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Clostridium butyricum has been widely considered an antibiotic substitute in recent years. It can promote
growth performance, improve the immune response and enhance the intestinal barrier function of the
host. In the present study, 1-d-old Arbor Acres (AA) broilers were fed C. butyricum (1 � 109 cfu/kg) for
28 d. The transcriptomic characteristics of epithelial cells of the cecal mucosa were determined by RNA-
sequence, and the cecal microbiota composition was explored by 16S ribosomal RNA gene sequencing.
The changes in the intestinal mucosa of broilers were then analyzed by tissue staining. Gene Ontology
(GO) annotations identified substance transport and processes and pathways that might participate in
intestinal development and cell viability. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis revealed that the differentially expressed genes are involved in numerous pathways related to
amino acid and vitamin metabolism and antioxidant and defensive functions, among others. The relative
expression of some genes associated with intestinal barrier function (claudins 2, 15, 19, and 23, tight
junction proteins 1, 2, and 3 and mucin 1) was significantly increased in the treatment group (P < 0.05 or
P < 0.01). Moreover, the proportion of Firmicutes was higher in the C. butyricum-treated group, whereas
the proportion of Proteobacteria was higher in the control group. At the genus level, the relative
abundances of Butyricicoccus and Lactobacillus, among other bacteria, were increased after C. butyricum
supplementation. The tissue staining analysis showed that the cecal mucosa of broilers was significantly
ameliorated after the addition of C. butyricum (P < 0.05 or P < 0.01). These results showed that dietary
supplementation with C. butyricum can enhance the antioxidant capacity, mucosal barrier function, and
stabilize the cecal microbiota, resulting in improving the growth performance.
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1. Introduction

The irrational use of antibiotics usually leads to animal-derived
food safety risks, ecological hazards and the development of anti-
bacterial resistance (Ang et al., 2004; Levy and Marshall, 2004).
Probiotics, prebiotics, feed enzymes, herbs, acidifiers and essential
oils, which work by interacting with gut microbes and the host
intestinal mucosa, have been the focus of published research on
antibiotic substitutes (Liu et al., 2020; Saadatmand et al., 2019; Yan
et al., 2019). The intestinal mucosa, which harbors a very large
microbial community that not only nourishes the host but also
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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enhances immunity and disease resistance, serves as a defensive
frontier (Chambers and Gong, 2011; Kau et al., 2011; Torok et al.,
2011). However, the mechanism underlying the effect of anti-
biotic substitutes on gut microbes and the intestinal mucosa re-
mains unclear.

Clostridium butyricum (C. butyricum) colonizes mainly in the
hindgut and thrives and reproduces primarily through the resid-
ual chyme digested and absorbed by the host. The digestive
enzyme system of C. butyricum can provide metabolites, particu-
larly short-chain fatty acids (SCFA), as an energy source, which can
improve the host's body weight and feed conversion efficiency
(Kong et al., 2006; Takahashi et al., 2018; Zhao et al., 2014). Me-
tabolites (enzymes, vitamins and SCFA) can also promote the
proliferation of beneficial bacteria, including Bifidobacterium and
Lactobacillus, and inhibit the growth of harmful bacteria, such as
Escherichia coli and Salmonella enteritis, thus improving the
composition of the intestinal microbiota (Zhao et al., 2020; Miao
et al., 2018; Romick-Rosendale et al., 2014; Takahashi et al.,
2004; Zhang et al., 2016). Butyric acid, a nutrient favored by in-
testinal epithelial cells, promotes the growth and development of
intestinal organs and improves the integrity of intestinal barriers
(Leeson et al., 2005; Peng et al., 2009; Wang et al., 2012; Yan and
Ajuwon, 2017). Studies have demonstrated that some probiotics
can promote restoration of the intestinal barrier integrity
damaged by pathogens and toxins (Gadde et al., 2017; Park et al.,
2020). C. butyricum decreases the production of interferon-g (IFN-
g), interleukin-1b (IL-1b), interleukin-8 (IL-8) and tumor necrosis
factor-a (TNF-a) in the liver and cecal tissue and alleviates
inflammation through the downregulation of toll-like receptor 4
(TLR4)-, myeloid differentiation factor 88 (MyD88)-, and nuclear
factor kappa B (NF-kB)-dependent pathways (Zhao et al., 2017b).
Gao et al. (2012) demonstrated that C. butyricum could prevent
enterohemorrhagic E. coli (EHEC)-induced apoptosis through the
inhibition of EHEC viability and the induction of EHEC-mediated
apoptosis. Chickens fed diets supplemented with C. butyricum
exhibit high activities of superoxide dismutase and glutathione S-
transferase, and low malondialdehyde concentrations in the liver
and intestinal mucosa, which indicates that C. butyricum has
antioxidant properties (Liao et al., 2015a, 2015c). The immuno-
globulin level in serum and the volatile fatty acid level in the cecal
digesta are increased in broilers fed a diet supplemented with
C. butyricum (Han et al., 2018). Previous studies have shown that
C. butyricum supplementation increases the intramuscular fat
levels and improves the flavor of cooked breast muscle (Liu et al.,
2018; Zhao et al., 2017a).

