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Abstract: The mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol-3 kinase
(PI3K)/AKT pathways are dysregulated in various human cancers, including pancreatic ductal ade-
nocarcinoma (PDAC), which has a very poor prognosis due to its lack of efficient therapies. We have
previously identified ACAGT-007a (GT-7), an anti-cancer compound that kills ERK-active melanoma
cells by inducing ERK-dependent apoptosis. Here, we investigated the apoptosis-inducing effect of
GT-7 on three PDAC cell lines and its relevance with the MAPK/ERK and PI3K/AKT signaling path-
ways. GT-7 induced apoptosis in PDAC cells with different KRAS mutations (MIA-Pa-Ca-2 (KRAS
G12C), T3M4 (KRAS Q61H), and PANC-1 (KRAS G12D)), being T3M4 most susceptible, followed
by MIA-Pa-Ca-2, and PANC-1 was most resistant to apoptosis induction by GT-7. GT-7 stimulated
ERK phosphorylation in the three PDAC cells, but only T3M4 displayed ERK-activation-dependent
apoptosis. Furthermore, GT-7 induced a marked down-regulation of AKT phosphorylation after a
transient peak in T3M4, whereas PANC-1 displayed the strongest and most sustained AKT activation,
followed by MIA-Pa-Ca-2, suggesting that sustained AKT phosphorylation as a determinant for
the resistance to GT-7-mediated apoptosis. Consistently, a PI3K inhibitor, Wortmannin, abolished
AKT phosphorylation and enhanced GT-7-mediated apoptosis in T3M4 and MIA-Pa-Ca-2, but not in
PANC-1, which showed residual AKT phosphorylation. This is the first report that ERK stimulation
alone or in combination with AKT signaling inhibition can effectively induce apoptosis in PDAC and
provides a rationale for a novel concurrent targeting of the PI3K/AKT and ERK pathways.

Keywords: pancreatic cancer; ACAGT-007a (GT-7); ERK MAPK; apoptosis; AKT signaling; KRAS

1. Introduction

Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignancies with a poor
prognosis and high mortality rate. PDAC is also notorious for its characteristic resistance
to conventional chemotherapeutic regimens, including gemcitabine, while other available
therapeutic options are still limited.

The RAS/RAF/MEK/extracellular-signal-regulated kinase (ERK) MAPK and the
PI3K/AKT pathways are frequently dysregulated in various human cancers as a result of
genetic alterations in their components or upstream activation of cell-surface receptors [1].
Especially, activating point mutations of the RAS family genes (HRAS, KRAS, and NRAS)
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are a hallmark in PDAC, occurring in 90–95% of cases [2,3]. Oncogenic KRAS drives down-
stream activation of RAF/MEK/ERK and PI3K/AKT signaling, which promotes survival,
invasion, and migration of cancer cells [4]. These findings link mutations in the KRAS
proto-oncogene to the development of pancreatic cancer and place the downstream ERK
and AKT signaling pathways as potential therapeutic targets for the development of phar-
macologic inhibitors for the treatment of PDAC [5]. However, despite recent advances in
the understanding of its molecular biology, therapies targeting PDAC-associated molecular
pathways, including RAF/MEK/ERK signaling inhibitors, have not provided satisfactory
results [2], partly due to the rapid up-regulation of compensatory alternative pathways
and feedback loops within tumor cells. Therefore, there is a desperate need for developing
innovative therapeutic approaches to fight this deadly malignancy.

Recently, our chemical genetic screen has identified ACA-28, which is a novel com-
pound with a property that induces ERK-dependent apoptosis [6]. ACA-28 and its lead
derivative ACAGT-007a (GT-7; described as 2b in the previous reports) selectively induce
apoptosis in several ERK-active melanoma cell lines, including SK-MEL-28, expressing the
oncogenic mutant BRAF (V600E), by further stimulating ERK phosphorylation levels [7].
Notably, recent studies have highlighted the pro-apoptotic functions of ERK1/2 kinases
and various compounds, including betulinic acid, piperlongumine, and cisplatin, trigger
cancer cell death by enhancing ERK1/2 signaling [8,9]. Although the list of the compounds
which mediate ERK activation and apoptosis is expanding, the ERK-dependent apoptosis
in pancreatic cancer by an anti-cancer compound has never been reported.

In this study, we demonstrated that GT-7 induced apoptosis by stimulating ERK acti-
vation in T3M4, a PDAC cell line harboring the KRAS Q61H mutant allele. We investigated
three PDAC cell lines with different KRAS mutations (MIA-Pa-Ca-2 (KRAS G12C), T3M4
(KRAS Q61H), and PANC-1 (KRAS G12D)) because different KRAS mutants in PDAC
can lead to distinct biological manifestations, including the differences in downstream
signaling pathways and various phenotypes, including susceptibility to chemotherapy [10].
Importantly, GT-7 successfully induced ERK-dependent apoptosis in T3M4 cells but not
in the other two PDAC cells. We further showed that the difference in the AKT phos-
phorylation levels upon GT-7-treatment in each PDAC cell line is a key determinant for
the resistance to apoptosis induction by GT-7. Consistently, co-treatment with GT-7 and
the PI3K/AKT signaling inhibitor Wortmannin induced a more pronounced apoptosis
induction than did GT-7 alone. Our data showed the potential of the GT-7 combination
therapy as a therapeutic approach for PDAC. The possible mechanisms of the GT-7-induced
apoptosis induction in PDAC cell lines in relation to the relevant KRAS mutations and the
downstream ERK and AKT signaling will be discussed.

2. Materials and Methods
2.1. Cell Culture

The human pancreatic ductal adenocarcinoma (PDAC) cell lines MIA-Pa-Ca-2, T3M4,
and PANC-1 were purchased from the American Type Culture Collection (ATCC) (Man-
assas, VA, USA). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
(Nacalai Tesque, Kyoto, Japan), supplemented with 10% fetal bovine serum (BioWest, Nu-
aillé, Pays De La Loire, France), sodium pyruvate, phenol red, and L-glutamine. The cells
were maintained in a humidified incubator containing 10% CO2 at 37 ◦C. Every second–
third day, the medium was changed, and cells were subcultured with 0.25% Trypsin-EDTA
(Gibco, Invitrogen, Carlsbad, CA, USA) at 37 ◦C when confluency reached 70–80%.

2.2. Chemicals and Reagents

ACAGT-007a (GT-7) was synthesized as described previously (described as 2b) [7] and
dissolved in DMSO. Honokiol (H669560) was purchased from Toronto Research Chemicals
(Toronto, ON, Canada) and dissolved in DMSO. U0126 (U-6770) was purchased from LC
Laboratories (Woburn, MA, USA) and dissolved in DMSO. Wortmannin (HY-10197) was



Cells 2022, 11, 702 3 of 17

purchased from MedChemExpress (Monmouth Junction, NJ, USA) and dissolved in DMSO.
Perifosine (P-6522) was purchased from LC Laboratories and dissolved in water.

