the MoS2 flake is fully switched to the upward polarization,
Pup. c, d PFM phase (c) and amplitude (d) images after application of several positive voltage pulses (+5 V, 0.5 s) to the MoS2 flake. BTO underneath the
MoS2 flake is fully switched to downward polarization, Pdown. The polarization state of the bare BTO film (at the lower right corner) is not affected by the
electrical bias. e, f The I–V characteristics of the same junction measured in the dark and during illumination. The tunneling current for the OFF state (Pup)
is largely increased under illumination
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conductivity. Earlier, it has been shown that MoS2 in the MoS2/
BTO/SRO junctions behaves as a good conductor when the BTO
polarization is pointing downward and tends to be more
insulating for the opposite polarization. Both polarization states
are found to be stable for at least several hours without any
significant decay. The I–V characteristics in Fig. 1e measured in
the dark illustrate the resistive switching effect in the MoS2/BTO/
SRO junctions associated with the polarization reversal in the
BTO barrier and the changed conductivity of MoS2. Specifically,
the downward BTO polarization, Pdown, corresponds to the low
resistance (ON) state and the upward polarization, Pup, produces
the high resistance (OFF) state, typically yielding an OFF/ON
ratio of the order from several hundred to several thousand29.

Optical electroresistance effect. Due to the photosensitivity of
MoS2 it is reasonable to expect that optical illumination should
lead to the appearance of an electric field due to photogenerated
charge carriers that would affect the electronic properties of the
MoS2/BTO/SRO junctions30. The I–V testing of the MoS2/BTO/
SRO junctions after white light illumination for <10 min (Fig. 1f)
reveals that resistance of the OFF (Pup) state decreases from 70 to
3 GΩ upon optical excitation, but stays almost intact for the ON
(Pdown) state (~200MΩ), leading to the reduction of the OFF/ON
ratio from 350 (measured in the dark) to 60. This effect is similar
to the optically induced changes in the transport properties
observed in the MoS2-gated Pb(Zr,Ti)O3 (PZT) field effect

transistors7. It was also found that optical illumination of the
MoS2-PZT structure causes an abrupt decrease in the PFM
amplitude signal. To explain this behavior, two hypotheses were
proposed. The first one attributed it to domain rearrangement,
i.e., a change in the polarization state, due to the less efficient
polarization screening and the second one invoked optically
induced changes in the resistance of MoS2.

Optically induced polarization reversal. To clarify the interplay
between the BTO polarization state, MoS2 resistance and optical
excitation, further studies of the MoS2/BTO(12 u.c.)/SRO junc-
tions have been carried out by acquiring the PFM images and
monitoring the changes in the PFM signal under constant UV
illumination (with a center peak of 377 nm corresponding to 3.29
eV). Geometry of the experimental setup is shown in Fig. 2a. The
light intensity measured at the BTO surface is about 5 mW cm−2

for 40% UV light output power. Figure 2b–e illustrates the effect
of optical illumination on the PFM images of the MoS2/BTO/SRO
junction, which was initially poled to the upward polarization
state by application of the negative electrical bias to MoS2 in the
dark (Fig. 2b, c). It can be seen that after illumination the BTO
film covered with MoS2 exhibits an inversed PFM phase contrast
while the PFM signal of the bare BTO films shows almost no
change (Fig. 2d, e). This behavior resembles the MoS2/BTO
response to the electrical poling by a positive bias and, thus, can
be attributed to the optically induced polarization reversal. Note,

P
F

M
 p

ha
se

S
ca

n 
di

re
ct

io
n

S
ca

n 
di

re
ct

io
n

S
ca

n 
di

re
ct

io
n

180°

–180°

1.0 a.u.

0.0

180°

–180°

1.0 a.u.

0.0

MoS2

MoS
2

BTO

STO

SRO

BTO1 μm

1 μm

In darkLaser light sourcea

f h j l

g i k

b d

c e

Light source

Light on

40% UV

Under UV
illumination

In dark

20% UV 10% UV

0.8
1000

100

S
w

itc
hi

ng
 ti

m
e 

(s
)

10
0 20 40

40%
20%
10%
5%

Light intensity (%)

0.6

0.4

0.2

0.0
1 10 100 1000

Time (s)
P

F
M

 a
m

pl
itu

de
 (

a.
u.

