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Abstract

A universal cancer biomarker candidate for diagnosis is supposed to distinguish, within a broad range of tumors, between
healthy and diseased patients. Recently published studies have explored the universal usefulness of some biomarkers in
human tumors. In this study, we present an integrative approach to search for potential common cancer biomarkers. Using
the TFactS web-tool with a catalogue of experimentally established gene regulations, we could predict transcription factors
(TFs) regulated in 305 different human cancer cell lines covering a large panel of tumor types. We also identified
chromosomal regions having significant copy number variation (CNV) in these cell lines. Within the scope of TFactS
catalogue, 88 TFs whose activity status were explained by their gene expressions and CNVs were identified. Their minimal
connected network (MCN) of protein-protein interactions forms a significant module within the human curated TF
proteome. Functional analysis of the proteins included in this MCN revealed enrichment in cancer pathways as well as
inflammation. The ten most central proteins in MCN are TFs that trans-regulate 157 known genes encoding secreted and
transmembrane proteins. In publicly available collections of gene expression data from 8,525 patient tissues, 86 genes were
differentially regulated in cancer compared to inflammatory diseases and controls. From TCGA cancer gene expression data
sets, 50 genes were significantly associated to patient survival in at least one tumor type. Enrichment analysis shows that
these genes mechanistically interact in common cancer pathways. Among these cancer biomarker candidates, TFRC, MET
and VEGFA are commonly amplified genes in tumors and their encoded proteins stained positive in more than 80% of
malignancies from public databases. They are linked to angiogenesis and hypoxia, which are common in cancer. They could
be interesting for further investigations in cancer diagnostic strategies.
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Funding: This work was funded by FSR Fellowship from Université Catholique de Louvain. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ahmed.essaghir@uclouvain.be

Introduction

Cancer is a multifactorial disease. Many cancer types and stages

have been distinguished. This complexity makes the quest for

‘‘universal cancer biomarkers’’ a challenging task. However, many

studies conducted separately on different cancer types have

reported common genes with potential biomarker value in

treatment or diagnosis [1].

On the basis of literature reviewing or by using high-throughput

techniques some authors identified potential biomarkers common

to several cancers and tried to develop strategies to identify them

from patient biofluids either directly or indirectly. Among these

markers, telomerase has been reported as being highly expressed

in neoplasms [2]. A platform to capture circulating tumor cells

from patient blood and measure their telomerase activity has been

proposed as a cancer diagnostic tool [3]. In addition, extra-cellular

cAMP-dependent protein kinase A (EC-PKA) has been reported

to be a good marker for multiple cancers [4]. Auto-antibodies

against EC-PKA measured by ELISA from patients sera have

been found to be highly specific to cancer [5]. Follicle-stimulating

hormone (FSH) receptor was also reported to be selectively

expressed in a variety of tumors [6]. The same observations apply

also to a cytochrome P450 (CYP1B1) [7]. Epigenetic alterations, in

addition, could have a diagnostic value in cancer. Indeed, some

authors have pointed to cancer-specific DNA methylation patterns

as a marker for malignant diseases [8]. They can be detected on

cell-free circulating DNA in the blood [9]. Auto-antibodies against

leukocyte antigen F (HLA-F) were also detected in patients with

various cancer types compared to healthy individuals [10].

Cancer biomarker candidate genes could be identified from

literature. Confidence weights can be associated to each gene

using its citation frequency [11]. Although initially used to

enumerate markers specific to each cancer type, these weighted

lists can help selecting common biomarkers in cancer. However,

more elaborated strategies have been used to identify common

cancer biomarkers, including gene expression meta-analysis across

different tumor types [12,13]. They can be associated with

function and pathway annotation enrichment filters to select

common biomarkers [14].

In this study, we have elaborated an integrative strategy to

search for useful biomarkers common to cancer types. Our

working hypothesis is based on the assumption that almost all the

perturbations that lead to malignancy transformation of normal
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cells, although complex and diverse, share common collaborative

pathways [15]. In general, these pathways might end by activating

and/or repressing some sets of genes. These genes are targets of

transcription factors (TFs). Some of these TFs are redundantly

modulated between different cell transforming events [16–22].