2.3. WST-8 Assay

The assay was carried out using the Cell Count Reagent SF (Nacalai tesque, Kyoto,
Japan) according to the manufacturer’s instructions with small modifications. Briefly,
100 µL of mammalian cell suspension at a cell density of 5.0 × 104 cells/mL was seeded
in a 96–well plate (IWAKI, Shizuoka, Japan) and incubated for 24 h. In each medium, the
compounds in solution were diluted 1:1000, and 100 µL of the diluted compounds were
added to the cell culture. Cells treated with solvent (DMSO) were used as controls. After
incubation for 48 h, 6 µL of the Cell Count Reagent SF and 40 µL of the medium were mixed
and added to the plate, followed by incubation for an additional 3 h. Then, the absorbance
at 450 nm was measured by a Sunrise microplate reader (Tecan, Männedorf, Switzerland).
Absorbance at 600 nm was also measured as the reference.

2.4. Protein Extraction and Western Blot Analysis

One milliliter of the PDAC cells suspension at a cell density of 2.0 × 105 cells/mL
was seeded in a 6-well plate (IWAKI, Shizuoka, Japan) and incubated for 24 h. After 24 h
incubation, the medium was aspirated. Then, the cells were treated with chemicals required
for the respective experiments as described in each figure legend. Harvested cells were lysed
as previously described [6]. The following primary antibodies were used: anti-GAPDH
(14C10) Rabbit mAb (Cell Signaling Technology, Danvers, MA, USA, #2118), anti-Caspase-3
Antibody (Cell Signaling Technology, Danvers, MA, USA, #9662), anti-Phospho-p44/42
MAPK (Erk1/2) (Thr202/Tyr204) Antibody (Cell Signaling Technology, Danvers, MA, USA,
#9101), anti-p44/42 MAPK (Erk1/2) Antibody (Cell Signaling Technology, Danvers, MA,
USA, #9102), anti-Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Cell Signaling Technology,
Danvers, MA, USA, #4060), anti-Akt (pan) (C67E7) Rabbit mAb (Cell Signaling Technology,
Danvers, MA, USA #4691), and anti-PTEN (138G6) Rabbit mAb (Cell Signaling Technology,
Danvers, MA, USA, #9559). As a secondary antibody, anti-rabbit (#7074) IgG HRP-linked
antibody (Cell signaling Technology, Danvers, MA, USA) was used. The proteins were
detected by Chemi-Lumi One Super (Nacalai Tesque, Kyoto, Japan) or ECL Select (Cytiva,
Marlborough MA, USA). Relative intensities of all bands were quantified using MULTI
GAUGE Ver. 3.2 software (Fujifilm, Tokyo, Japan).

2.5. Small Interfering RNA Transfection

For small interfering RNA (siRNA) experiments, a human PTEN siRNA (5′-
CCACACGACGGGAAGACAAGUUCAU-3′, 5′-AUGAACUUGUCUUCCCGUCGUGUGG-
3′) and a control siRNA (Stealth RNAi™ Negative Control Med GC Duplex) were pur-
chased from Invitrogen USA (PTEN siRNA; VHS41286 and control siRNA; 12935300). One
milliliter of 1.25 × 105 cells/mL was seeded in a 6-well plate (IWAKI, Shizuoka, Japan). A
total of 7.5 µL of Lipofectamine™ RNAiMAX Transfection Reagent (Invitrogen, Carlsbad,
CA, USA; 13778150) was diluted in 125 µL of Opti-MEM® Reduced Serum Media (Gibco,
Invitrogen, Carlsbad, CA, USA; 31985062). Simultaneously, 2.5 µL of 20 µM siRNA was also
diluted in 125 µL of Opti-MEM® Reduced Serum Media. Then, diluted Lipofectamine™
and diluted siRNA were mixed (1:1 ratio) and incubated for 10 min at room temperature.
Finally, the siRNA–lipid complex was added to the seeded cells, and the transfected cells
were incubated for 48 h.

2.6. Microscopy

One milliliter of the PDAC cells suspension at a cell density of 2.0 × 105 cells/mL was
seeded in a 35 mm glass-bottom dish (Figure S1A; D11130H, MATSUNAMI, Osaka, Japan)
or a 6-well plate (Figure S1B; IWAKI, Shizuoka, Japan), and incubated for 24 h. After the
incubation, the compounds in solution were diluted at 1:2000 by medium, and 1 mL of the
diluted compounds were added to the cell culture. After an additional 24 h incubation,
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cells were observed by phase-contrast microscopy (BZ-X700/710, KEYENCE, Osaka, Japan)
with a 10× (Figure S1A) or 4× (Figure S1B) magnification.

2.7. Flow Cytometry (FCM) Analysis of Apoptotic Cell

One milliliter of the PDAC cells suspension at a cell density of 2.0 × 105 cells/mL
was seeded in a 6-well plate (IWAKI, Shizuoka, Japan) and incubated for 24 h. After 24 h
incubation, the cells were treated with chemicals required for the respective experiments as
described in each figure legend. Apoptotic cells were stained by an eBioscience™ Annexin
V-FITC Apoptosis Detection Kit (eBioscience, San Diego, CA, USA). Chemical-treated cells
were washed by 1 mL of PBS(–), then resuspended by 100 µL of Binding Buffer (1×). In
total, 2.5 µL of Annexin V-FITC and 5 µL of Propidium Iodide (20 µg/mL) were added.
After 10 min incubation at room temperature, cells were diluted by 500 µL of PBS(–) and
analyzed using FACS Calibur and LSR-Fortessa flow cytometers (BD Biosciences, Franklin
Lakes, NJ, USA) and FlowJo (BD Biosciences, Franklin Lakes, NJ, USA).

2.8. RNA Isolation and qRT-PCR

Total RNA was isolated from PDAC cells using RNeasy Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. In total, 0.1 µg of total RNA was
reverse transcribed using ReverTra AceTM qPCR RT Master Mix with gDNA Remover
(TOYOBO, Osaka Japan) according to the manufacturer’s instructions. Finally, 500-fold
diluted cDNA was amplified using LightCycler® 480 SYBR Green I Master (Roche, Basel,
Switzerland) and primer sets (Supplementary Table S1), and the amplicon was detected
and analyzed by LightCycler480 System II (Roche, Basel, Switzerland).

