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Precise subcellular localization of proteins is the key to elucidating the physiological role of
these molecules in malaria parasite development, understanding of pathogenesis, and
protective immunity. In Plasmodium falciparum, however, detection of proteins in the
blood-stage parasites is greatly hampered by the lack of versatile protein tags which can
intrinsically label such molecules. Thus, in this study, to develop a novel system that can
be used to evaluate subcellular localization of known and novel proteins, we assessed the
application of AGIA tag, consisting of 9 amino acids (EEAAGIARP), in P. falciparum blood-
stage parasites. Specifically, AGIA-tagged ring-infected erythrocyte surface antigen
(RESA-AGIA) was episomally expressed in P. falciparum 3D7 strain. The RESA-AGIA
protein was detected by Western blotting and immunofluorescence assay (IFA) using
recombinant rabbit anti-AGIA tag monoclonal antibody (mAb) with a high signal/noise
ratio. Similarly, AGIA-tagged multidrug resistance protein 1 (MDR1-AGIA), as an example
of polyptic transmembrane protein, was endogenously expressed and detected by
Western blotting and IFA with anti-AGIA tag mAb. Immunoelectron microscopy of the
RESA-AGIA transfected merozoites revealed that mouse anti-RESA and the rabbit anti-
AGIA mAb signals could definitively co-localize to the dense granules. Put together, this
study demonstrates AGIA tag/anti-AGIA rabbit mAb system as a potentially useful tool for
elucidating the subcellular localization of new and understudied proteins in blood-stage
malaria parasites at the nanometer-level resolution.

Keywords: malaria, Plasmodium falciparum, AGIA tag system, organelle, immunoelectron microscopy
INTRODUCTION

Plasmodium falciparum is the most virulent parasite among five Plasmodium species that cause
human malaria. Merozoites, one of the parasite invasive forms, deploys a variety of proteins to
support its cyclic invasion and egress from human erythrocytes (Cowman et al., 2017; Matz et al.,
2020). Thus, to understand the biology, pathogenesis, and protective immunity, and also develop
Abbreviations: mAb, monoclonal antibody; PBS, phosphate buffered saline.
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effective intervention tools, in-depth characterization of the key
parasite proteins that malaria parasites deploy to invade and
develop within the host cells is needed.

Merozoite apical organelles such as rhoptries, micronemes,
and dense granules are of major interest in understanding
parasite development since they have important roles in
merozoite invasion of erythrocytes (Cowman et al., 2017).
However, the diminutive nature of the rhoptries (with a
diameter of 330–570 nm), micronemes (40–100 nm), and
dense granules (120–140 nm) (Torii et al., 1989) in merozoite
(1 µm) makes them difficult to study with conventional confocal
laser scanning microscopy which has >200 nm resolution.
Immunoelectron microscopy (IEM) with a resolution of <1 nm
is therefore required to investigate the subcellular localization of
the parasite molecules in merozoites. However, in addition to
challenges related to generation of quality antibodies against
malaria parasite antigens, the harsh sample processing
conditions for IEM such as fixation, dehydration and
embedding steps may disrupt target epitopes, and consequently
loss of reactivity to polyclonal antigen-specific and/or
monoclonal antibodies used for probing. To overcome these
limitations, transgenic parasites expressing target proteins fused
with protein tags such as hemagglutinin (HA), c-Myc, V5, or
green fluorescent protein (GFP) have been used in several studies
(Downie et al., 2010; Dastidar et al., 2012; Tokunaga et al., 2019;
Raj et al., 2020).

However, one study revealed that the GFP tag could influence
STEVOR localization (Wichers et al., 2019) but not K13 which
was affected by 3 × HA tag (Gnädig et al., 2020). Although small
peptide tags of approximately 8–12 amino acids are mostly
desired since they do not affect the characteristics of the target
protein such as folding or protein–protein interactions (Waugh,
2005), in most studies, long peptides such as GFP or multiple
repeats of the short tags have been used to improve reactivity to
anti-tag antibodies. For instance, 3 × HA consisting of 27 amino
acids, or spaghetti-monster tags with 10 copies of HA
(Viswanathan et al., 2015), Myc (Hortua Triana et al., 2018),
V5 (Rudlaff et al., 2019) or GFP (Viswanathan et al., 2015)
are large peptide tags with the potential of influencing
the native characteristics of target molecules. In addition, anti-
tag antibodies used for detection of tagged molecules in
transgenic parasites are generally less reactive in IEM than in
immunofluorescence assay (IFA). As an exception, in P.
falciparum, a double c-Myc-tagged targets could be detected by
rabbit anti c-Myc polyclonal antibody in IEM, however, this
antibody is no longer commercially available (Tokunaga et al.,
2019). Moreover, some commercially available antibodies against
the tags cross-react with parasite and host proteins, and/or have
poor reactivities, while lot-to-lot variation in reactivities and
specificities of polyclonal antibodies can also be an issue
[reviewed in (Voskuil, 2014)]. Therefore, additional versatile
protein tag options that are compatible with different
molecules of interest while averting artificial effects are needed.