In recent years, C. butyricum has been widely used as an
alternative to antibiotics to promote growth performance and
nutrient utilization efficiency and thus improve the intestinal
morphology (Abdel-Latif et al., 2018; Liao et al., 2015c; Song et al.,
2006), but the underlying mechanisms, particularly the mecha-
nism through which C. butyricum improves host disease resis-
tance and production performance, are less well understood. The
composition of the intestinal microbiota is multifarious, and the
metabolic functions of intestinal epithelial cells might show dif-
ferences due to a variety of influencing factors, including the feed,
drinking water, breed, and rearing model. In-depth research on
supplementation with C. butyricum by combining 16S ribosomal
RNA (16S rRNA) gene sequencing and RNA-sequence (RNA-seq)
technology can help us better understand the precise mechanism
and guide the exploration of valuable probiotics as alternatives to
antibiotics. Therefore, the purpose of this study was to investigate
the effects of dietary supplementation with C. butyricum on the
cecal mucosa in broilers using high-throughput sequencing
techniques and histological staining (Lindner et al., 2013; Wu
et al., 2017).
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2. Materials and methods

2.1. Ethics approval and consent to participate

To ensure thewelfare of the animals, all experiments and animal
procedures were conducted strictly according to the protocols
recommended by the Institutional Animal Care and Use Committee
(IACUC) of Henan Agricultural University (permit number: 19-
0220) and the protocols supported by the regulations for animal
experiments established by the Ministry of Science and Technology
in China (2014). All the experiments and methods were designed
with the aim of minimizing animal suffering.

2.2. Experimental design, animals and management

A total of 120 one-day-old Arbor Acres (AA) broilers of similar
weight were provided by the hennery at the Henan Research Center
of Germplasm Resources for Poultry. All broilers were randomly
divided into 2 groups with 6 replicates each, and each replicate
included 10 birds. The broilers in the C. butyricum group (group B, B
stands for butyricum) were fed a basal diet supplemented with
C. butyricum F06 (1 � 109 cfu/kg). C. butyricum F06 has been
deposited in the China Center for Type Culture Collection, and the
deposition number is CCTCC M 2019962. The C. butyricum, which
was prepared in liquid, was sprayed into the basal diet while stir-
ring. The broilers in the control group (group C, C stands for control)
were fed only the basal diet. The feeding stages of AA broilers were
divided into 0 to 14 d and 15 to 28 d, which corresponds to the
nutritional requirements of chickens (NRC, 1994). The composition
and nutritional level of the basal diet, which are based on NRC
(1994) and China's feed composition and nutritional value, are
shown in Appendix Table 1. Supplementationwith C. butyricumwas
started on the 1st day. The birds were raised in cages and provided
free access to feed and water.

Previous studies have shown that the intestinal microbiota of
3- to 4-week-old AA broilers had developed to a generally stable
state (Huang et al., 2018). Therefore, in this study, C. butyricumwas
added to the feed for 4 weeks, and samples were obtained at an
age of 28 d. One broiler was randomly selected from each repli-
cate; in other words, 6 broilers (6 from the replicates of the
treatment group and 6 from replicates of the control group) were
randomly selected from each replicate for the follow-up test, and
both the treatment and control groups included 6 independent
biological replicates to avoid the influence of extreme individual
differences on the experimental data. By using the same broiler
breed (with male chickens at the same age) as well as the same
basal dietary components, feeding methods and environment, a
sampling rate of 10% would ensure high data reliability. All
broilers were maintained in accordance with appropriate guide-
lines for raising broilers. Every chicken was fed in a single cage,
and one chicken was randomly selected from each cage.