2.9. Statistical Analysis

Each experiment was performed 3 times. Representative data of at least three in-
dividual experiments were shown in Figures 1B, 2A,C, 3A, 4A,C,D and Supplementary
Figure S1. A Student’s t-test was used to examine the differences between the two condi-
tions in Figures 1A, 2B and 4E. Repeated ANOVA was used for multiple comparisons in
Figures 3B and 4B. p values of less than 0.05 are judged statistically significant. Values are
shown as means ± standard error of the mean (SEM).
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iments (n = 3). Columns, means; bars, SEM. * p < 0.05, ** p < 0.01, *** p < 0.005, n.s., not significant; 
significantly different between GT-7 and Honokiol in each concentration using a Student’s t-test. (B) 
Effect of GT-7 and Honokiol (HNK) on apoptosis of PDAC cells. The PDAC cells were treated by GT-
7 or Honokiol at the concentration indicated for 24 h, and then apoptotic cells were analyzed by FCM. 
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antibodies. GT-7 stimulated ERK phosphorylation in all three PDAC cell lines in a dose-
dependent manner (Figure 2A,B). The GT-7-induced ERK activation was detected within 
2 h exposure of PDAC cells to GT-7. We also analyzed the apoptosis induction by GT-7 in 
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Figure 1. Effects of ACAGT-007a (GT-7) on cell viability and apoptosis of the PDAC cells. (A) Com-
parison of the cell viability upon GT-7 or Honokiol (HNK) in the PDAC cells. The PDAC cells were
treated by GT-7 or Honokiol at serial concentrations (0–60 µM) for 48 h, then the relative living
cell numbers (%) were measured by WST-8 assay. The data were averaged from three independent
experiments (n = 3). Columns, means; bars, SEM. * p < 0.05, ** p < 0.01, *** p < 0.005, n.s., not
significant; significantly different between GT-7 and Honokiol in each concentration using a Student’s
t-test. (B) Effect of GT-7 and Honokiol (HNK) on apoptosis of PDAC cells. The PDAC cells were
treated by GT-7 or Honokiol at the concentration indicated for 24 h, and then apoptotic cells were
analyzed by FCM.
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Figure 2. GT-7-induced apoptosis is dependent on ERK activation in T3M4 but not in MIA-Pa-Ca-2
and PANC-1 cells. (A) MEK inhibitor U0126 attenuates GT-7-induced apoptosis in T3M4 cells but
not MIA-Pa-Ca-2 and PANC-1 cells. The PDAC cells were treated by GT-7 and/or U0126 for 2 h.
The indicated proteins were detected by Western blot analysis. (B) Relative quantification of ERK
phosphorylation levels and cleaved/full-length Caspase-3 in PDAC cells upon GT-7 and/or U0126
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treatment as shown in (A). Phosphorylation levels (phosphorylated protein intensity/total protein
intensity) after the treatment with DMSO (0 µM GT-7 without 30 µM U0126) in each PDAC cell were
set as 100%. The data were averaged from three independent experiments (n = 3). Columns, means;
bars, SEM. * p < 0.05, ** p < 0.01, *** p < 0.005, n.s., not significant. Comparisons between absence
and presence of 30 µM U0126 were made by a Student’s t-test. (C) Apoptosis induced by GT-7 was
suppressed by the MEK inhibitor U0126 in T3M4 cells but not in MIA-Pa-Ca-2 and PANC-1 cells.
MIA-Pa-Ca-2, T3M4, and PANC-1 cells were treated with DMSO (vehicle), 10 µM GT-7, 10 µM U0126,
or the combination of 10 µM GT-7 and 10 µM U0126 for 24 h. Chemical treated cells were stained by
Annexin V-FITC and PI and analyzed by FCM.
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Figure 3. Apoptosis induction and the activation of both ERK and AKT signaling by ACAGT-007a
(GT-7) in the PDAC cells. (A) The PDAC cells were treated with 30 µM GT-7 for the time indicated
(0–10 h). The indicated proteins were detected by Western blot analysis. (B) Relative quantification of
ERK and AKT phosphorylation levels and cleaved/full-length Caspase-3 in the PDAC cells upon
GT-7 treatment as shown in (A). Phosphorylation levels (phosphorylated protein intensity/total
protein intensity) after the treatment with DMSO (0 h) in each PDAC cell were set as 100%. The data
were averaged from three independent experiments (n = 3). Columns, means; bars, SEM. * p < 0.05,
** p < 0.01, n.s., not significant; significantly different from DMSO (0 h) in each cell line using one-way
ANOVA, followed by a post hoc test using Dunnett’s multiple comparisons.
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Figure 4. AKT inhibition promotes ACAGT-007a (GT-7)-induced apoptosis in PDAC cells. (A) The
effect of PI3K/AKT inhibitors (Wortmannin and Perifosine) on the induction of GT-7-induced apop-
tosis in the PDAC cells. The PDAC cells were pretreated by 30 µM Wortmannin or Perifosine for 1 h
then treated by 30 µM GT-7 for 3 h. The indicated proteins were detected by Western blot analysis.
(B) Relative quantification of ERK and AKT phosphorylation levels and cleaved/full-length Caspase-
3 in the PDAC cells upon PI3K/AKT inhibitors pretreatment and GT-7 treatment as shown in (A).
Phosphorylation levels (phosphorylated protein intensity/total protein intensity) after the treatment
with DMSO (without compounds) in each cell were set as 100%. The data were averaged from three
independent experiments (n = 3). Columns, means; bars, SEM. * p < 0.05, ** p < 0.01, *** p < 0.005, n.s.,
not significant. Significant differences from the DMSO treatment (without PI3K/AKT inhibitors) in
each absence or presence of GT-7 using one-way ANOVA, followed by a post hoc test using Dunnett’s
multiple comparisons (upper and middle panels). Comparisons between absence and presence of
GT-7 were made by a Student’s t-test (lower panel). (C) The inhibition of AKT phosphorylation by
Wortmannin enhances GT-7 induced apoptosis in MIA-Pa-Ca-2 and T3M4 cells but not in PANC-1
cells. PDAC cells were treated with DMSO (vehicle), 10 µM GT-7, 10 µM Wortmannin, or the combi-
nation of 10 µM GT-7 and 10 µM Wortmannin for 6 h. Chemical treated cells were stained by Annexin
V-FITC and PI and analyzed by FCM. (D) The cleaved Caspase-3 was reduced by PTEN knockdown
in T3M4 cells. T3M4 cells were pretreated by the negative control siRNA or PTEN siRNA for 48 h
then treated by 30 µM GT-7 for 2 h. The indicated proteins were detected by Western blot analysis.
(E) Relative quantification of cleaved Caspase-3 was averaged from three independent experiments
(n = 3). Columns, means; bars, SEM. *** p < 0.005, significantly different between the treatment with
negative control siRNA (PTEN siRNA−) and the treatment with PTEN siRNA (PTEN siRNA +) then
GT-7 treatment for 2 h using a Student’s t-test.