We recently developed the AGIA tag that contains 9 amino
acids (EEAAGIARP) derived from the human dopamine
receptor D1 (DRD1) (Yano et al., 2016). The AGIA tag has
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several advantages, namely, it is shorter than most protein tags,
and free from amino acid residues susceptible to post-
translational modification, and importantly, a rabbit mAb with
very high affinity to the tag (Kd = 4.9 × 10−9 M) is established
(Yano et al., 2016). In this study, we sought to investigate the
applicability of the AGIA tag system to explore the
ultrastructural localization of important P. falciparum
merozoite proteins towards understanding their roles in
parasite development and malaria pathogenesis.
MATERIALS AND METHODS

P. falciparum Culture
P. falciparum 3D7 strain was a kind gift from the National
Institute of Allergy and Infectious Diseases (NIAID) and
cultured with type-O human erythrocytes at a hematocrit of
2% in RPMI 1640 media (Thermo Fisher Scientific, Waltham,
MA, USA) and supplemented with 5% type-AB human serum,
0.25% Albumax II (Thermo Fisher Scientific), 200 mM
hypoxantine (Sigma, St. Louis, MO, USA), and 10 mg/ml
gentamicin (Invitrogen, Carlsbad, CA, USA) as previously
described (Morita et al., 2018). The culture flask was filled with
mixed gas (5% CO2, 5% O2, and 90% N2).

AGIA Tag Expression in P. falciparum
Episomal Expression of RESA-AGIA
To examine the usage of the AGIA tag system and eventually for
IEM colocalization, AGIA-tagged RESA (RESA-AGIA) was
episomaly expressed in P. falciparum. A DNA fragment
encoding full length of RESA (PF3D7_0102200: amino acids
(aa) M1–E1,085) was amplified by PCR from cDNA derived from
schizont-rich blood-stage P. falciparum 3D7 strain using primers
RESA-F and RESA-R (Table S1). The sequence encoding AGIA
tag (EEAAGIARP) was included in the RESA-R primer
(underlined). Pfef1a-5’UTR-pD3HA (Nozawa et al., 2020) was
digested by SalI and NcoI to prepare linearlized Pfef1a-5’UTR-
pD plasmid without 3 × HA coding sequence. The amplified
resa-agia DNA was inserted to the Pfef1a-5’UTR-pD by using
In-Fusion HD Cloning Kit (Clontech Laboratories, Mountain
View, CA, USA) to prepare Pfef1a-5’UTR-pD-RESA-AGIA
(Figure 1A). For transfection with Pfef1a-5’UTR-pD-RESA-
AGIA, the plasmid was pre-loaded into human erythrocytes in
a 2 mm cuvette using a Gene Pulser Xcell Electroporation System
(Bio-Rad, Hercules, CA, USA) with the conditions of 0.31 kV,
950 mF, and ∞W (Deitsch et al., 2001). P.falciparum 3D7
parasites (the parasitemia was 0.1%) were cultured with the
pre-loaded erythrocytes for 4 days. After 4 days, the parasites
were subsequently cultured with drug pressure of 2.5
nM WR99210.