They could be seen as connections or cross-talk nodes of the

cancer leading pathways [23–27]. Thus, there should be a set of

minimal connected TFs commonly perturbed in tumors as they

share modulated pathways [28]. This set of TFs could be

considered as a bottleneck of cancer pathways. If common cancer

biomarkers exist, they are more likely to be among the targets of

these commonly regulated TFs [29]. In this study, we took

advantage of TFactS, a tool that we recently developed to predict

TF regulations from high throughput gene expression data [30].

Results

Identification of TFs Regulated in Cancer Cell Lines
Gene expression and SNP data were available for 305 cell lines,

from which results were further analyzed. These cell lines

represent a broad panel of cancer types covering 28 different

histological sites.

We assumed that important TFs would be those for which gene

expression and CNV could explain their activity status [31,32].

They could be identified using the regression model shown in

Figure 1. To compute all the parameters needed for this model, we

identified genes differentially regulated in each cell line compared

to the pool of all other cell lines. The median number of regulated

genes per cell line is 218 (min: 15 and max: 721), cumulatively

involving 4,686 unique known coding genes. Then, each cell line-

specific gene list was submitted to TFactS and compared against

catalogue of experimentally validated TF target genes using

Fisher‘s test [30]. We have shown that this tool efficiently predicts

TF regulation from regulated gene lists [33,34]. On the other

hand, the SNP data were normalized and segmented then

submitted to the GISTIC algorithm to identify chromosomal

regions significantly altered in all these cell lines [35]. Figure S1

shows that significant amplifications and deletions were spread in

the whole genome. A restricted analysis of TF-encoding genes

revealed that 2,113 of the 2,335 genes known to encode ‘‘DNA

binding’’ proteins (GO term) had their loci significantly altered, at

least, in one cell line. To select transcription factors relevant to

cancer in a more stringent manner, we combined the analysis on

expression, activity and CNV (Figure 1).

For each TF, correlation profiles with other TFs were computed

based on: regulation (inferred from TFactS analysis), gene

expression and genomic alterations (CNV), respectively. The

model in Figure 1 uses these correlation scores to find significant

TFs, for which gene expression associated to CNV could explain

the corresponding inferred regulation. 88 TFs were identified (p-

values , = 0.05, Table S1). Supporting our results, CNV affecting

some of these TFs in cancer have already been reported,

including: TP53, BRCA1, RUNX1 and MYC [36].

The Minimal Connected Network of Transcription Factors
Regulated in Cancer Cell Lines

We used the Snow web tool to identify the minimal connected

network (MCN) of protein-protein interactions involving the 88

TFs associated to cancer from our initial analysis. Snow

predicted this MCN by computing the shortest paths linking

the input proteins either directly or with one tolerated

intermediate protein, based on a built-in database of human

protein-protein interactions [37,38]. Restricting our Snow-based

analysis to the human protein interactome with at least two

Figure 1. A workflow summarizing the strategy to identify
accessible common cancer biomarkers. See text for details. Reg:
regulation; Exp: expression; CNV: copy number variation; MCN: minimal
connected network; PPI: protein-protein interactions; TF: Transcription
factor.
doi:10.1371/journal.pone.0039666.g001

Biomarkers Common to Different Cancer Types
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experimental evidences of interaction, we identified a subnetwork

connecting 70 out of 88 TFs either directly or with one

intermediate. It is remarkable that most of the TFs identified in

the first step could be linked in this single protein-protein

interaction subnetwork. Eighteen TFs were lost due to our

restrictions in the analysis or to their absence in the Snow-

annotated interactome. Snow uses Kolmogorov-Smirnov’s test to

evaluate the significance of the identified subnetwork by

comparing its betweenness, connections and clustering coefficient

distributions to those generated from 1,000 random networks

with the same number of proteins. Our identified subnetwork

had significant p-values for all these evaluated parameters

(betweenness: 2.06E237, connections: 1.68E247, clustering

coef.: 4.07E243). This subnetwork contained two distinct

connected components. The first contained almost all interac-

tions of the significant subnetwork and was considered as the

cancer cell line-associated TFs MCN for subsequent analysis

(Figure 2). The second connected component, which has only

two interactions linking three proteins was discarded.