2.10. Data Access

Gene expression and mutation data were downloaded from the Cancer Cell Line
Encyclopedia database (https://sites.broadinstitute.org/ccle/, accessed on 29 August
2021) [11].

https://sites.broadinstitute.org/ccle/
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3. Results
3.1. ACAGT-007a (GT-7) Reduces Cell Viability and Induces Apoptosis in PDAC Cells

Three PDAC cell lines with different genetic backgrounds regarding KRAS mutations
(MIA-Pa-Ca-2, T3M4, and PANC-1) were tested for sensitivity to GT-7 in vitro using a cell
viability assay (Figure 1A). T3M4 cells harbor the KRAS Q61H mutation, which is found
in about 5% of PDAC patients and the most prevalent mutation occurring at codon 61 of
KRAS [12]. PANC-1 cells harbor the KRAS G12D mutation, which is most prevalent in
PDAC. MIA-Pa-Ca-2 cells harbor the KRAS G12C mutation, which comprises nearly 4%
of PDAC [13].

In total, 30 µM of GT-7 treatment for 48 h suppressed the viability of MIA-Pa-Ca-2
cells to 18%, and that of T3M4 cells to 28%. In contrast, PANC-1 cells viability kept above
50% with 30 µM of GT-7 as compared with the vehicle, which indicates a relative resis-
tance against GT-7. IC50 values of GT-7 for these cell lines were determined 48 h after
treatment (Figure 1A). Briefly, MIA-Pa-Ca-2 (IC50: 7.3 µM) displayed the most sensitive
response, and PANC-1 (IC50: 31.0 µM) showed the least sensitivity to GT-7 treatment.
T3M4 (IC50: 21.4 µM) cells displayed an intermediate sensitivity. We also compared the
IC50 values of GT-7 in these cell lines with those of Honokiol, a natural compound pre-
viously established as a promising candidate for cancer prevention and/or treatment for
pancreatic cancer [14]. As shown in Figure 1A, GT-7 was shown to exhibit superiority in
killing PDAC cell lines compared with Honokiol, as Honokiol needs significantly higher
concentrations to kill the three PDAC cell lines (Figure 1A). Moreover, 15 µM of Honokiol
did not affect the viability of the three PDAC cell lines, whereas the same concentrations of
GT-7 significantly inhibited the cell viability except for PANC-1. It should be noted that
GT-7 effectively reduced the cell viability of MIA-Pa-Ca-2 cells, which have been reported
to display malignant phenotypes among PDAC, including the EMT phenotype as well
as chemoresistance [15].

To investigate whether the effects of GT-7 on the PDAC cell viability was because of
the induction of cell apoptosis, the three PDAC cells were treated with 0, 10, and 30 µM
GT-7 for 24 h and analyzed by flow cytometry (FCM) using Annexin V and propidium
iodide (PI). Annexin V/PI staining of the three PDAC cells showed that the percentage of
apoptotic PDAC cells increases in a GT-7-dose-dependent manner (Figure 1B). Importantly,
at a lower concentration of 10 µM GT-7, the susceptibility to apoptosis among the three
PDAC cells is more evident; T3M4 displayed the strongest susceptibility (77.1%), followed
by MIA-Pa-Ca-2 (47.4%) (Figure 1B). Again, PANC-1 cells are relatively most resistant
(32.2%). At a higher concentration of 30 µM GT-7, severer cell death in nearly all cells
(except for PANC-1; 60.2%) were induced (Figure 1B).

3.2. ACAGT-007 Induced ERK-Dependent Apoptosis in T3M4, but Not in MIA-Pa-Ca-2 and
PANC-1 Cells

To investigate the underlying mechanism of GT-7-mediated apoptosis in the three
PDAC cell lines, we examined the effect of GT-7 on ERK signaling and its relevance with
apoptosis. We conducted immunoblot analysis using the anti-ERK and anti-phospho-ERK
antibodies. GT-7 stimulated ERK phosphorylation in all three PDAC cell lines in a dose-
dependent manner (Figure 2A,B). The GT-7-induced ERK activation was detected within
2 h exposure of PDAC cells to GT-7. We also analyzed the apoptosis induction by GT-7
in the three PDAC cells by immunoblotting using anti-Caspase-3 antibodies. Relative
quantification of Caspase-3 cleavage showed that significant apoptosis induction was
detected in T3M4 and MIA-Pa-Ca-2 in a GT-7 dose-dependent manner (Figure 2B). In
contrast, cleaved Caspase-3 was barely detectable in PANC-1 cells, again indicating that
PANC-1 cells were most resistant to GT-7-induced apoptosis.

To investigate if the GT-7-induced apoptosis was mediated by stimulation of ERK
phosphorylation in PDAC cells, the effect of the MEK inhibitor U0126 was analyzed. ERK
phosphorylation levels both before and after the addition of GT-7 were significantly blocked
by U0126 in three PDAC cell lines (Figure 2A,B). Notably, relative quantification of Caspase-
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3 cleavage showed that GT-7-mediated induction of caspase-3 cleavage was blocked by the
MEK inhibitor U0126, only in T3M4, but not in the other cell lines (Figure 2A,B).

To evaluate the importance of the ERK activation in the GT-7-mediated cell death
mechanisms, FCM analysis was also performed (Figure 2C). To analyze the susceptibility
of the three PDAC cell lines to GT-7-mediated cell death, 10 µM GT-7 was used. Consistent
with the data obtained in Figure 1B, T3M4 cells were most susceptible, followed by MIA-
Pa-Ca-2, and PANC-1 was most resistant. Blocking the ERK phosphorylation by U0126
significantly reduced the cell death rate in T3M4 (from 79.5% to 38.6%), whereas only a
slight reduction in the cell death rate was detected in MIA-Pa-Ca-2 (from 47.4% to 44.1%)
(Figure 2C). PANC-1 cells were insensitive to U0126 (from 32.0% to 31.0%) (Figure 2C). These
results suggest that GT-7-induced ERK stimulation is required for the apoptosis induction
in T3M4 cells harboring the KRAS Q61H mutation, which reproduced the findings in
ERK-active melanoma cell lines with different oncogenic mutations, including BRAF [16].

3.3. AKT Signaling Activation Correlates with the PDAC Cells’ Resistance to Apoptosis Induction
by GT-7

We next investigated the effect of GT-7 treatment on both the AKT and ERK signaling,
as various KRAS mutations aberrantly activate downstream effector signaling, including
the ERK and AKT signaling pathways. We then investigated the time course of both ERK
and AKT activation upon GT-7 treatment by using the anti-phospho-ERK and anti-phospho-
AKT (Ser473) antibodies, respectively. ERK activation was detected within 2 h exposure of
the cells to 30 µM GT-7, and sustained ERK activation at variable duration was observed in
three PDAC cell lines (Figure 3A,B). PANC-1 cells maintained significant ERK activation
for 4 h, while MIA-Pa-Ca-2 and T3M4 cells maintained sustained ERK activation even after
10 h incubation with GT-7 (p < 0.01). Thus, in terms of sustained ERK activation, one of the
hallmarks of the ERK-dependent apoptosis, PANC-1 showed less favorable ERK signaling
dynamics when treated with GT-7, as compared with MIA-Pa-Ca-2 and T3M4.