AGIA-Tag Knock-In by CRISPR/Cas9
To generate AGIA-tagged multidrug resistance protein 1
(MDR1; PF3D7_0523000) endogenously expressing parasites
(MDR1-AGIA), we performed CRISPR/Cas9 genome editing
by co-transfection of the plasmids expressing both Cas9 and
December 2021 | Volume 11 | Article 777291
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sgRNA (Cas9/sgRNA plasmid) and the linear donor DNA as
previously described with some modifications (Mohring et al.,
2019; Nishi et al., 2021). All the primers used are shown in Table
S1, and the steps used are illustrated in Figures 3A, B.

pCas9-U6-hycen plasmid, a centromere plasmid with the
Cas9 expression cassette and the sgRNA expression cassette,
was generated. Specifically, cas9-expressing centromere plasmid
pfcas9 (Payungwoung et al., 2018) was modified by replacing the
bsd (blasticidin-S deaminase) expression cassette with hdhfr-
yfcu expression cassette and adding the PfU6-driven sgRNA
expression cassette using In-Fusion HD cloning kit, resulting in
the pCas9-U6-hycen. Then, potential guide 20 bp RNA
sequences were identified using ChopChop program (https://
chopchop.cbu.uib.no) considering high efficiency and the
absence of mismatched sequence to limit possibility of off-
target cleavage. A pair of complementary oligonucleotides were
annealed and ligated into the BsmBI-cut pCas9-U6-hycen as
previously described (Nishi et al., 2021). The resultant plasmid
was used for genome editing as Cas9/sgRNA plasmid. Next, a
linear donor DNA was generated by overlap PCR approach as
previously described (Nishi et al., 2021). The donor DNA
consisted in C-terminal regions of mdr1, AGIA-coding
sequence and 3’UTR of mdr1. Point mutations in the PAM
(Protospacer adjacent motif) sequence and guide RNA sequence
to prevent re-cleavage by the Cas9–sgRNA complex were
introduced in C-terminal region of mdr1 within the donor DNA.

Cas9/sgRNA plasmid and the linear donor DNA were mixed
in P3 primary cell solution (Lonza, Basel, Switzerland) and used
immediately to transfect tightly synchronized schizonts using
FP158 program in Nucleofector-4D (Lonza). The electroporated
parasites were incubated for one day under the standard culture
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
conditions, then pyrimethamine drug (25 ng/ml) pressure
selection was applied for ten days starting one day after
transfection. The MDR1-AGIA parasite clones were isolated by
limiting dilution.

Antibody Production
Rabbit antisera to the synthetic peptide derived from the C-
terminal region of chloroquine resistance transporter protein
(PfCRT; PF3D7_0709000 K401–C419, KKMRNEENEDSEGE
LTNVDC, with an additional carboxy-terminal cysteine)
conjugated with keyhole limpet hemocyanin (KLH) carrier
protein (Fidock et al., 2000) was commercially procured (Cosmo
Bio, Tokyo, Japan). Specifically, a rabbit received a total of three
immunizations with Freund Complete and Incomplete adjuvant
in a 2-week interval. The antisera were collected 7 days after the
last immunization.

Rabbit mAb against AGIA was prepared as previously
described (Yano et al., 2016). Briefly, the antibody was
expressed using the Expi293F Expression System (Thermo
Fisher Scientific) according to the manufacturer’s instruction,
following subcloning of anti-AGIA antibody heavy and light
chains cDNAs (Takeda et al., 2015) into the pcDNA3.4
expression vector. The secreted mAb was purified from the
culture medium using protein G sepharose 4 Fast Flow (GE
Healthcare), and the buffer was exchanged using a PD-10
column. A mouse mAb against RESA was a kind gift from
Prof. Robin F. Anders.

Western Blotting
Purified schizont-rich parasite pellets of different clones were
prepared by Percoll/sorbitol method as previously described
A B