We then asked whether false positives from TFactS, GISTIC

and differential expression analyses could affect the MCN

identification. To control these effects, we performed a negative

control, in which we analyzed 100 different random lists of 88 TFs

from the TFactS catalogue. Each list was submitted to Snow to

produce a MCN using the same parameters as above. By

comparing the distribution of the betweenness scores from all

the random MCNs to the established MCN from our model, we

found a significant difference (p-value ,0.01; KS test). Together

with the results discussed above from the built-in comparison with

1,000 random networks performed in Snow, this suggested that

our identified MCN constitutes a significant module involving TFs

commonly regulated in cancer cell lines.

This MCN might be viewed as a regulatory ‘‘round-about’’ of

the majority of regulated pathways in cancer cell lines. Indeed, as

depicted in Figure 3, many MCN proteins are involved in many

Figure 2. The minimal connected network of TFs regulated in cancer cell lines. The Snow web tool identified a significant human curated
protein-protein interaction subnetwork involving 70 out of the 88 TFs correlatively regulated in cancer cell lines. The first connected component as
shown here is considered as the minimal connected network (MCN) connecting these TFs. Each node represent a protein. Edges are the protein-
protein interactions validated by at least two experimental evidences. Nodes shaded in violet represent the top ten most central TFs in the MCN.
Node-ranking was based on the betweenness centrality scores.
doi:10.1371/journal.pone.0039666.g002

Biomarkers Common to Different Cancer Types
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cancer types and cancer signaling pathways. Nevertheless, MCN

proteins are also significantly involved in immune response

pathways. This could reflect an involvement of some MCN TFs

like NF KB in both cancer and inflammation [16].

Target Genes of MCN Central Transcription Factors
Transcription factors in the minimal connected network

identified above likely represent the main regulatory effectors

commonly perturbed in the analyzed cancer cell lines. We focused

on the most central TFs in this network. Centrality of nodes in a

given network could be estimated using many parameters. Among

them, betweenness scores the frequency by which a certain node is

within the shortest paths linking any other two nodes. It is thought

to be a good estimate of centrality [39]. By top-ranking the 236

MCN nodes according to their betweenness scores, we identified

59 central proteins having scores above the average. These central

proteins show the same functional enrichment as the whole MCN.

We arbitrarily selected the top 10 central MCN nodes. Their

encoding gene names are: TP53, ESR1, CREBBP, MYC, AR,

BRCA1, RELA, RARA, EP300 and NFKB2. These ten TFs

concentrate 41% of the total betweenness cumulative scores of the

236 MCN nodes. They could be considered as hubs or collectors

of these network interactions. This is in line with the ‘‘scale free’’

model that was suggested to govern the TF protein-protein

interactions, in which the hubs were built around TFs associated

with malignancies [40]. We argued that common cancer

biomarkers are likely to be found among the targets of these most

central TFs. 874 unique target genes of these ten TFs are reported

in the TFactS catalogue. An enrichment analysis of these genes,

using ‘‘genetic association db disease’’ in the DAVID web tool,

revealed an over-representation of a large panel of cancer types as

well as ontologies related to immune responses and inflammatory

diseases (File S1).

Figure 3. Signaling pathway enrichment in the MCN proteins. All proteins (nodes) in the MCN were submitted to DAVID web tool for KEGG
pathway enrichment analysis. Significant pathways are shown by categories according to the 2log10(p-value) and the percentage of intersection
between the submitted list and queried annotations.
doi:10.1371/journal.pone.0039666.g003

Biomarkers Common to Different Cancer Types
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Cancer-specific Genes from Targets of MCN Central
Transcription Factors