Transient activation of AKT signaling was detected in the three PDAC cell lines ex-
posed to GT-7 for 2 h (p < 0.01) (Figure 3A,B). However, the three PDAC cells displayed
distinct duration and magnitude of AKT activation in response to GT-7 treatment. PANC-1
cells displayed the strongest and most sustained AKT activation. In PANC-1 cells, GT-7
induced a marked activation (approximately three-fold of the basal level) of AKT upon 2 h
incubation, and sustained and higher levels of AKT signaling activity were observed after
prolonged exposure to GT-7 (Figure 3A,B). MIA-Pa-Ca-2 displayed an intermediate pheno-
type in terms of AKT activation levels exposed to GT-7 for longer than 4 h (Figure 3A,B).
Notably, T3M4 displayed a marked down-regulation of AKT phosphorylation levels below
the basal levels after a transient increase in the AKT phosphorylation 2 h after the GT-7
treatment (Figure 3A,B).

We also performed the time-course analysis of the apoptosis induction in these PDAC
cells after GT-7 addition. Quantification of the cleaved Caspase-3 showed that significant
apoptosis induction was detected in T3M4 and MIA-Pa-Ca-2 4 h after the addition of
GT-7 (Figure A,B). Again, PANC-1 cells were resistant to the GT-7-mediated apoptosis
(Figure 2A). Thus, stronger susceptibility to apoptosis induction by GT-7 in T3M4 as
compared with MIA-Pa-Ca-2 is likely to be derived from a significant decrease in AKT
phosphorylation after a transient peak in T3M4 cells. Phase-contrast images of the three
PDAC cell lines treated with GT-7 during the time course reflect the cell death status
detected using immunoblot against cleaved Caspase-3 (Figure S1).

The time-course analysis of the ERK and AKT activation status in comparison with
the cleaved Caspase-3 suggested that ERK activation was commonly observed in the three
PDAC cells with a less sustained duration in PANC-1 cells. Thus, sustained AKT signaling
activation levels in each PDAC cell line correlate with the cells’ resistance to apoptosis
induction by GT-7. PANC-1 displayed the most sustained AKT activation, followed by
MIA-Pa-Ca-2. In particular, a marked down-regulation of AKT phosphorylation below
basal levels was observed in T3M4, coincident with the apoptosis induction as detected by
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the Caspase-3 cleavage. Thus, activation of ERK combined with inhibition of AKT signaling
below a certain level may be required to make cells susceptible to GT-7-mediated apoptosis.

3.4. AKT Inhibition by Wortmannin Enhanced the ACAGT-007a-Induced Apoptosis in
MIA-Pa-Ca-2 and T3M4 but Not in PANC-1 Cells

To determine whether the differences in the dynamics of AKT activation had any
relationship with the cells’ resistance to apoptosis induced by GT-7, we tested the effect
of Wortmannin and Perifosine, well-established inhibitors of PI3K and AKT, respectively.
Wortmannin significantly inhibited the AKT activity as evaluated by the phospho-AKT
levels (Ser473) in MIA-Pa-Ca-2 and T3M4 cells both before and after the addition of GT-7
(Figure 4A,B). Notably, in PANC-1 cells Wortmannin significantly inhibited the phospho-
AKT at the basal levels but failed to do so upon GT-7 treatment (Figure 4A,B). Similarly,
Perifosine markedly diminished AKT phosphorylation levels both before and after the
addition of GT-7 in MIA-Pa-Ca-2 and T3M4 cells (Figure 4A,B). However, in PANC-1 cells,
Perifosine only inhibited AKT phosphorylation at the basal levels, and GT-7-induced AKT
phosphorylation was resistant to Perifosine (Figure 4A,B). The quantification of cleaved
Caspase-3 showed that a single treatment with Wortmannin or Perifosine did not induce
apoptosis in any of the PDAC cell lines, indicating that inhibition of PI3K/AKT signaling
alone is not sufficient to induce apoptosis in PDAC (Figure 4A,B).

Importantly, the apoptosis induced by GT-7 was markedly enhanced by Wortman-
nin treatment in MIA-Pa-Ca-2 and T3M4 cells but not in PANC-1 cells (Figure 4A). The
resistance of PANC-1 cells against Wortmannin in terms of enhancement of GT-7-mediated
apoptosis may be explained by the residual AKT phosphorylation levels even after the
Wortmannin treatment. Perifosine did not significantly enhance the apoptosis induction by
GT-7 in the three PDAC cells (Figure 4A). This is also presumably due to the remaining
AKT phosphorylation levels by GT-7 treatment. Thus, GT-7-induced AKT phosphorylation
appears to have an antagonistic effect on the inhibitory action of both Wortmannin and
Perifosine in PANC-1 cells.

Bondar et al. reported that AsPC-1 cells (one of the PDAC cell lines) are resistant to
Wortmannin-induced apoptosis and that Wortmannin only marginally down-regulated
phospho-AKT levels in AsPC-1. In contrast, in the cells that underwent apoptosis by
Wortmannin, complete down-regulation of phosphorylation was observed [17]. This
situation is also found in our data that Wortmannin and Perifosine did not significantly
reduce the AKT phosphorylation levels (see Figure 4B, quantification of pAKT/tAKT)
when co-treated with GT-7. This residual activity may inhibit apoptosis induction by these
PI3K/AKT inhibitors.

Why AKT phosphorylation in PANC-1 cells is resistant to Wortmannin treatment
remains unknown. However, a recent MS proteomics combined with enrichment GO
categories identified the protein phosphatase 2A (PP2A) complex with a key role in the
viability of PANC-1 cells [18]. The expression of PP2A complex is markedly lower in
PANC-1 in comparison with MIA-Pa-Ca-2, and PP2A activation with DT-061 was able to
suppress the viability of PANC-1. Consistently, siRNA knockdown of the PP2A subunit
allowed higher viability of PANC-1 cells. Thus, the residual AKT phosphorylation and
sustained viability of PANC-1 cells upon GT-7 treatment may be associated with a lower
expression profile of the PP2A complex.

To further evaluate the effect of Wortmannin on GT-7-mediated cell death, FCM
analysis was performed on the three PDAC cells using 10 µM GT-7 in combination with
Wortmannin. As shown in Figure 4C, Wortmannin treatment significantly increased cell
death population in MIA-Pa-Ca-2 (from 40.1% to 54.0%) and T3M4 (from 50% to 70.3%)
but not in PANC-1 (21.2% to 20.7%), which is consistent with the data obtained with the
quantification of cleaved Caspase-3. Phase-contrast images of the PDAC cells treated with
GT-7 reflect the cell death status using immunoblot against cleaved Caspase-3 (Figure S1).