2.3. Sample collection

2.3.1. Collection of cecal epithelial cells for RNA-seq
One broiler was randomly selected from each replicate, anes-

thetized with pentobarbital sodium, and euthanized by intrave-
nous bloodletting. From each chicken, a section of the fresh cecum
was collected, washed with freshly prepared diethyl pyrocarbonate
(DEPC) water, collected in a sterile and RNase-/DNase-free EP tube
and stored at �80 �C for RNA-seq.

2.3.2. Collection of cecal contents for 16S rRNA gene sequencing
Another segment of the cecum was used for 16S rRNA gene

sequencing as soon as possible by transferring the fresh contents
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into sterile enzyme-treated EP tubes. A total of 12 samples were
used in the 16S rRNA gene sequencing study.

2.3.3. Collection of cecal tissue for Hematoxylin-eosin (HE) and
periodic acid-Schiff (PAS) staining

The intestinal tissue was fixed with 4% formaldehyde for 15 min
and stored at room temperature for tissue section staining.

2.4. Extraction and quality assessment of total RNA and DNA from
cecal tissue and library construction

Total RNA was extracted from cecal epithelial cells using the
TRIzol reagent (Invitrogen Life Technologies), and the concentra-
tion, quality and integrity were then determined using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
and an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). The
quality assessment results of RNA are shown in Appendix Table 2.
Three micrograms of RNA were used as the input material for RNA
sample preparation. Sequencing libraries were generated using the
TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA).
The sequencing library was then sequenced using a HiSeq platform
(Illumina) (Shanghai Personal Biotechnology Co., Ltd).

Total bacterial genomic DNA samples were extracted using the
Fast DNA Extraction Kit (MP Biomedicals, Santa Ana, CA, USA)
following the manufacturer's instructions and stored at �20 �C
prior to further analysis. The quantity and quality of the extracted
DNA were measured using a NanoDrop ND-1000 spectrophotom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) and by agarose
gel electrophoresis, respectively. PCR amplification of the bacterial
16S rRNA gene V3eV4 region was performed using the forward
primer (50-ACTCCTACGGGAGGCAGCA-30) and the reverse primer
(50-GGACTACHVGGGTWTCTAAT-30). The PCR conditions were as
described by Wang et al. (2020) (Shanghai Personal Biotechnology
Co., Ltd). Illumina's TruSeq Nano DNA LT Library Prep Kit was used
to prepare the sequencing library.

2.5. Bioinformatics analysis of transcriptome sequencing data

After obtaining the transcriptome sequencing data of 12 chicken
cecal epithelial cells, we used the chicken reference genome
(GRCg6a) as the reference sequence for routine transcriptome
analysis. First, raw data were filtered, and the filtered reads were
compared to the reference genome by using HISAT2 software.
Based on the comparison results, HTseq (0.11.3) software was used
to calculate the expression of each gene. On this basis, expression
difference analysis, enrichment analysis and cluster analysis were
carried out for the samples, and the relevant pictures were drawn
with the R programming language (3.6.1).

2.6. Illumina MiSeq high-throughput sequencing technology

The 16S rRNA library sequencing process was as follows: 1)
before sequencing on the computer, the library was tested using an
Agilent Bioanalyzer with an Agilent High-Sensitivity DNA Kit; 2)
the library was quantified using a Quant-iT PicoGreen dsDNA Array
Kit and a Promega QuantiFluor fluorescence quantitation system;
3) after diluting the qualified online sequencing libraries (the index
sequence was not repeatable), the samples were mixed according
to the required sequencing amounts at corresponding proportions
and transformed into a single chain by NaOH for online sequencing;
and 4) MiSeq Reagent Kit V3 (600 cycles) was used for 2 � 300 bp
sequencing. Due to the short read length of MiSeq sequencing and
to ensure the sequencing quality, the suggested optimal sequencing
length of the target fragment was 200 to 450 bp.
1107
2.7. Bioinformatics analysis of 16S rRNA gene sequencing data