FIGURE 1 | Episomal expression of RESA-AGIA in P. falciparum blood-stage parasites. (A) Schematic representation of plasmid for episomal expression of RESA-
AGIA. Resa-agia gene was designed to be expressed under the control of Pfef1a promoter. hdhfr (human dihydrofolate reductase) gene was set for a drug selection
cassette by WR 99210. (B) Reactivity of rabbit anti-AGIA mAb against RESA-AGIA expressing parasite. Schizont-rich parasite lysate was prepared as described
(Morita et al., 2018). The schizont-rich parasite lysate was examined by Western blotting (WB) under reducing conditions probed with rabbit anti-AGIA mAb (Left).
The stripped membrane was re-probed with mouse anti-HSP70 mAb as a loading control (Right). 1 × 107 cells of 3D7 parasite (Lane 1) and 1 × 107 cells of RESA-
AGIA parasite (Lane 2) were loaded in each lane. Three independent experiments were carried out, and representative results were presented.
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(Arumugam et al., 2011), then lysed in Laemmli sample buffer
(Bio-Rad) supplemented with 2.5% (v/v) b-mercaptoethanol. For
each clone, the lysate was boiled at 95°C for 5 min, centrifuged at
10,000×g for 10 min at 4°C, then the supernatant was collected.
The samples corresponding to 1 × 107 parasites were resolved in
12.5% e-PAGEL (ATTO, Tokyo, Japan) by SDS-PAGE. The
resolved proteins were electroblotted on a polyvinylidene
difluoride membrane, followed by a blocking step with 5%
(w/v) non-fat milk. The membranes were incubated with
rabbit anti-AGIA mAb (10 mg/ml) as primary antibody. After
washing, it was incubated with ECL peroxidase labeled anti-
rabbit antibody (GE Healthcare) diluted at 1:10,000 for
detection, and visualized with Immobilon Western
Chemiluminescent HRP Substrate (Millipore, Billerica, MA) on
a LAS 4000 Mini luminescent-image analyzer (GE Healthcare).
The RESA-AGIA membrane was stripped with 25 mM glycine–
HCl, pH 2.0, 1% (w/v) SDS and re-blocked with 5% non-fat milk,
followed by incubation with mouse anti-HSP70 mAb (1:100).
The parasite HSP70 signal as a loading control was detected by
incubation with ECL peroxidase labeled anti-mouse antibody
(GE Healthcare) diluted at 1:10,000 and captured as above. In the
case of MDR1, parallel membranes were prepared; one was
probed with rabbit anti-AGIA mAb as above to detect MDR1-
AGIA signal, and the other was probed with rabbit anti-PfCRT
antibodies (1:1,000) as a loading control and detected by ECL
peroxidase labeled anti-rabbit antibody (GE Healthcare).

Indirect Immunofluorescence Assay (IFA)
Parasites were synchronized by Percoll/sorbitol treatment and
used to prepare schizont-rich blood-smears which were stored at
−80°C until use. The blood-smears were fixed with 4%
paraformaldehyde in PBS, permeabilized with 0.1% Triton X-
100, and blocked with PBS containing 5% non-fat milk at 37°C
for 30 min. The slides were then incubated with rabbit anti-
AGIA mAb (10 µg/ml) and co-stained with mouse anti-AMA1
antiserum (1:100 dilution) as a microneme marker (Ito et al.,
2013), mouse anti-RAP1 antiserum (1:2,000 dilution) as a
rhoptry body marker (Ito et al., 2013), or mouse anti-EXP2
antiserum (1:1,000 dilution) (Morita et al., 2018) as a dense
granule marker at 37°C for 1 h, followed by incubation with
Alexa 488-conjugated goat anti-rabbit IgG and Alexa Fluor 568-
conjugated goat anti-mouse IgG (Invitrogen) as secondary
antibodies (1:1,000 dilution) at 37°C for 30 min (Morita et al.,
2018). Nuclei were stained with 4’, 6-diamidino-2-phenylindole
(DAPI, 4 µg/ml) (Dojindo, Kumamoto, Japan) or Hoechst 33342
(1 µg/ml) (Molecular Probes, Eugene, OR, USA). The slides were
mounted in ProLong Glass Antifade reagent (Invitrogen) and
observed using a confocal laser scanning microscope LSM 710
(Carl Zeiss MicroImaging, Thornwood, NY, USA).

Immunoelectron Microscopy (IEM)
Tightly synchronized mature schizonts were isolated as
previously described (Boyle et al., 2010). The parasite-infected
erythrocytes were fixed with 1% paraformaldehyde/0.2%
glutaraldehyde, embedded in LR White resin (Polysciences,
Washington, PA, USA), and ultrathin sections were
immunostained as described (Iriko et al., 2018). Specifically,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
rabbit anti-AGIA mAb (10 µg/ml) and mouse anti-RESA mAb
(1:1,000 dilution) were used as primary antibodies. For single
staining, goat anti-rabbit IgG conjugated with 15 nm Gold (BBI
Solutions, Crumlin, UK) or anti-mouse IgG conjugated with 15
nm Gold (BBI Solutions) was used at a dilution of 1:40 as
secondary antibodies. For double staining, goat anti-rabbit
IgG conjugated with 15 nm Gold and anti-mouse IgG
conjugated with 10 nm Gold (BBI Solutions) were used at a
dilution of 1:40 as secondary antibodies. Samples were examined
with transmission electron microscope (JEM-1230; JEOL,
Tokyo, Japan).
RESULTS