To further investigate the impact of the AKT signaling activation on GT-7-mediated
apoptosis, we examined the effect of PTEN silencing on GT-7-induced apoptosis in T3M4
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cells. PTEN is a major negative regulator of the PI3K/AKT signaling, and its knock-
down will lead to AKT activation. As shown in Figure 4D, the PTEN siRNAs effectively
suppressed the targeted gene expression at the protein levels in T3M4 cells in compar-
ison with the control siRNA. Consistently, AKT phosphorylation levels were increased
by PTEN silencing, and GT-7 further increased AKT phosphorylation levels in the PTEN
silenced conditions (Figure 4D,E). Notably, PTEN silencing significantly attenuated the
GT-7-mediated apoptosis induction as evaluated by the relative quantification of cleaved
Caspase-3 (Figure 4D,E). Thus, stimulating AKT phosphorylation levels by PTEN silencing
counteracted the effect of GT-7 to induce apoptosis in T3M4 cells, indicating that AKT
phosphorylation levels can affect the susceptibility of T3M4 to GT-7-induced cell death.

Altogether, the AKT phosphorylation levels in each PDAC strain are likely to play key
roles in dictating the susceptibility to GT-7-mediated apoptosis.

4. Discussion

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic
malignancy, accounting for approximately 90% of all pancreatic cancers. KRAS mutations,
present in about 95% of pancreatic cancers, lead to the robust activation of the ERK MAPK
and AKT signaling. Thus, targeting the MAPK and/or AKT signaling driven by onco-
genic KRAS appears to be a valuable approach for PDAC therapy. However, clinically
available inhibitors for the ERK and AKT signaling are still limited, with no superior effect
in pancreatic cancer patients in comparison with conventional cytotoxic chemotherapy.
Given the poor clinical outcome of patients with PDAC, together with its resistance to
chemoradiotherapy, novel strategies are needed to introduce new treatment opportunities.
In this study, we have shown that GT-7, an anti-cancer compound with ERK modulating
property, can provide a novel approach to tackle this deadly malignancy.

4.1. The Potential and Significance of GT-7 as a Compound to Induce ERK-Dependent Apoptosis
in PDAC

GT-7 decreased cell viability and induced apoptosis in the three PDAC cell lines with
different KRAS mutations. The effect of GT-7 on cell viability and apoptosis induction
was much superior to Honokiol, a natural agent known to be effective in cancer therapy,
including PDAC. The uniqueness of GT-7 as an inducer of apoptosis relies on its property
to stimulate ERK phosphorylation. Notably, in T3M4 cells harboring the KRAS Q61H
mutation, ERK activation stimulated by GT-7 is required for apoptosis induction, as evi-
denced by the significant cancellation of apoptosis induction by the MEK inhibitor U0126.
A growing number of the literature showed that more than 50 compounds have been
reported to induce ERK-dependent cell death in various tumor cell types [8,9]. However,
thus far, no reports have been made on an anti-cancer compound capable of inducing
ERK-dependent apoptosis. What types of tumor or oncogenic context is more susceptible to
ERK-dependent cell death? GT-7 and its original compound ACA-28 were shown to induce
ERK-dependent apoptosis in melanoma cell lines, harboring oncogenic BRAF or NRAS
mutation, but not in the normal melanocyte (NHEM) [6]. In addition, ACA-28 was shown
to induce ERK-dependent apoptosis in NIH/3T3 cells overexpressing active HER2, but
not in NIH/3T3 cells [6]. Thus, ACA-28 and/or GT-7 were shown to induce apoptosis in
cancer cell lines with different oncogenic mutations, ranging from HER2, BRAF, NRAS, and
KRAS. Since one of the hallmarks of ERK-induced cell death is “sustained ERK activation”,
it seems plausible that cells harboring high-ERK with oncogenic alterations in upstream ac-
tivators of ERK signaling are more susceptible to apoptosis induction by GT-7. Consistently,
several papers have provided the hypothesis on a cellular threshold for active ERK1/2
levels in determining the cell fate for growth arrest versus death responses mediated by
ERK1/2 signaling. Thus, sustained ERK1/2 activation above a certain threshold may
activate specific pro-apoptotic targets and induce apoptosis [8,9].

Although precise molecular mechanisms of how phospho-ERK induces cell death
remain elusive, a large number of agents have been reported to induce ERK activation-
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dependent apoptosis through DNA-damaging stimuli-mediated p53 activation [8,9]. Sev-
eral papers reported that apoptosis induction by various DNA-damaging agents correlates
with p53 up-regulation, suggesting that ERK activation stimulates p53 transcriptional activ-
ity, which will lead to the up-regulation of pro-apoptotic genes, including Bcl-2, Bax, and
Noxa [8,9]. Alternatively, many compounds capable of inducing ERK-mediated apoptosis
share the property to stimulate reactive oxygen species (ROS) [8,9]. ROS can stimulate ERK
activity either by activation of EGFRs or by inhibition of MAPK phosphatases (MKPs or
DUSPs). ROS can attack the cysteine residues of a certain group of target proteins, thereby
oxidizing the reactive thiol groups to form a disulfide bond. Oxidation of catalytic cysteine
within the catalytic site of the DUSPs abolishes phosphatase activities of DUSPs as well as
several tyrosine phosphatases that inactivate upstream regulators of ERK signaling [8,9]. In-
deed, ROS have been shown to block phosphatase activities of ERK-directed phosphatases,
DUSP5 and DUSP6, by oxidation of their catalytic cysteine residues [8,9]. Moreover, ROS
accumulation stimulates ERK activation, which triggers proteasomal degradation of DUSPs.
Interestingly, a recent paper by Song et al. showed that knockdown of Synaptophysin-like
1(SYLP1), a neuroendocrine-like protein, induced cell death by stimulating sustained ERK
activation. SYLP1 knockdown was shown to induce ROS, which led to ERK activation and
cell death [19]. Thus, a similar ROS-mediated ERK-dependent cell death mechanism might
be associated with GT-7 action.