)

Photodetector

V

After UV illumination

P
F

M
 a

m
pl

itu
de

P
F

M
 p

ha
se

P
F

M
 a

m
pl

itu
de

Fig. 2 Optically induced changes of the polarization in MoS2/BaTiO3/SrRuO3 junctions. a A sketch of the experiment geometry. b–e PFM phase (b, d) and
amplitude (c, e) images acquired in the dark before and after UV illumination. The MoS2 flake boundary is indicated by the dashed lines in b. The BTO film
underneath MoS2 was electrically poled to the upward polarization before illumination. f–k PFM phase (f, h, j) and amplitude (g, i, k) images under
illumination with light of different intensity: f, g 40, h, i 20, and j, k 10% of the nominal light source power. The scanned area is fully covered by MoS2.
Polarization was electrically switched in the dark to the upward polarization before each scan. l PFM amplitude signal as a function of time under
illumination based on the analysis of the PFM images in g, i, k (PFM images for 5% light intensity are not shown). The minimum of PFM amplitude signal
indicates an unpolarized state (likely due to the equal fraction of the upward and downward domains). The inset shows the optical switching time (defined
as a time required for the PFM amplitude to reach its minimum value after turning on the light) as a function of light intensity
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that this effect is observed only in the MoS2/BTO/SRO junctions
in the upward polarization state and no optically induced changes
have been detected in the samples with the downward polariza-
tion. To get reference data, bare BTO films with electrically poled
upward and downward domains were illuminated using the same
UV light intensity. In this case, the PFM amplitude signal was
changing due to the effect of the photogenerated carriers in the
BTO film. However, no polarization switching was observed (see
Supplementary Figure 2) although redistribution of the photo-
induced charges under UV illumination was detected by Kelvin
Probe Force Microscopy (KPFM). Thus, it is important to
emphasize that the optically induced switching occurs only in the
MoS2/BTO/SRO junctions and does not occur in the BTO/SRO
structures. As will be shown below, this effect can be explained by
the interplay between the redistribution of the photogenerated
charges in MoS2 and BTO. In addition, to check if the same effect
would be induced by the light of a different wavelength, we have
performed illumination by green (562 nm) light. It has been
found that no optically induced polarization switching was
observed for the same light intensity and for the comparable time
of illumination.

It has been also found that the rate, with which the PFM signal
responds to the optical excitation, depends on the light intensity:
the response becomes slower upon a light power decrease. This
effect is illustrated in Fig. 2f–k where the scanning of the sample,
initially poled to the upward polarization, begins from the top of
the image in the dark and then the light is turned on at the
moment indicated by a blue arrow. This leads to an abrupt
reduction of the PFM amplitude signal and fuzzy PFM phase
contrast. However, as scanning under illumination continues, the
PFM phase signal undergoes complete inversion and, for the light
source at 40% of its nominal power, within several seconds the
PFM amplitude completely recovers (Fig. 2f, g). It takes a much
longer time for the PFM amplitude to recover if the light source
power is reduced to 20 or 10% (Fig. 2h–k) and at 5% of the
nominal source power the reduced PFM amplitude signal does
not recover irrespective of how long the sample is exposed to
light. The time dependent behavior of the PFM amplitude signal

is shown in Fig. 2l, where the inset illustrates the effect of the light
intensity on the time, at which the PFM amplitude reaches its
minimum value before starting to increase—a parameter
provisionally termed as an optical switching time. To rule out
the artifacts caused by the AFM detection system, the PFM
images of the bare BTO surface were used as a reference. It has
been confirmed that the described changes in the amplitude and
phase signals are confined to the region covered by the MoS2
flake.