AGIA Tagged RESA Can Be Episomally
Expressed in Transfected P. falciparum
Parasite
Since RESA was the first, and is the most studied merozoite dense
granule protein which translocates to the ring-infected
erythrocyte membrane as observed by confocal laser scanning
microscopy and IEM (Culvenor et al., 1991) when probed with
mouse anti-RESA mAb, we sought to exploit RESA to assess the
usability of the AGIA tag in parasite biology studies. Specifically,
we assessed co-localization analysis by IEM using rabbit anti-
AGIA mAb and mouse anti-RESA mAb in small organelles,
dense granules. First, P. falciparum 3D7 parasites transfected
with Pfef1a-5’UTR-pD-RESA-AGIA plasmid (Figure 1A), were
maintained under drug pressure for constitutive expression of
AGIA tagged RESA (RESA-AGIA). The expression of RESA-
AGIA under the control of Pfef1a, a constitutive expression
promoter, was assessed by Western blot probed with anti-AGIA
mAb. RESA-AGIA was detected at approximately 155 kDa
(Figure 1B, left panel lane 2). A similar signal was detected
when a parallel blot was probed with anti-RESA mAb
(Supplementary Figure 1). We also observed an additional
~25 kDa band in both blots suggesting it could be a fragment
of degraded RESA. As a control, no signal of anti-AGIA mAb
was detected in the non-transfected control parasite infected
erythrocytes (Figure 1B, left panel lane 1). The membrane was
further re-probed with mouse mAb against the constitutively
expressed house-keeping protein, HSP70 (Figure 1B, right
panel). The observed intensity of the HSP70 signals indicated
comparable quantities of parasites were loaded in both lanes.
These results indicate that the rabbit anti-AGIA mAb has
negligibly low nonspecific reactivity with control 3D7 parasites.

The RESA-AGIA Signal Overlaps With That
of EXP2 in Asexual Blood-Stage Parasites
To further examine the reactivity and specificity of rabbit anti-
AGIA mAb against P. falciparum parasites expressing RESA-
AGIA, an indirect immunofluorescence assay (IFA) was
performed. Since the AGIA tag was fused with RESA, it was
expected that RESA-AGIA would accumulate in the merozoite’s
dense granules as endogenous RESA, and translocate to the
ring-infected erythrocyte membrane (Culvenor et al., 1991).
December 2021 | Volume 11 | Article 777291
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In schizonts stage parasites, fluorescent signals of anti-AGIA
were detected as punctate pattern in each merozoite, and the
signals overlapped with those of EXP2 (Pearson correlation
coefficient (r) = 0.84) which is known to localize in the dense
granules, and neither with anti-AMA1 (microneme; r = 0.73) nor
anti-RAP1 (rhoptry; r = 0.69) (Figure 2A). In addition, anti-
RESA mAb showed signals overlapped with anti-AGIA (r =
0.91). These results suggest that, as expected, episomally
expressed RESA-AGIA was successfully translocated to the
dense granules in merozoites. In the wild-type 3D7 parasites,
there were no fluorescent signals of anti-AGIA (Figure 2A, 3D7).
We further demonstrated that RESA-AGIA is also secreted to the
erythrocyte cytosol and accumulated around the infected
erythrocyte membrane during ring and trophozoite stage
infection (Figure 2B) in a manner similar to endogenous
RESA in the wild-type 3D7 parasites (Riglar et al., 2013). This
data demonstrated that rabbit anti-AGIA mAb has specific
reactivities with high signal/background ratio against human
erythrocytes infected with AGIA tag-expressing 3D7 parasites.