Enrichment analysis performed on MCN proteins as well as the

targets of the central TFs showed an association between cancer

and inflammation. This association is well documented in

literature [41]. Cancer-specific biomarkers have to be differentially

expressed in cancer patients compared to healthy individuals and

patients with inflammatory diseases [42]. In addition, a universal

cancer biomarker should be cancer-specific in a broad panel of

tumor types. Since our interest is to identify ‘‘accessible’’ cancer

biomarkers, we sought to restrict further analysis only on genes

coding for secreted and transmembrane proteins. The SP-PIR

annotation keywords database, as used in the DAVID tool,

contains 1,689 and 642 genes annotated as encoding secreted and

transmembrane proteins, respectively. In the 874 target genes of

the ten most central TFs in the MCN, we found 57 genes encoding

secreted proteins (p-value: 1.1E26) and 110 encoding transmem-

brane proteins (p-value: 4.3E25). This represents a unique set of

157 genes. Thus, identifying the TFs MCN and focusing on target

genes of the ten most central TFs allowed us to prioritize a short

list of accessible proteins to be analyzed in patient samples for

differential expression (Figure 1).

We further filtered this gene list using available patient data. We

performed gene expression analysis on an assembled microarray

large data set of 8,525 different tissues from patients with cancer or

inflammation and healthy individuals (Figure 4, File S2). From the

prioritized 157 genes, we could establish a list of 86 cancer-specific

transcripts (Figure 4). Among them, 3 genes were approved by

FDA for cancer diagnosis, including: EGFR, KLK3 (PSA) and

AFP for the diagnosis of colon, prostate and testis cancers,

respectively [43]. Moreover, HLA-F in this list has already been

reported as detectable in the serum of various cancer patients

using indirect ELISA [10].

Potential Biomarkers Common in Cancer
In order to strengthen the likelihood to find potential

common biomarkers among the cancer-specific gene list

(Figure 5), we filtered these genes based on their significant

effect on patient survival in any of the cancer types from

TCGA database. The available gene expression data sets from

TCGA, covering nine cancer types, were downloaded and

analyzed separately for gene-survival association. For each gene,

patients were divided in three groups (tertiles) according to the

expression levels of the studied gene. Groups of patients with

low, intermediate and high expression were then obtained.

Making use of the available patient survival data: follow up

duration and death status, we fitted Kaplan-Meier curves to

these groups. Genes predicting patient survival significantly (log-

rank p-value , = 0.05), in at least one cancer type, are shown

in Table S2. The products of these 50 genes mediate many

interacting pathways in cancer, as depicted in Figure S2

(KEGG pathway enrichment, p-value ,4.29E24).

For each gene listed in Table S2, we added the following

resources: (i) CNV significantly affecting the corresponding gene

loci in all tumor types as analyzed in the Tumorscape database

[44]; (ii) percentage of immunohistochemical (IHC) positive

staining in cancer as detected in ProteinAtlas database [45]. We

considered that genes positive for all criteria listed in Table S2 are

more likely to be common cancer biomarker candidates. TFRC,

VEGFA and MET are the best potential candidates. These genes

have been separately associated to many cancer types in literature

(Table S3).

Discussion

Cancer types have been screened separately for biomarker

identification. Nowadays, there is an emerging effort to search for

universal cancer markers. The recently available high-throughput

data from cancer patient specimens make this task more affordable

in the context of integrative analysis. This study was done within

such a framework.

Cancer is a multistage disease, in which normal cells are

progressively transformed to malignant ones. This process

involves transcription factor (TF) regulation to ensure the

transcription of needed genes [46]. We assumed that TFs

regulated in cancer would have their activity explained by their

coding gene expression level and genomic alterations. We

hypothesized that cancer-associated TFs could interact together

in a modular manner, such that cancer-triggering events end up

perturbing the function of this module. Biomarkers common to

many cancer types could be among these TF target genes. We

then followed the workflow depicted in Figure 1 to target

important genes commonly regulated in cancer that encode

accessible proteins. We assumed that focusing on TFs will guide

us to find the most valuable part of cancer information, which

could be measured by gene expression [47]. Adding CNV data

to filter important TFs will strengthen this approach. Whereas,

analyzing all regulated genes and significantly altered chromo-

somal regions without any contextualization in terms of

regulators (TFs) will dilute the common cancer biomarker

among many false positive outcomes.