Taking all these observations together, we argue that the
changes in the PFM response shown in Fig. 2 are a result of the
optically induced polarization reversal caused by the photo-
generated charge carriers in MoS2. The abrupt decrease in the
PFM amplitude upon illumination and its subsequent increase is
reminiscent of the PFM visualization of the polarization reversal
induced by electrical or mechanical means11,31, which presum-
ably proceeds via nucleation and growth of ultrasmall domains of
opposite polarity. To confirm that the BTO underneath MoS2 has
been indeed switched by the UV light, we have removed part of
the MoS2 flake after illumination and performed PFM imaging of
the exposed BTO surface. The obtained PFM maps reveal the
downward polarization state in the exposed BTO (see Supple-
mentary Figure 3), which is a solid evidence of the optically
induced polarization switching in the MoS2/BTO/SRO junction
ruling out any artificial imaging effect. In addition, to exclude the
heating effect due to light absorption as a possible reason for the
observed switching, the junction has been heated up to 100 °C in
the dark. In this case, no polarization switching was observed
neither underneath the MoS2 nor in the bare BTO film (see
Supplementary Figure 4).

Surface potential and tunneling current measurements. To
further verify the effect of optically induced switching, we have
measured the surface potential of the MoS2/BTO/SRO junctions
before and after UV illumination by KPFM (Fig. 3). Figure 3a
shows MoS2 flakes with the BTO underneath electrically poled to
the upward and downward polarization states (flakes M1 and M2,
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Fig. 3 Optically induced change in surface potential and tunneling current. a AFM topography of the MoS2 flakes on the BTO surface. b A surface potential
map obtained in the dark after electric poling of BTO under the MoS2 flakes (under M1 flake – upward, and under M2 flake – downward). c A surface
potential map of the same flakes measured in the dark after optical illumination. d Tunneling current measured in the dark before and after illumination,
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respectively). The corresponding PFM images are shown in
Supplementary Figure 5. The KPFM measurements performed in
the dark before illumination reveal that the MoS2/BTO junction
with the downward BTO polarization (M2) exhibits a higher
potential than the junction with the upward polarization of BTO
(M1) (Fig. 3b) in agreement with our previous results29. After UV
illumination, the surface potential of the M1 flakes became more
positive (Fig. 3c), while the surface potential of M2 did not
change. The apparent increase of the surface potential of M1
upon illumination is consistent with the optically induced
switching of polarization from the upward to downward state.

An additional confirmation of the photo-induced polarization
reversal effect is a gradual change of the photocurrent magnitude
and direction under illumination (Fig. 3e). Also, tunneling
current measured for the M1 flake, where BTO was initially
polarized upward, showed a significant increase after illumination
for 20 min (Fig. 3d), which is consistent with the larger tunneling
current for the downward state (Fig. 1e).

We have evaluated the reproducibility of the optically induced
switching of the MoS2/BTO/SRO junction by repeatedly switch-
ing it to the upward polarization by the electrical bias applied in
the dark, and then subjecting it to UV illumination at the 40%
intensity level. The junctions are still optically switchable after the
cumulative illumination time of about 4 h. However, with each
cycle, the optical switching time to the downward polarization is
gradually increasing from tens to hundreds of seconds. The
photo-oxidation and structural degradation of MoS2 under
prolonged optical illumination has been reported earlier32. Thus,
it can be assumed that an increase in the switching time is a result
of the optically induced degradation of the MoS2 electronic
properties.

Discussion
Below, we propose a physical mechanism of the photo-induced
polarization switching in the MoS2/BTO/SRO tunnel junctions.
The main premise of proposed model is based on the fact that
in spite of the polarization-dependent redistribution of the
photo-generated carriers, the UV light does not induce polar-
ization reversal in BTO—this effect is observed only in the
presence of the MoS2 layer on top of BTO. It should be also
mentioned that in the FTJs capped with metallic electrode, no
photo-induced polarization reversal has been observed either33.
Hence, we have to consider the intrinsic effects associated with
MoS2 to understand the mechanism of the optically induced
polarization reversal MoS2/BTO/SRO tunnel junctions. Next, it
is important to note that the FTJs are essentially asymmetric
structures characterized by a strong imprint and a preference of
one polarization state over the opposite one. Specifically, the
MoS2/BTO/SRO tunnel junctions exhibit a negative imprint
with Pdown being the preferred polarization state, which is
equivalent to the presence of the built-in field Ebi oriented
toward the bottom electrode (Fig. 4a). Yet, in spite of this
preference for the Pdown state, it is possible to switch the
polarization to the Pup state by applying a negative bias to the
probing tip. Injection of electrons and their accumulation at the
MoS2/BTO interface (charge σ < 0 in Fig. 4) screens the upward
polarization and leads to the appearance of a downward
oriented electric field E′