The analyses of sequencing data were mainly performed using
QIIME and R packages (v3.2.0). Operational taxonomic unit
(OTU)-level alpha diversity indexes, such as the Chao1 richness
estimator, abundance-based coverage estimator (the ACE metric),
Shannon diversity index, and Simpson index, were calculated
using the OTU table in QIIME. Abundance curves ranked based on
the OTU level were generated to compare the richness and
evenness of the OTU among the samples. Beta diversity analysis
was performed to investigate the structural variations in the
microbial communities across samples using UniFrac distance
metrics. The main purpose of the beta diversity analysis was to
investigate the similarity in the community structure among
different samples. Principal component analysis (PCA) was per-
formed for the natural decomposition of the community data
structure and for sorting the samples (ordination) to observe the
differences between samples. The classification units and sam-
ples were sorted according to the clustering results and are
presented as a thermal map. Taxa at high and low abundances
could be distinguished by clustering, and the similarity in the
community composition between samples can be depicted as a
color gradient.

2.8. Verification of RNA-seq results by reverse-transcription
quantitative PCR (RT-qPCR)

To verify the accuracy of the transcriptome data, 6 genes,
including 3 significantly upregulated genes, 1 significantly
downregulated gene and 2 genes with no significant difference in
expression, were randomly selected. Primers were designed for
quantitative reverse transcription analysis using RNA as the
material for transcriptome sequencing. The primer sequences are
shown in Appendix Table 3. The RT-qPCR protocol was as follows:
One microgram of RNA was reverse transcribed to cDNA, and
qPCR were performed in a 10-mL volume containing 1.0 mL of
cDNA, 5 mL of SYBR Premix Ex Taq II (TaKaRa, Dalian, China),
0.5 mL of each primer (10 mmol/L), and 3 mL of RNase-free water. A
LightCycler96 real time PCR system was used (Roche Applied
Science, Indianapolis, IN, USA), and the amplification conditions
were as follows: 94 �C for 5 min; 35 cycles of 94 �C for 30 s, 58 �C
for 30 s, and 72 �C for 30 s; and a final 10-min extension at
72 �C... All the reactions were performed in triplicate. The gene
expression data were normalized to the reference gene using
the DDCT method, and the 2 -̂DCT values were statistically
analyzed.

2.9. HE and PAS staining

Fresh tissues were fixed with polyformaldehyde solution (4%)
for more than 24 h, and paraffin sections were then prepared and
used for HE and PAS staining. The specific methods were performed
according to the previous descriptions (Bialkowska et al., 2016;
Osho et al., 2017; Serafini et al., 2017). Microscopic examination and
image acquisition and analysis were then performed. The software
program used for the histological analysis was ImageJ (1.82u).

2.10. Statistical analysis

A completely randomized test designwas used in the study. The
significance of the difference between the means of the groups was
determined by Student's t-test. Differences with P < 0.05 (*) and
P < 0.01 (**) were considered to be significant and highly signifi-
cant, respectively. The statistical calculations used in this study
were performed using IBM SPSS Statistics (version 24.0).
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3. Results

3.1. Alpha and beta diversity in groups B and C

Many indexes (Simpson, Chao1, ACE, and Shannon) reflect the
alpha diversity of microbial communities, and an analysis of the
Simpson, Chao1, ACE, Shannon and other alpha diversity indexes of
groups B and C (Fig. 1A, B) showed that the Shannon index of group
B was significantly higher than that of group C (P ¼ 0.02). The PCA
chart (Fig. 1C) showed distinct separation between groups B and C,
and the degree of dispersion among the group B samples was less
than that among the group C samples.