Endogenously Expressed Knock-In AGIA
Tag is Detectable in Trophozoite Stage
Next, to demonstrate the usability of the AGIA tag system for the
evaluation of endogenously expressed parasite proteins, we
generated knock-in parasite with the AGIA tag fused to C-
terminus of MDR1 (MDR1-AGIA) by CRISPR/Cas9.
Generally, it is difficult to produce specific antibodies against
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
polytopic transmembrane proteins. MDR1, an ATP-binding
cassette (ABC) protein family member that localizes to the
food vacuole membrane in trophozoites (Cowman et al., 1991),
was therefore assessed as the representative of such proteins in
malaria parasites. MDR1-AGIA parasite was generated by co-
transfection of the plasmid expressing both Cas9 and sgRNA
(Cas9/sgRNA plasmid) and the linear donor DNA (Mohring
et al., 2019) (Figures 3A, B). Endogenous expression of AGIA
tag in MDR1-AGIA parasites was detected by Western blotting
at approximately 150 kDa (Figure 3C), consistent with the
predicted molecular weight of MDR1 (https://plasmodb.org/
plasmo/app) and in published literature (Cowman et al., 1991).
PfCRT was assessed as a loading control. By IFA of trophozoite
stage parasites using AGIA mAb, MDR1-AGIA was detected in
close proximity of the dark mass representing hemozoin that is
located in food vacuole (Figure 3D) as previously observed
(Cowman et al., 1991). The signal/background ratio observed
by Western blotting and IFA was comparable to that of RESA-
AGIA analysis. These results indicate that the AGIA tag does not
affect the processing and translocation of tagged proteins, RESA
and MDR1.

AGIA Tagged RESA Localizes to the
Dense Granule by Immunoelectron
Microscopy
To further investigate the precise location of RESA-AGIA in
merozoites, we performed IEM with mature schizonts form of
A B

FIGURE 2 | Indirect immunofluorescence assay of RESA-AGIA expressing parasites. (A) Blood smears for schizont stage of RESA-AGIA expressing parasites were
co-stained with rabbit anti-AGIA mAb and mouse anti-AMA1 polyclonal antibodies (a microneme marker), mouse anti-RAP1 polyclonal antibodies (a rhoptry marker),
mouse anti-EXP2 polyclonal antibodies (a dense granule marker), or mouse anti-RESA mAb. Pearson correlation coefficient values (r) shown in the merged panels
were calculated using Zen 2010 software (Carl Zeiss MicroImaging). Scale bars indicate 5 mm. 3D7 wild-type parasite was used as a negative control. Two
independent experiments were carried out, and representative results were presented. (B) RESA-AGIA expressing parasites at ring and trophozoite stages were co-
stained with rabbit anti-AGIA mAb and mouse anti-RESA mAb. Scale bars indicate 5 mm. Three independent experiments were carried out, and representative
results were presented.
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RESA-AGIA parasites by staining with the rabbit anti-AGIA
mAb, and goat anti-rabbit antibody conjugated with 15-nm gold
particles as secondary antibody. Gold particles corresponding to
the AGIA tag were detected in the dense granules of the
merozoites (Figure 4A, left). No gold particles were observed
in the merozoites of the wild-type 3D7 control parasites
(Figure 4A, right). The IEM using wild-type 3D7 parasite
stained with anti-RESA mouse mAb revealed that the gold
particles were specifically localized in the dense granules
(Figure 4B), consistent with a previous study showing
endogenous RESA localization in the dense granules (Culvenor
et al., 1991). Finally, to confirm the dense granules colocalization
of the episomal RESA-AGIA and endogenous RESA, the RESA-
AGIA parasites were stained with both anti-AGIA rabbit mAb
and anti-RESA mouse mAb, and then co-labeled using anti-
rabbit IgG antibodies conjugated with 15-nm gold and anti-
mouse IgG conjugated with 10-nm gold. As expected, both 15-
nm and 10-nm gold particles were detected in the dense granules
(Figure 4C and inset). These results suggested that AGIA tag-
fused RESA could be translocated as native endogenous RESA
further confirming that the AGIA tag did not alter this process
and that the tag is compatible to both confocal laser scanning
microscopy and IEM localization analyses.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
DISCUSSION

In this study, we demonstrate the application of the AGIA tag
system for ultrastructural localization of RESA in the schizont
merozoites. In our knowledge, this is the first report showing that
the peptide tag can be detected with a monoclonal antibody in
the IEM of malaria parasites. We observed that the rabbit anti-
AGIA mAb could definitively detect AGIA-expressing blood-
stage parasites, as illustrated by Western blotting, IFA, and IEM
with high signal/background ratio. In addition, although protein
tags can induce artificial effects on proteins, we show that
endogenous and AGIA tagged RESA colocalized to the dense
granules and then translocated to the erythrocyte membranes,
indicating C-terminal fusion with the tag does not alter the
localization and translocation of tagged RESA proteins in P.
falciparum. The same holds true for food vacuole localization of
MDR1 in the trophozoite stage parasites infection.