As a first step in our quest for common cancer biomarkers, we

tried to identify the minimal connected network involving TFs, the

activity of which is regulated in tumors. We integrated genomics

and transcriptomics data from a panel of cancer cell lines, together

with inferred TF regulation from gene expression using TFactS,

which has been shown previously to be able to infer accurately TF

regulation or activity status from a list of expressed genes [30]. The

use of cell lines in this step is justified by the availability of both

genomic and expression data. In addition, building meaningful

MCN requires data from homogeneous cells, which is not the case

of most primary cancer samples, in which genomic alterations and

gene expression differ between cancer cells and stromal cells, and

even between different cancer cell clones. We identified 88 TFs,

which could be the main regulators in cancer cell lines. This step

is, however, limited by the TFs represented in TFactS, although

they sample the most studied TFs in literature. This step could also

be ameliorated by taking into account other genomic alterations,

such as mutations. However, whole genome alteration data were

not available yet for all the studied cell lines.

By protein-protein interaction analysis, MCN connecting the

majority of the 88 TFs has been identified from the curated human

proteome network. The MCN contains both TFs and other

proteins. Enrichment analysis revealed that this MCN assembles

major known pathways driving multiple cancer types. Strikingly,

immune response pathways were also enriched in MCN, which

was identified based on cell line data, discarding any tumor micro-

environmental effect on these results. This suggests a dual role

played by this module of connected TFs in both cancer and

inflammation. Results from our negative control procedure

suggested that the cancer-associated MCN forms a significant

module. This module’s most central TFs are susceptible to act as

the main ‘‘collectors’’ of marginal perturbations.

In a second step, we arbitrarily limited our analysis to target

genes of the top ten most central MCN TFs. Enrichment analysis

of these genes revealed a cancer context pathways over-

representation, as expected. Since our purpose was to identify

Biomarkers Common to Different Cancer Types
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genes that could be easily probed in patients we filtered this gene

list to 157 genes coding for secreted and transmembrane proteins.

By comparing their expression in a panel of 8,525 patients, we

identified a set of 86 cancer-specific genes differentially expressed

in cancer versus normal and inflammation phenotypes. They

include three out of six proteins approved by FDA in specific

cancer diagnosis: PSA/KLK3, EGFR and AFP. Expression of

these three genes could be checked in other cancer types. PSA,

prostate specific antigen, for instance, although widely used in

prostate cancer diagnosis, it was also reported in kidney, stomach

and breast cancers [48–50]. These results provide an internal

validation of our methodology.

We sought to further restrict the analysis by taking into account

the potential prognostic value in at least one cancer type. This was

performed by associating gene expression to patient survival in

TCGA data sets. 50 genes significantly predicted survival in at

least one cancer type. Each of these genes could be investigated

separately in the corresponding cancer type for prognosis. These

genes are significantly involved and interconnected in many

cancer pathways (Figure S2). Nevertheless, immunomodulatory

Figure 4. Patient sample repartition and cancer-specific gene expression analysis. Microarray gene expression data representing 8,525
patients samples were downloaded from GEO. A- 78% of patients had different cancer types; 14% are healthy individual and were sampled from
different tissues; 8% of patients had inflammation/sepsis and were investigated from the whole blood and other tissues. B- differential expression of
the MCN top ten central TFs target gene list coding for secreted and transmembrane proteins were analyzed. Among these genes, as shown in the
Venn-diagram, 140 probe sets (86 unique genes) were found to be cancer-specific. GI: Gastro-intestinal.
doi:10.1371/journal.pone.0039666.g004

Biomarkers Common to Different Cancer Types
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cytokines and chemokines were also enriched in this gene list,

which might suggest that some of these genes may not fully

distinguish patients with cancer from those with inflammatory

diseases.

We identified three potential biomarkers common to cancer, i.e.

TFRC, VEGFA and MET as evidenced by: (i) gene over-

expression in cancer compared to normal and inflammation; (ii)

gene expression significantly linked to patient survival in at least

two cancer types; (iii) corresponding CNV focally significantly

amplified in tumors; (iv) proteins stain positive in more than 80%

of cancers. VEGFA promotes angiogenesis. Its diagnostic potential

was investigated separately in many cancer types (Table S3).