3.2. Differences at the phylum and genus levels between groups B
and C

Distribution tables of the composition and abundance of each
sample at 5 levels, namely, phylum, class, order, family and genus,
were obtained using QIIME software, and the analysis results are
presented as histograms. The phylum-level analysis showed that
Firmicutes was themain phylum in both groups. The Proteobacteria
content in group C was higher than that in group B (Fig. 1D). The
community composition data at the generic level were clustered
according to the abundance distribution of the taxa or the similarity
between samples. The 50 most abundant genera were clustered
and analyzed using R software, and a heat map was drawn (Fig. 1E).
The analysis at the genus level revealed that the relative abun-
dances of Butyricicoccus and Lactobacillus, among other bacteria,
increased in response to C. butyricum supplementation.
Fig. 1. Microbial diversity of the chicken cecum. (A) Chao1 and the observed abundance-ba
component analysis (PCA) plot of the cecal microbiota in groups B and C. (D) Composition
composition of the genus-level microbiota combined with the results from the cluster analys
the control group. *, P < 0.05; NS, no significant difference.
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3.3. Differentially expressed genes

The comparison of all the genes in groups B and C identified 123
differentially expressed genes (DEG), which included 70 upregu-
lated and 53 downregulated genes (Fig. 2A, Appendix Table 4). A
cluster pattern analysis of the DEG between groups B and C is
shown in Fig. 2B, and the results indicated that DEG from each of 6
samples selected from group B or C presented a similar expression
pattern.

3.4. Verification of transcriptome sequencing results by RT-qPCR

The transcriptome data and RT-qPCR results are shown in
Appendix Fig. 1. Six genes identified by RT-qPCR were consistent
with the transcriptome data, and the fold changes were basically
the same, which indicated the consistency between the RT-qPCR
and transcriptome data.

3.5. Gene ontology enrichment analysis of the differentially
expressed genes

The 123 DEG were classified by GO annotation into 3 main
categories: biological processes, cell components and molecular
functions. The most significant GO terms obtained from the anno-
tation of the DEG were amino acid homeostasis (GO:0080144),
haptoglobin-hemoglobin complex (GO:0031838), and haptoglobin
binding (GO:0031720) (P < 0.01) (Fig. 2C). Further analysis revealed
that up to 30 entries related to transport function were found
among 336 GO terms showing significant enrichment, and some
sed coverage estimator (ACE) indexes. (B) Simpson and Shannon indexes. (C) Principal
and distribution of the microbiota at the phylum level. (E) The heat map showing the
is. B1 to B6 refer to group B, the Clostridium butyricum group; C1 to C6 refer to group C,



Fig. 2. The RNA-seq of chicken cecal epithelial cells. (A) Volcano plot of differentially expressed genes. (B) Clustering heatmap of differentially expressed genes. Each row represents
a gene, and each column is a sample. The red color indicates highly expressed genes, and the green color indicates genes showing with low expression. B1 to B6 refer to Group B, the
Clostridium butyricum group; C1 to C6 refer to Group C, control group. (C) Histogram of the Gene Ontology (GO) enrichment analysis results. The horizontal coordinate is the term of
the GO level 2 term, the vertical coordinate is the -log10(P-value) showing the enrichment of each term, and the number on the column shows the number of differential genes
enriched in each term. In each GO classification, the top 10 GO terms with the lowest P-value, i.e., the most significant enrichment, were selected for display. (D and E) The Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results. According to the KEGG enrichment analysis of the differentially expressed genes, the first 20 pathways
with the smallest P-value, i.e., the most significant enrichment, were selected for display in D. The abscissa is the name of the pathway, and the ordinate is the -log10(P-value)
showing the enrichment of each pathway; the number of genes in the column shows the number of differentially expressed genes enriched in the pathway (E).
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functions that related to transport function, cell viability and de-
fense response were also significantly enriched (P < 0.05 or
P < 0.01) (Appendix Table 5).

3.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of differentially expressed genes

KEGG taxonomic annotation of the DEG was performed. As
shown in Fig. 2D and Appendix Table 6, 123 DEG were annotated
in 5 one-level KEGG hierarchies: metabolism, environmental
information processing, organismal systems, cellular processes
and human diseases. Further KEGG enrichment analysis identi-
fied the first 20 KEGG pathways, as shown in the scatter plots in
Fig. 2E. According to the graph, the most prominent KEGG
pathways were vitamin B6 metabolism, the apelin signaling
pathway, adrenergic signaling in cardiomyocytes, histidine
metabolism, other types of O-glycan biosynthesis, the calcium
signaling pathway, amino acid metabolism (alanine, tyrosine,
1109
tryptophan, arginine, proline, valine, leucine and isoleucine) and
metabolism of other vitamins (nicotinate, nicotinamide, and
retinol).