σ in the MoS2 flake (Fig. 4a). At the same
time, in BTO, these electrons generate an electric field Eσ
pointing upward. The E′

σ field will change the MoS2 electronic
properties, so that under optical illumination it will facilitate
the formation of inter-layer excitons with a dipole direction
perpendicular to the interface (Fig. 4b). Extended exposure to
light leads to an increased accumulation of the photo-induced
charges at the interface (so that σ~0), destabilization of the Pup

state via decrease of the Eσ field and eventual switching of
polarization to the downward direction.

To test this conjecture, we have calculated the electronic and
optical properties of the MoS2 tri-layers (Fig. 5a) using density
functional theory (DFT) and many-body perturbation theory34

(see Methods and Supplementary Note 1 for details). The che-
mical interfacial effects have been ignored in these simulations;
yet, we do capture the main consequences of charge accumulation
at the MoS2/BaTiO3 interface by modeling the presence of the
corresponding electric field E′

σ

� �
by means of a saw tooth

potential. Representative results are shown in Fig. 5b–f). The
calculated band structure (Fig. 5b, c) shows an indirect gap
character, but the optical properties at low excitation energies are
determined by the excitonic states formed from electron–hole
pairs around the direct gap at the high-symmetry point K35.
Without the electric field, the orbitals corresponding to the
valence band maximum (VBM) form bonding and anti-bonding
orbitals due to the interaction between the MoS2 monolayers.
This results in a splitting of the VBM into several sub-bands
(Fig. 5b). The role of the polarization is manifested by the effect of
the electric field produced by the interfacial charge σ on the
properties of MoS2. We have calculated the MoS2 band structure
in the presence of the a perpendicular homogeneous electric field
of 0.1 V Å−1, which is equivalent to σ of about 0.07 electrons per
BTO unit cell at the MoS2/BTO interface. In this case, the onsite
energies on the layers change, so that the highest VBM is mostly
localized on layer 1 and the lowest one on layer 3 (Fig. 5c).
Similarly, the conduction band minimum (CBM) is split into
bands with orbitals localized on one layer. Here, the lowest
independent-particle excitation energy corresponds to an electron
in the CBM on layer 3 and a hole in the VBM on layer 1. The
underlying effect can be seen as the result of a Stark effect,
shifting the conductance and valence band orbitals on opposite
sides in opposite directions (see zoom into the region around K in
Fig. 5c). The result is a “staggered” band gap, similar to what is
observed in hetero-bilayers of transition metal dichalcogenides36.