MET, is a known oncogenic tyrosine kinase receptor for

hepatocyte growth factor. It is also associated with many cancer

types (Table S3). In addition, it has been reported as a marker for

cancer stem cells in: prostate, head and neck, liver, brain and lung

cancers [51–56]. VEGFA and MET synergy in angiogenesis might

be targeted for more effective anti-tumoral therapy [57]. TFRC,

transferrin receptor, is known to be expressed in many tumor types

(Table S3). Expression of VEGFA and TFRC is commonly

regulated by HIF and MYC, which promote angiogenesis and

proliferation, respectively [58–60]. The connection between these

two TFs via their target genes is known to confer a metabolic

advantage to tumors under hypoxia, which is a common condition

in malignant diseases [61,62].

In summary, our strategy identified a network of TFs that

regulate 50 potential common cancer biomarkers. Currently

available data in TCGA, Tumorscape and ProteinAtlas databases

pointed to VEGFA, TFRC and MET genes as potential

candidates. Literature knowledge associated to these genes

corroborates our approach. Taken together, all these observations

might suggest to further investigate the usefulness of VEGFA,

MET and TFRC as common cancer biomarkers. This could be

performed by direct detection of these biomarkers or by checking

for the presence of auto-antibodies directed against potential

cancer proteins in patient serum, an approach that has gained

much interest in the cancer diagnosis field [4,63].

Materials and Methods

Microarray Analysis
The data from 950 microarrays performed by GlaxoSmithKlein

laboratories (GSK) on different cancer cell lines were downloaded

from arrayExpress (E-MTAB-37). The RMA normalization

method was applied using the xps package from R/Bioconductor

[64]. Gene expression on each cell line was performed on

duplicates or triplicates. Kolmogorov-Smirnov’s test was per-

formed to select genes differentially expressed in each cell line

compared to others. A Bonferroni correction threshold was

applied on p-values. Genes with an e-value , = 10 were

considered as significantly differentially expressed on the corre-

sponding cell line.

Transcription Factor Regulation Analysis
Each gene list regulated in each cell line was submitted to

TFactS to predict regulated TFs [30]. TFactS sign less catalogue

(version 2) contains 6,823 regulations linking 345 unique TFs to

their 2,650 unique gene targets. For each list of regulated genes,

TFactS predicts the TFs whose targets are enriched in the

submitted lists using Fisher’s test. In this study, the larger sign-less

catalogue was used instead of the restricted sign-sensitive one.

TFactS was executed using BatchTFactS default parameters

(www.tfacts.org). TFs with a positive e-value score (2log10(e-

value)) were considered as significant. TFs that were not significant

in all cell-lines were discarded before the model fitting.

Genomic Copy Number Variation Analysis
The genomics data of the above cell lines were also released by

GSK. SNP arrays data sets available on arrayExpress were

downloaded (E-MTAB-38). They were analyzed using the aroma-

affymetrix package on R/Bioconductor [65]. Briefly we applied a

quantile normalization followed by the CRMA summarization

and corrected for chip and PCR fragment length effects [66].

Then the GLAD algorithm was applied to raw copy numbers for

segmentation [67]. The segmented data were then submitted to

GISTIC algorithm to find significantly altered regions in all

chromosomes except X and Y. A default q-value threshold of 0.25

was used to select significant regions [35]. Prior to CNV-based

correlation matrix computing and the model fitting, CNV values

for each gene in the significantly altered chromosomal regions

were normalized as follows: (i) for each of the GISTIC-reported

significant regions, we determined the median value of the

significant CNV peaks; (ii) each gene in a significant chromosomal

region has been assigned the value of this median. The values of

the CNV were in log2-ratio as outputted by GISTIC. The

chromosomal location of genes was obtained using the Ensembl

genes 64 database with human ‘‘GRCH37.p5’’ release in Biomart

web tool [68].