3.7. Expression level of tight junction protein (TJP)-related genes in
cecal epithelium cells

In this study, the relative expression levels of claudins 2, 15, 19,
and 23, TJP1, TJP2, and TJP3 and mucin 1 in the chickens fed
C. butyricum were significantly higher than those in the control
group (P < 0.05 or P < 0.01); in contrast, claudin 20 expression was
significantly lower in the C. butyricum-fed chickens than that in the
control group (P ¼ 0.013). No significant difference in the relative
expression of other genes associated with tight junctions (TJ),
occludin, cingulin, vinculin, hepatocyte nuclear factor 4 alpha
(HNF4A, a transcription regulator that acts on occludin) (P ¼ 0.176)
and vascular endothelial growth factor A (VEGFA, a cytokine that
indirectly regulates TJ) (P ¼ 0.652) was found (Appendix Table 7).
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3.8. Results of HE and PAS staining

The HE staining results showed that the intestinal gland depth,
mucosal layer thickness andmuscle layer thickness in group Bwere
significantly higher than those in group C (P < 0.05 or P < 0.01)
(Fig. 3A, B, C and Fig. 4). The PAS staining results revealed a
significantly higher number of goblet cells in group B than in group
C (P < 0.05 or P < 0.01) (Fig. 3D, E, F and Fig. 4).

3.9. Analysis of the performance of broilers

The analysis of broiler performance (Table 1) showed that the
body weight of group B was significantly higher than that of group
C on d 14 and 28 (P< 0.05 or P< 0.01), the total feed consumption of
group B (total 28 d) was not significantly different to that of group C
(P ¼ 0.204), and the FCR (28th day) of group B was 1.57, which was
lower than that of group C (1.72).

4. Discussion

This study aimed to investigate the probiotic effects of
C. butyricum on the cecal mucosa in broilers. The abundance of
transport function-related terms indicates that cecal epithelial
cells underwent marked improvements in metabolite transport
and thus in growth performance. GO:0031720 (haptoglobin
binding), GO:004601 (peroxidase activity), GO:0016684
Fig. 3. Indexes for epithelial cells of the cecal mucosa. (A) Intestinal gland depth of the ce
Number of goblet cells. (E) Length of goblet cells. (F) Density of goblet cells. B refers to grou
P < 0.01.
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(oxidoreductase activity), GO:0016209 (antioxidant activity) and
GO:0047730 (carnosine synthase activity) are GO terms related
to antioxidant capacity, and the GO terms GO:0042742 (defense
response to bacterium) and GO:0050832 (defense response to
fungus) are related to defense functions through the upregula-
tion of avian beta-defensin 4 (AvBD4). The significant enrichment
of antioxidant activity-, metabolism- and transport-related terms
demonstrates that probiotics can improve the antioxidant ca-
pacity, disease resistance and growth performance of the host
(Liao et al., 2015b; Yang et al., 2012; Zhang et al., 2014).

The analysis of the KEGG categories revealed that vitamin,
amino acid and O-glycan biosynthesis were the most enriched
metabolic pathways. C. butyricum ferments in the cecum and thus
provides a large number of SCFA, amino acids, vitamins and other
metabolites to the host (Kuroiwa et al., 1990; Yang et al., 2012).
These abundant nutrients are transported into epithelial cells of
the cecal mucosa through the upregulation of carrier genes, such
as solute carrier family 7 member 11 (SLC7A11), low-density li-
poprotein-related protein 2 (LRP2), translocator protein 2 (TSPO2),
hemoglobin subunit mu (HBM), hemoglobin subunit alpha 1
(HBA1) and ENSGALG00000050921 (very-long-chain fatty acid-
CoA ligase activity), which might shed light on the mechanisms
through which dietary supplementation with C. butyricum can
improve growth performance (Table 1). C. butyricum and its me-
tabolites enhance the antioxidant and antistress capacity of
broilers through the upregulation of ENSGALG00000043254
cum. (B) Myometrial thickness of the cecum. (C) Mucosal thickness of the cecum. (D)
p B, the Clostridium butyricum group; C refers to group C, control group. *, P < 0.05; **,



Fig. 4. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining of epithelial cells of the cecal mucosa. Group B means the C. butyricum group. Group C means the control
group.