It should be noted that the GT-7-mediated increase in pERK was blocked by the MEK
inhibitor U0126 in all three PDAC, but apoptosis was inhibited by U0126 only in T3M4
cells, not MIA-Pa-Ca-2 or PANC-1 cells (Figure 2). What is the possible reason for the
differential effect of pERK on apoptosis induction in these PDAC cell lines? Several papers
reported that not only the kinetics of ERK phosphorylation (transient versus sustained)
but also the spatial distribution of phosphorylated ERK and its substrates play a critical
role in determining the fate of the cells for anti- versus pro-apoptosis. Importantly, scaf-
fold proteins, including DAPK and PEA-15, have been reported to regulate the spatial
distribution of phosphorylated ERK by anchoring the phosphorylated ERK protein in
the cytosol [20,21]. For example, activated ERK1/2 is sequestered in the cytoplasm via
interaction with PEA-15 and DAPK. Inhibition of ERK1/2 nuclear translocation impairs
ERK1/2-mediated proliferation and augments the pro-apoptotic signals of DAPK by phos-
phorylating the cytoplasmic DAPK. In addition, DUSPs also play key roles in determining
the distribution of phosphorylated ERK1/2. DUSP6 serves as an anchor for inactive ERK
in the cytosol [22]. Interestingly, ROS produced by various compounds capable of inducing
ERK-dependent apoptosis inactivates the cytosolic ERK phosphatase DUSP6, resulting in
cytoplasmic sequestration of active ERK [23]. Thus, it would be intriguing to speculate
that these docking phosphatases (DUSPs) and/or scaffold proteins may be differentially
expressed in these PDACs and that T3M4 possesses the most favorable conditions in
sustaining ERK phosphorylation distribution to induce apoptosis.

How does GT-7 increase pERK? ACA has been reported as an inhibitor for nuclear
export of Rev by binding to the Cysteine-529 residue of CRM1, the receptor for NES,
thereby inhibiting nuclear export of Rev [24]. Tamura et al. reported the formation of the
quinone methide intermediate of ACA to be essential for exerting the inhibitory activity
of ACA for nuclear export of Rev [25]. Furthermore, the treatment of ACA with N-
Acetyl-cysteine (NAC) was found to provide the two adducts. As ACA-28 and GT-7
bear a similar structure (two carbonate esters) to ACA regarding the binding to NAC,
it is highly probable that ACA-28 and GT-7 via the formation of the quinone methide
intermediate, thereby serving as oxidants to attack the Cysteine residues of the target
proteins. Consistently, ACA, the original compound, has been reported to induce ROS [26].
In ACA- and sodium butyrate-treated cells, intracellular ROS levels and NADPH oxidase
activities were increased in HepG2 human hepatocellular carcinoma cells. The decrease in
cell number after combined treatment of ACA and sodium butyrate was diminished when
cells were pretreated with catalase, a strong antioxidant enzyme that breaks down ROS. The
authors also showed that ACA, alone or in combination with sodium butyrate, increased
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pERK. Similar observations of the ACA-mediated induction of ROS and the inhibition of
apoptosis induction by a thiol antioxidant NAC have been reported in other cancer cell
lines such as NB4 promyelocytic leukemia cells [27]. We, therefore, assume that GT-7 and
ACA-28, similar to the original compound ACA, can increase pERK via stimulation of ROS
signaling. As mentioned previously, targets of ROS include various phosphatases that
inactivate upstream kinases of ERK signaling as well as phosphatases against ERK. Thus,
both scenarios remain possible regarding the action of GT-7 in that this agent can increase
MEK activity or reduce phosphatase activity against pERK depending on the context of the
genome or gene profiling expression in each cancer cell line.

4.2. GT-7-Mediated Apoptosis Can Be Enhanced by AKT Signaling Inhibition

Importantly, our study identified AKT signaling as a key to providing resistance to
GT-7-mediated apoptosis. The three PDAC cell lines examined in this study displayed
different responses to GT-7 in terms of apoptosis susceptibility. We showed that sustained
AKT phosphorylation correlates with resistance to GT-7-induced apoptosis (Figure 3). The
susceptibility of induction of apoptosis is stronger in T3M4 than in MIA-Pa-Ca-2 and
weakest in PANC-1, as evidenced by the quantification of relative cleaved Caspase-3/full-
length Caspase-3 and FCM analysis. As mentioned above, sustained AKT phosphorylation
correlates with resistance to GT-7-induced apoptosis. PANC-1 displayed the most sustained
AKT phosphorylation, followed by MIA-Pa-Ca-2. T3M4 cells displayed marked down-
regulation of AKT phosphorylation levels below the basal levels after a transient increase
in the AKT phosphorylation 2 h after the GT-7 treatment. Consistently, in our previous
study, GT-7 and the original compound ACA-28 induced ERK-dependent apoptosis in SK-
MEL-28, an ERK-active melanoma cell line, wherein AKT phosphorylation levels are low.
These observations, together with the effect of Wortmannin and PTEN silencing, suggest
that AKT signaling activation plays a key role in determining susceptibility to GT-7.

What is the mechanism of action for GT-7 in increasing both pERK and pAKT? We
assume that ROS could be involved in the GT-7 action based on the findings that a large
number of compounds capable of inducing ERK-dependent cell death elicits ROS signaling.
As described in the previous manuscript, ROS-mediated DUSP inactivation/degradation
is a part of the mechanism to stimulate ERK signaling. Furthermore, ROS facilitated cell
death through the activation of AKT. Chetram et al. observed that ROS enhanced the
expression of phosphorylated AKT (pAKT) in human prostate cancer cells [28]. Notably,
this ROS-mediated AKT activation is through PTEN, a negative regulator of AKT signaling,
because PTEN was rendered catalytically inactive through oxidation by ROS. Importantly,
the two vanadium compounds, bis(acetylacetonato)-oxidovanadium(IV) and sodium meta-
vanadate, inhibit cell proliferation via ROS-induced activation of both PI3K/AKT and
MAPK/ERK signaling pathways in human pancreatic cancer AsPC-1 cells [29]. The effects
of the two compounds could be counteracted with the antioxidant NAC. Thus, GT-7 could
induce ROS, thereby increasing both pERK and pAKT.

A plausible underlying mechanism explaining the different AKT signaling activation
status in the three PDAC cell lines may rely on the distinct KRAS mutations in the three
PDAC. T3M4 cells harbor KRAS Q61H, whereas PANC-1 cells harbor KRAS G12D, and
MIA-Pa-Ca-2 cells harbor KRAS G12C. Wild-type KRAS transmits signals through ERK
and AKT signaling pathways via interaction with RAF and PI3K, respectively. Importantly,
KRAS Q61H displays preferential binding to RAF compared with PI3K, leading to enhanced
MAPK signaling [30]. Moreover, the KRAS G12D mutant found in PANC-1 preferably
activates AKT signaling as compared with ERK signaling [31,32]. The KRAS G12C mutant
found in MIA-Pa-Ca-2 strongly binds with RAF1, and AKT signaling activation was
low [33]. These previous findings in the literature and our data on the responses of AKT
signaling activation upon GT-7 seem to consistently explain the basis of cells’ resistance to
GT-7. Regarding other possible oncogenic mutations in PDAC, the three PDAC cell lines
share common genomic sequences in that they harbor the wild-type PTEN and CDKN1A
and the mutant TP53. However, special caution is needed regarding the effect of these
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KRAS mutations on ERK and AKT signaling as the effect may be variable depending on
the cell lines and the number of alleles as well as other mutations in the genome in each
cell line.