Identification of the Minimal Connected TF Regulated in
Cancer Cell Lines

In order to identify a set of correlated TFs that are commonly

regulated in cancer, we considered 305 cell lines, for which both

expression and SNP data were available. Each TF has three

measurements in each cell line: TF regulation scores estimated by

TFactS (2log10(e-value)), TF-encoding gene expressions (from

microarrays) and TF-locus copy number variations (from median

normalized GISTIC analysis). Three matrices, with TFs in rows

and cell-lines in columns, could be built from these data: a TF

regulation matrix, a TF-encoding gene expression matrix and a

TF-locus CNV matrix. In each of these matrices, we computed

correlations of each TF with the other TFs using Pearson

correlation coefficient. These correlations could be represented

as TF-TF correlation profiles. Then we fitted the following model

for each TF: R = b0+ b1*E + b2*C, Where:

(R) TF-TF correlation profile based on TFactS scores, only TFs

significantly regulated in at least one cell line were used; (E) TF-TF

correlation profile based on gene expression; (C) TF-TF correla-

tion profile from significant regions identified by GISTIC

algorithm, these correlations were computed using loci copy

number variation median-normalized values.

Each TF having significant b1 (p-value , = 0.05) and b2 (p-

value , = 0.05) was considered as correlatively regulated in

cancer. For these TFs, there is an effect of gene expression and

genomic alteration (CNV) on their regulation.

Figure 5. Significant cancer-specific biomarkers from patient gene expression analysis. Cancer-specific gene expression significance and
fold change. Significance was attested by B-H p-value correction, and all shown genes have B–H p-value, = 0.05. Bar-plots show the
2log10(uncorrected p-value). Triangles show the logged fold change of the corresponding gene in cancer compared to healthy and inflammation
patient phenotypes. FDA approved cancer biomarkers are marked with (*).
doi:10.1371/journal.pone.0039666.g005

Biomarkers Common to Different Cancer Types
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The list of these significant TFs was submitted to SNOW web

tool to identify their minimal connected network [38]. The

SNOW parameters were set as follows: curated human protein-

protein interactome with at least two experimental evidences,

1,000 random networks for significance, only one extension

interaction was allowed to connect the submitted proteins. A built-

in mapping was performed by Snow between submitted gene

names and the network protein names.

MCN Protein-protein Interaction Network Analysis
Network analysis was done using Cytoscape [69]. MCN node

centrality analysis was computed using CentiScaPe plugin.

Proteins were ranked according to highest betweenness [39].

Target genes of the top ten ranked TFs were kept for further

analysis.

MCN Negative Control
From the list of all TFs represented in TFactS sign-less

catalogue, we generated 100 random lists containing 88 distinct

elements. These 100 random lists were submitted to Snow web

tool using the same parameters as above. The betweenness

distribution of the identified cancer-related MCN was compared

to the distribution of the whole random MCNs using Kolmogorov-

Smirnov’s test in R. The betweenness scores used here are from

Snow output.

Functional Enrichment Analysis
The DAVID web tool was used to perform a functional analysis

of the selected target genes [70]. A p-value threshold of 0.05 was

used for significance.

Cancer Patients Gene Expression Analysis
Data from 8,525 patient samples analyzed with HG-

U133A2Plus microarrays were downloaded from GEO database.

Patient categories were distributed as follows: 78% cancer, 8%

inflammation and 14% healthy. Expression data were log2-

transformed then normalized per gene by subtracting the gene

median expression and dividing by the inter-quartile-range of its

expression vector. This data set was used to compare gene

expression profiles of genes significantly annotated as coding for

secreted or transmembrane proteins using SP-PIR annotation

keywords on DAVID from the known targets of the MCN top ten

central TFs. Genes significantly differentially expressed were

determined between cancer compared to inflammation and

healthy phenotypes on one hand, and between inflammation

compared to cancer and healthy phenotypes on the other hand.

Genes specific to cancer were significantly differentially regulated

in the former comparison but not in the later. Differentially

regulated genes were computed using R/Bioconductor (limma

package) and significance was controlled using B–H correction of

p-value , = 0.05 [64,71]. The cancer-specific gene list identified

from this analysis was considered as the accessible cancer-specific

biomarker list (genes specific to cancer and coding for secreted and

transmembrane proteins).

Survival Analysis
The accessible cancer-specific biomarker list was evaluated for

prognosis potential in different TCGA published cancer data sets.

TCGA database offers a set of gene expression from clinically

annotated patient samples (http://tcga-data.nci.nih.gov/tcga/).