Note that a careful consideration of the optical properties of
MoS2 must take into account the electron–hole attraction, which
can lead to excitonic effects. This excitonic binding is quite strong
(up to 0.5 eV) if electrons and holes are in the same layer (“intra-
layer exciton”)35 but can also be present if electrons and holes are
on different layers (“inter-layer exciton”). In the absence of
electric field, the intra-layer exciton is the lowest optical
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Fig. 4 Mechanism of the photo-induced switching. a Illustration of the
electric fields Eσ and E′σ in BTO and MoS2, respectively, a built-in electric
field Ebi and the negative charge σ accumulated at the interface when BTO
is switched to the Pup state. b Generation of the polar excitons under optical
illumination resulting in compensation of the interfacial charge σ, decrease
of the associated field Eσ, and polarization reversal to the Pdown state
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excitation. However, at a sufficiently strong field, the energy
splitting of VBM and CBM, and thus the reduction of the band
gap, get large enough, such that an inter-layer exciton becomes
the lowest optical excitation. Earlier, a similar conclusion was
reached for bilayer MoS237. This scenario is quantitatively verified
by our calculations of the optical absorption spectra with and
without the electric field (Fig. 5d). It can be seen that although the
low-energy spectrum (in the range from 1.5 eV to 3.0 eV) is
dominated by the intra-layer exciton, for the 0.1 V Å−1 field, the
lowest peak in the absorption spectrum corresponds to an inter-
layer exciton. Note that the probability for absorption into this
excitonic peak is vanishingly small. It can be suggested that the
most probable scenario of the inter-layer excitons formation is
through the optical absorption into an intra-layer excitons with
subsequent non-radiative relaxation to the inter-layer excitonic
state with the lower energy. As shown in Fig. 5e, f, formation of
the inter-layer excitons involves a separation of the electron–hole
pairs along the direction of the applied field. In the case of the
field in the MoS2 layer pointing toward the MoS2/BaTiO3 inter-
face, the corresponding low-energy polar excitons will move holes
from the upper MoS2 layers towards the interface with BaTiO3

where the hole concentration will increase with time of light
exposure.

With all the experimental and modeling data in mind, the
optically induced switching in the MoS2/BTO/STO junctions can
be explained as a result of the interplay between the photo-
generated charges in MoS2 and polarization charges in BTO.
Light absorption in the MoS2 electrode occurs via the dominant
intra-layer excitons, which eventually decay into inter-layer
excitons, as sketched in Fig. 4. This two-step process results in
the long-lived electronic states that tend to bring positive carriers
to the MoS2/BaTiO3 interface thereby compensating the electro-
nic charge σ, which screens the upward polarization. Thus,

illumination reduces the Eσ field acting on BaTiO3 and facilitates
the reversal of polarization to the preferred downward Pdown state
under the action of the built-in field Ebi. Note also that, according
to this physical picture and our experimental evidence, light
cannot destabilize the Pdown state of the MoS2/BTO/SRO junc-
tion. In the Pdown state we have σ~0 at the interface, and E′

σ � 0
inside the MoS2 flake. In this case, there are no low-lying dipolar
excitons in MoS2, illumination will not result in charges moving
to the interface, and no switching to Pup will occur. As a final
note, careful investigation of the wavelength dependence of the
optical switching behavior is necessary to get a better under-
standing of the role of the photo-induced charge redistribution in
BTO in the observed effect.

To emphasize the general nature of this phenomenon, it is
important to note that the observed optical electroresistance effect
is not contingent on any specific property of the ferroelectric
barrier. This means that it should be present in any hybrid tunnel
junction comprised of a ferroelectric and photo-absorbing nar-
row-band semiconductor. To prove this point, we performed
similar measurements by illuminating the WSe2/BTO/STO
junctions employing two-dimensional semiconductor WSe2 as a
top electrode. The optical switching results resembling the
behavior observed in the MoS2/BTO/STO junctions are shown in
Supplementary Figure 6. This confirms our conclusion that
accumulation of a sufficiently high concentration of photo-
generated charges at the semiconductor/ferroelectric interface
should result in optically induced polarization reversal and
associated changes in the transport properties that can be
exploited in opto-ferroic devices with light-triggered functional-
ities. The first-principles simulations suggesting that the switch is
made possible by inter-layer polar excitons indicate a potentially
strong dependence of the observed effect on the thickness of the
2D layer. An important challenge lying ahead is a realization of
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the bi-directional optical polarization switching. This can be
potentially achieved by employing ambipolar 2D semiconductors,
which could change their photo-induced electronic properties to
favor either polarization direction. A serious question that needs
to be addressed is how fast the polarization can be switched by
optical means.

Methods
Sample preparation. Epitaxial BTO thin films were grown on the SRO layers
deposited on single-crystalline (001) STO substrates by pulsed laser deposition
(PLD). The epitaxial growth of the films was monitored by in-situ high-pressure
reflection high-energy electron diffraction (RHEED). Before the film growth, the
STO substrates were etched by buffered-HF for 1 min and annealed at 1000 °C for
6 h to obtain atomically smooth and TiO2-terminated surfaces. During the film
growth, the temperature of substrates and the oxygen partial pressure were kept at
610 °C and 0.12 mbar, respectively. After the growth, the films were slowly cooled
down in oxygen atmosphere of ~600 Torr.