Regarding the susceptibility of inhibition of cell viability is stronger in MIA-Pa-Ca-2,
intermediate in T3M4, and weaker in PANC-1. Thus, PANC-1 displayed the strongest
resistance both in terms of WST-8 assay and cell death evaluation. The reversal of suscepti-
bility between MIA-Pa-Ca-2 and T3M4 may indicate that GT-7 may affect growth inhibitory
mechanisms other than apoptosis induction. The possible growth inhibitory mechanisms
include cell cycle arrest or autophagy induction. Thus, the analysis of the effect of GT-7
(especially at lower concentrations) on the cell cycle and/or autophagy in MIA-Pa-Ca-2 in
comparison with other PDAC cell lines may reveal a novel mode of action of GT-7.

An additional factor that should be taken into consideration, relevant to cells’ re-
sponses to GT-7, is the epithelial-mesenchymal phenotype because epithelial-mesenchymal
transition (EMT) is closely associated with enhanced migration, invasion, and resistance to
anti-cancer chemotherapy. Epithelial cells expressing epithelial markers such as E-cadherin
maintain apical-based polarity and sheet-like growth architecture with tight junctions.
Epithelial cells undergo a phenotypical shift and acquire mesenchymal features, including
spindle-like fusiform, motile cells, which express mesenchymal markers such as vimentin
and N-cadherin. Minami et al. reported important findings regarding the morphofunctional
analysis of various PDAC cell lines using 2- and 3-dimensional cultures. Because PDAC
cells form tumors with 3-dimensional structures, these provide valuable information on
cells’ morphological features and their impact on functional and pathological aspects [34].
Based on this paper, MIA-Pa-Ca-2 and PANC-1 displayed irregular-shaped spheres with
small oval cells, and the spheres had a grape-like morphology without flat-lining cells,
whereas T3M4 cells displayed small oval and flat-lining cells on the surface of the spheres.
These morphological features indicate that PANC-1 and MIA-Pa-Ca-2 cells displayed mes-
enchymal features, whereas T3M4 cells displayed epithelial features. Moreover, regarding
the EMT phenotype, T3M4 had high E-cadherin and low vimentin mRNA levels, while
PANC-1 and MIA-Pa-Ca-2 had low E-cadherin and high vimentin mRNA levels. Thus,
the EMT-positive cell lines displayed relative resistance to the GT-7-induced apoptosis,
whereas the EMT-negative T3M4 displayed a stronger sensitivity to apoptosis induction by
GT-7. Furthermore, the EMT score evaluated by Young Kwang Chae’s method [18], based
on the statistical analysis of the gene expression profiling, showed that T3M4 showed a
strong epithelial phenotype, while MIA-Pa-Ca-2 and PANC-1 displayed mesenchymal or
quasi-mesenchymal phenotype, consistent with the 3D analysis. An increasing amount
of evidence has indicated that EMT is closely associated with chemotherapy resistance
through the involvement of EMT-associated transcription factors in various human cancers.
Therefore, cells with an EMT phenotype may be more likely to be resistant to apoptosis
induction by GT-7.

Furthermore, we investigated the genome-wide gene expression profile utilizing the
Cancer Cell Line Encyclopedia (CCLE: https://sites.broadinstitute.org/ccle/, accessed on
29 August 2021) and qRT-PCR, aiming to reveal the basis for responses of the three PDAC
cell lines to GT-7. We searched for factors in the apoptosis pathway responsible for the
responses to the sensitivity to the agent from the CCLE database. As a result, we identified
several apoptosis-related genes that are highly expressed in MIA-Pa-Ca-2 and T3M4 but
poorly expressed in PANC-1 (Supplementary Figure S2). These include EREG, encoding
epiregulin, and ANXA1, encoding Annexin 1 (Supplementary Figure S2). Epiregulin is
important for the EGFR-mediated growth signaling, and Annexins 1 attracts attention
for its prognostic significance in PDAC [35]. Epiregulin belongs to the epidermal growth
factor (EGF) family of ligands that play important roles in the pathology of PDAC through
the activation of the MEK/ERK signaling pathway [36]. Annexin A1 (ANXA1) has been
reported to promote apoptosis in cancerous cells, including PDAC [37]. Notably, reduced
expression of Annexin A1 has been reported to promote gemcitabine and 5-fluorouracil
drug resistance of human pancreatic cancer [38]. These data are consistent with our data
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that MIA-Pa-Ca-2 and T3M4 are relatively sensitive to GT-7-mediated apoptosis, whereas
PANC-1 showed strong resistance against the agent.

As mentioned earlier, pAKT levels affected apoptotic responses to GT-7 in these PDAC
cell lines. However, considering the threshold theory proposed by Park’s lab, it may be that
in order to achieve ERK-dependent apoptosis, the higher cellular ERK phosphorylation
levels would be more favorable. In this regard, differential gene expression patterns of
EREG and ANXA1, which are highly expressed in MIA-Pa-Ca-2 and T3M4 but poorly
expressed in PANC-1, might contribute to the more sustained ERK signaling activation
preferable to achieve GT-7-mediated apoptosis. Whether epiregulin and annexin A1 may
serve as factors that provide differential responses of the three PDAC cell lines to this agent
needs future validation.

4.3. Perspectives

PI3K/AKT and ERK MAPK pathways regulate each other’s activity through feedback
mechanisms. For example, MEK inhibition by U0126 potentiates EGF- and FGF-induced
AKT phosphorylation [39,40]. In addition, dual inhibition of PI3K/mTOR induces over-
activation of the MEK/ERK pathway in human pancreatic cancer [41]. Therefore, the
inefficiency of single-agent treatments of these promising targeted therapies has been at-
tributed partly due to the rapid up-regulation of compensatory alternative pathways and
feedback loops within tumor cells, which gives a rationale for the concurrent targeting
of both pathways [42]. Consistently, several reports have been made on simultaneous
treatment with two pathway inhibitors. These include BEZ235 (dual PI3K/mTOR kinase
inhibitor) and the MEK inhibitor PD0325901, and combined targeting of RAF/MEK/ERK
signaling and autophagy survival responses [2] in PDAC. In this regard, our study, by
demonstrating the effective apoptosis induction by the combination of GT-7 (ERK stimula-
tion) and Wortmannin (PI3K inhibition), proposes a potential novel approach for concurrent
targeting of ERK and PI3K/AKT signaling pathways. In addition, these findings may pro-
vide novel information on how to induce apoptosis depending on the different KRAS
mutation alleles in PDAC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11040702/s1, Figure S1: Phase-contrast images of PDAC
cells, Figure S2: qRT-PCR analyses on the expression of apoptosis-related genes in PDAC cells;
Table S1: List of pRT-PCR primers.
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