Table 1
Body weight, feed consumption and feed conversion ratio of the Clostridium
butyricum group and control group.

Item Group B1 Group C2 P-value3

Body weight, g
d 1 56.57 ± 1.04 57.09 ± 1.00 0.516
d 14 657.11 ± 12.21 596.47 ± 18.62 0.016
d 28 2,004.99 ± 43.75 1,808.37 ± 22.73 <0.01

Feed
consumption, g
Total 14 d 769.21 ± 15.32 765.67 ± 13.65 0.725
Total 28 d 3,061.60 ± 35.47 3,017.28 ± 37.29 0.204

FCR
d 28 1.57 1.72 e

FCR ¼ feed conversion ratio.
1 Group B means the C. butyricum group.
2 Group C means the control group.
3 P > 0.05 indicates a non-significant difference; P < 0.05 indicates a significant

difference; P < 0.01 indicates a highly significant difference.
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(eosinophil peroxidase, EPX) and ENSGALG00000044760 (dioxy-
genase), as well as ENSGALG00000043435 (carnosine synthase 1,
CARNS1), which catalyzes the conversion of beta-alanine, argi-
nine, proline and histidine to carnosine and anserine. Enhanced
immune function and reduced inflammation were obtained by
upregulation of the genes ENSGALG00000043254 (EPX), ENS-
GALG00000044631 (B cell activation) and ENSGALG00000048617
(T cell activation) and downregulation of the gene ENS-
GALG00000027887 (C1q and tumor necrosis factor-related pro-
tein 3), which are related to the production of IL-6 and TNF-a
(Kopp et al., 2010). However, consistent with other reports (Chen
et al., 2018; Lee et al., 2014), the mRNA levels of proinflammatory
cytokines (IFN-g) showed no clear differences between the 2
groups under normal physiological conditions. According to pre-
vious reports (Hamer et al., 2008; Takahashi et al., 2018),
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C. butyricum produces beneficial products, such as butyric acid, in
the intestine, and the use of these products as vital energy sources
promotes the turnover and viability or repair of intestinal
epithelial tissue. The cecum experiences high levels of stress and
uses various strategies, including controlled apoptosis, for main-
tenance of an optimal barrier, particularly by enrichment of the
Hedgehog signaling pathway, which is important for the control
of cecum homeostasis (Chen et al., 2018). Apelin is an endogenous
peptide capable of binding the apelin receptor (APJ), which is
widely expressed in various tissues and organ systems. Apelin
signaling pathways have been implicated in different key physi-
ological processes, such as angiogenesis, cardiovascular function,
cell proliferation and energy metabolism regulation. The KEGG
pathways associated with the apelin signaling pathway were
significantly enriched by C. butyricum (P ¼ 0.024).

The monolayer intestinal epithelium is a physical barrier against
invading intraluminal pathogens and toxins. The tight junctional
complexes that span the extracellular space to interact with adja-
cent epithelial cells consist of TJ, gap junctions, adherens junctions,
and desmosomes, which maintain the integrity of the epithelial
barrier by regulating the paracellular permeability (Takuya and
Suzuki, 2013). Tight junctions include occludin, claudins, junc-
tional adhesion molecules, and tricellulin, which are trans-
membrane proteins (Chiba et al., 2008). The intracellular domains
of these proteins interact with cytosolic scaffold proteins such as
zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), zonula
occludens-3 (ZO-3), and cingulin, which in turn bind to the acto-
myosin cytoskeleton (Cordenonsi et al., 1999). The extracellular
loop domains interact with similar adjacent cells, which can be
grouped into 2 categories: “seal” and “pore” functions (Westphal
et al., 2010). The effect of C. butyricum on TJP in a healthy cecal
barrier has not been reported. TJ form a multimolecular complex
that regulates the paracellular permeability of intestinal epithelial
cells. The interactions among TJP are essential for the assembly and
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maintenance of the TJ barrier integrity. The TJ complex exhibits a
dynamic response to stimuli such as proinflammatory cytokines,
LPS or pathogen infection and undergoes constitutive injury and
remodeling (Wageha et al., 2017). Probiotics reportedly alleviate
the downregulation of intestinal TJP caused by a variety of factors
(Anderson et al., 2010; Chang et al., 2019; Song et al., 2014). The
relative expression of TJP (claudins 2, 15, 19, and 23, TJP1, 2, and 3
and mucin 1) in the cecal mucosa was significantly increased in
chickens fed a diet supplemented with C. butyricum (P < 0.05 or
P < 0.01), but the expression of claudin 20was significantly lower in
the C. butyricum-fed chickens than in the control group (P ¼ 0.013).
In addition, no significant difference in the relative expression of
other genes, occludin, cingulin, vinculin and hepatocyte nuclear
factor 4 alpha (HNF4A, a transcription regulator that acts on
occludin) or vascular endothelial growth factor A (VEGFA, a cyto-
kine that indirectly regulates TJ) associated with TJ was found
(P¼ 0.625). The role of each TJP in intestinal barrier formation is not
entirely clear. The causal relationship between dynamic properties
and the molecular mechanisms that underlie the functional prop-
erties of TJ need to be explored.