MoS2 single crystals were purchased from SPI supplies. The MoS2 flakes were
exfoliated using an adhesive tape, which was then pressed against a BTO film and
peeled off, leaving the MoS2 flakes on the BTO surface. These flakes were identified
by optical microscopy. Due to low optical contrast of thin MoS2 flakes on BTO
films, only multi-layer flakes could be found by optical microscopy. The flakes were
further characterized by scanning probe microscopy (SPM) and Raman
spectroscopy. The thickness of MoS2 flakes used in these studies was in the range
from 3 to 8 nm. Raman spectra were recorded using a Thermo Scientific DXR
Raman Microscope with a 532 nm excitation laser.

Scanning Probe Microscopy measurements. Scanning probe microscopy mea-
surements were conducted by a commercial AFM (MFP-3D-BIO, Asylum
Research, USA). Ferroelectric polarization observation and manipulation was
achieved using Dual-AC Resonance Tracking Piezoresponse Force Microscopy
(DART-PFM)38. Conductive-AFM and Kelvin Probe Force Microscopy were used
for tunneling current and surface potential characterization, respectively. Silicon
AFM probes with Pt/Ir conductive coating and nominal stiffness of 3 Nm−1 (PPP-
EFM, NANOSENSORS) were used to perform the KPFM and PFM measurements.
Diamond-coated probes were used for C-AFM measurement for better electrical
contact and wear resistance.

DART-PFM imaging was performed by applying an AC modulation bias with
amplitude of 0.3–0.5 Vpeak near the contact resonance frequency that is in the range
of 300–350 kHz. Local PFM hysteresis loops were measured at fixed locations as a
function of an incrementally changing DC switching bias that superimposed with
an AC modulation bias. The DC bias was supplied through the conductive AFM
tip, and was off during the measurement of the remanent piezoresponse hysteresis
loops. KPFM images were acquired using two-pass technique. The 1st pass is to
acquire the morphology profile by tapping mode. During the 2nd pass, AFM tip
was lifted and maintained at a constant separation of about 30 nm with respect to
the sample surface, while applied an AC bias of 2 Vpeak to acquire the surface
potential images. The scan rate is 1 Hz for both PFM and KPFM images of 256 ×
256 pixels.

Optical illumination of sample was realized by using an inverted optical
microscope integrated with the AFM system. A white light source is provided by
SOLA light engine from Lumencor® USA. A single-band filter set (DAPI-5060C-
OMF, Semrock, USA) was installed with over 90% transmission of UV light (377
nm dominated and 50 nm guaranteed minimum bandwidth). The light intensity
measured at the sample surface for 40%, 20%, 10%, and 5% UV light intensity is
about 5.0, 3.0, 1.9, and 0.7 mW cm−2, respectively.

Modeling. Calculations of the ground state of triple-layer of MoS2 have been
performed with the density functional theory as implemented in the Quantum-
Espresso code39. Calculations of electronically excited states have been performed
with the methods of many-body perturbation theory (“GW approximation” and
“Bethe-Salpeter equation”) as implemented in the code yambo34. The influence of
the charge accumulation on the substrate is simulated by a homogeneous electric
field (saw-tooth potential) perpendicular to the layer. The Bethe–Salpeter equation
is solved on a 30 × 30 two-dimensional k-point grid, ensuring proper convergence
of the low-energy excitons and giving the proper energetic ordering of inter- and
intra-layer excitons. More details about calculations are given in the Supplemen-
tary. We have tested that the same kind of inter-layer excitons exist in bi-layers of
MoS2. From the underlying physics (Stark effect, leading to a staggered band gap
between the layers at different potential energy), it is clear that dipolar inter-layer
excitons with energies below the ones of intra-layer excitons also exist when n-layer
systems with n > 3 are exposed to a perpendicular E-field.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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