We downloaded (09/27/2011) level2 gene expression data for all

the patients from 9 publicly available cancer types (GBM:

Glioblastoma multiform, OV: Ovarian serous cystadenocarci-

noma, LAML: Acute Myeloid Leukemia, BRCA: Breast invasive

carcinoma, COAD: Colon adenocarcinoma, KIRC: Kidney renal

clear cell carcinoma, LUSC: Lung squamous cell carcinoma,

UCEC: Uterine Corpus Endometrioid Carcinoma). The number

of patients per gene expression data set was distributed as follows:

BRCA: 600; COAD: 179; GBM: 536 (agilent) or 555 (affy);

KIRC: 72; LAML: 197; LUSC: 161 (agilent) or 134 (affy); OV:

608 (agilent) or 590 (affy); READ: 78; UCEC: 54. Survival data

were among the clinical information available for the majority of

these patients. For each gene, in each cancer type, the expression

vector from level2 TCGA data was standardized by median

subtraction and inter-quartile range division. Then each normal-

ized expression vector corresponding to each gene was divided on

three groups (tertiles). Patients in the lower tertile were assigned a

gene down-regulation; patients in the intermediate tertile were

assigned an intermediate gene expression; patients in the upper

tertile were assigned an up-regulation of the gene in interest. The

R/Bioconductor (survival package) was used to fit survival curves

on categorized patients for each gene [72]. Three Kaplan-Meier

survival curves were then fitted for each gene corresponding to up-

regulation, intermediate and down-regulation groups of patients

according to their death status and follow up duration.

Significance of the difference between these curves was estimated

based on the log-rank p-value , = 0.05. If data from more than

one platform was available (Affymetrix or Agilent), the analysis is

done independently on each.

Supporting Information

Figure S1 Copy Number Variation results. Copy Number

Variation GISTIC scores and q-values for the whole cancer cell-

lines data set. Significance profiles (q-values in the bottom and

scores in the top horizontal axes) are shown for chromosomal

regions in the left and right vertical axes of the panels for : A-

amplified regions, B- deleted regions.

(TIF)

Figure S2 Patient survival-affecting genes are involved
in many cross-talking cancer pathways. Genes significantly

affecting cancer patient survival are mechanistically interacting to

trigger important cancer pathways. These genes are enriched (p-

value = 4.29E24) in KEGG’s cancer pathways analyzed by

DAVID web-tool.

(TIF)

File S1 Enrichment analysis of the top 10 MCN TF
target genes

(XLS)

File S2 Patient gene expression data sets from GEO
database and their accession numbers.

(XLS)

Table S1 Transcription factors regulated in cancer cell
lines. For each TF, the TF-TF correlations profiles were

determined and the following model was fitted: reg = b0+ b1 *

exp + b2 * cnv. Where, for each TF versus the others: ‘‘reg’’ is the

regulation correlation profile, ‘‘exp’’ is the TF-coding gene

expression correlation profile and ‘‘cnv’’ is the TF coding-gene

locus copy number variation correlation profile.

(PDF)

Table S2 Filtered cancer-specific genes. Significant can-

cer-specific genes identified in patient microarray analysis were

filtered to those that are significantly associated (p-value , = 0.05)

with at least one cancer type survival based on TCGA data. The

resulting gene list is shown here. Tumorscape database gives q-
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values for CNV alterations in a large collection of tumors. Based

on the CNV from all tumors pooled together, amplification and

deletion q-values corresponding to the chromosomal locations of

these genes are shown. Whether the loci is focally affected by the

CNV is also shown. ProteinAtlas database contains cancer and

normal tissue IHC staining for proteins with available antibodies.

The percentage of staining in cancer is shown. N.A: not available,

N.S: non-significant; GBM: Gliobastoma mutiforme, OV: Ovar-

ian serous cystadenocarcinoma, LAML: Acute Myeloid Leukemia,

BRCA: Breast invasive carcinoma, COAD: Colon adenocarcino-

ma, KIRC: Kidney renal clear cell carcinoma, LUSC: Lung

squamous cell carcinoma, UCEC: Uterine Corpus Endometrioid

Carcinoma. K-M: Kaplan-Meier log-rank test.

(PDF)

Table S3 Evidences of VEGFA, TFRC and MET associ-
ations to cancer from a non-exhaustive literature
screening.
(PDF)
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