The HE and PAS staining analysis showed that the mucosal
layer acts as a protective barrier of the intestine by blocking
pathogen invasion and preventing the entry of harmful sub-
stances into the intestinal mucosa, which indicates the complex
interplay among the mucus composition, microbiota and intesti-
nal health (Elderman et al., 2017). Mucin secreted by goblet cells
plays a significant role in protection against irritating substances
and harmful bacteria. Moreover, mucin, as a nutrient source,
provides a colonization “niche” for growing probiotics to adhere
to mucous membranes (Duritis and Mugurevics, 2016; Montagne
et al., 2004; Ventura et al., 2013; Wang and Peng, 2008). Mature
mucin needs large amounts of sulfur-containing amino acids and
sugar chains. Transcriptome sequencing showed significant
enrichment of O-glycan biosynthesis (ST6GAL2) and the sulfur
amino acid metabolic process (SLC7A11), which was consistent
with a previous result (Struwe et al., 2015). The HE and PAS
staining analysis showed that C. butyricum can increase the
number and density of goblet cells, which further reveals the vital
role of C. butyricum in disease resistance.

In addition to its effects on the intestinal mucosa, some studies
have indicated that dietary supplementation with C. butyricum also
exerts an effect on the intestinal microbiota (Liu et al., 2018; Sun
et al., 2016). In this study, the 16S rRNA gene sequencing of the
cecal contents of 28-d-old broilers showed that the Shannon index of
the C. butyricum-treated group was significantly higher than that of
the control group (P ¼ 0.02). The diversity of the intestinal micro-
biota serves as the foundation for digestion, nutrient uptake, health
maintenance, intestinal physiological functions, and promotion of
intestinal immune system development in animals (Xu et al., 2016).
Moreover, the beta diversity results showed a distinct separation,
and the degree of dispersion among the broilers fed C. butyricumwas
lower than that among the control broilers, which indicates that the
similarity of the microbial communities among the group B samples
was high and showed little difference. These results suggest that
broilers fed C. butyricum exhibit high intestinal microbial diversity
and stable microbial community structures (Choi et al., 2018; Huang
et al., 2018). The phylum-level classification revealed that Firmicutes
was the dominant phylum in both groups. The Proteobacteria con-
tent in group C was higher than that in group B. Further analysis of
the microbiota at the genus level revealed that the relative abun-
dances of the probiotics Butyricicoccus, Lactobacillus, and Blautia,
among others, in group B were higher than those in group C. This
finding might have been obtained because the metabolites of
C. butyricum can promote the proliferation of Bifidobacterium and
Lactobacillus (Kong et al., 2011; Miao et al., 2018; Zhan et al., 2019),
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and C. butyricum can produce butyric acid, which can reduce the
intestinal pH and inhibit the proliferation of harmful bacteria (Gao
et al., 2013; Kong et al., 2011; Zhao et al., 2020).

5. Conclusions

Overall, the results of the present study indicated that dietary
supplementation with C. butyricum can be beneficial for intestinal
health (gut microbiota and intestinal mucosal function) and can be
used to enhance disease resistance and antioxidant stress in animal
production.
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