One advantage of the AGIA tag is that it is derived from human
DRD1 protein expressed only in the brain (Yano et al., 2016). Thus,
anti-AGIA rabbit mAb used in this study is unlikely to have cross-
reactive epitopes in malaria parasite proteins. Indeed, protein
BLAST analysis against malaria parasite proteins deposited in the
NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) did not reveal any
A B

D
C

FIGURE 3 | Knock-in of AGIA-tag by CRISPR/Cas9 genome editing. (A) Plasmid map of Cas9/sgRNA plasmid expressing both Cas9 and sgRNA. PfCen
represents the centromere sequence of chromosome five of P. falciparum. hdhfr-yfcu represents the drug cassette. hdhfr (human dihydrofolate reductase gene)
confers pyrimethamine resistance to the parasites and was used as a positive selection marker. yfcu is a fusion gene of yeast cytosine deaminase and uridyl-
phosphoribosyltransferase. (B) The AGIA-tag sequence was integrated at the 3’-end of mdr1 by homology-directed repair following CRISPR/Cas9-mediated double-
strand break. (C) Western blotting with anti-AGIA mAb detected the expressed MDR1-AGIA protein in non-boiled sample. Anti-CRT was used as a loading control.
1 × 107 cells of trophozoites were loaded in each lane. Two independent experiments were carried out, and representative results were presented. (D) Indirect
immunofluorescence assay of MDR1-AGIA expressing parasites. Anti-AGIA mAb detected localization of MDR1-AGIA in close proximity to food vacuole of
trophozoites. Scale bars indicate 5 µm. Three independent experiments were carried out, and representative results were presented.
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AGIA sequence match in the genome data of neither Plasmodium
spp. parasites, nor in Anopheles mosquitoes. This suggests that the
AGIA tag could be used to investigate the localization of other
parasite proteins not only in P. falciparum blood stage but also in
liver and mosquito stage parasites and with other parasite species.
Nevertheless, we note that PfEMP1, the parasite molecules
associated with the pathogenesis of the cerebral malaria, are
expressed on the surface of infected erythrocyte and are ligands
for erythrocytes sequestration in the brain capillary (Jensen et al.,
2020). Since DRD1 is expressed mainly in the accumbens and
putamen regions of the brain cell (Yano et al., 2016), in in vivo
studies with rodent malaria AGIA tag transgenic parasites, the anti-
AGIA mAb may show limited cross-reactivity in specific brain
regions. Thus, although investigations are needed to confirm the
usefulness of this system in such in vivo studies, care must be taken
when interpreting the obtained findings.

Although the AGIA tag is a single epitope, multiple tags,
such as 2× or 3× AGIA similar to the case of 3× HA, may be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
needed to improve sensitivity when assessing proteins with low
expression. This may accelerate the characterization of the
novel malaria parasite proteins. Taken together, the AGIA
tag/anti-AGIA rabbit mAb system could be a useful tool
for elucidating the subcellular localization of new and
understudied proteins in malaria parasites at high resolution
thus allowing in-depth evaluation of these proteins. To expand
the application and adoption of this innovative technology by
the wider research community, commercial availability or
peer to peer sharing of the anti-AGIA rabbit mAb is
under consideration.
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FIGURE 4 | Immunoelectron microscopy of RESA-AGIA expressing parasites. (A) The ultrathin sections were immunolabeled with rabbit anti-AGIA mAb and goat
anti-rabbit IgG conjugated with 15-nm Gold. 3D7 parasite was used as a negative control. Scale bars indicate 500 nm. R, M, and DG indicate rhoptry, microneme,
and dense granule, respectively. The images are the representatives of three independent experiments. (B) Endogenous RESA of 3D7 parasites were immunolabeled
by mouse anti-RESA mAb and goat anti-mouse IgG conjugated with 15-nm Gold. A scale bar indicates 500 nm. The image is a representative of more than three
experiments. (C) The ultrathin section of RESA-AGIA expressing parasite was immunolabeled with rabbit anti-AGIA mAb, mouse anti-RESA mAb, goat anti-rabbit
IgG conjugated with 15-nm Gold and goat anti-mouse IgG conjugated with 10-nm Gold. A scale bar indicates 500 nm. Insets show enlarged images of the part of
the merozoite. The image is a representative of 18 images obtained from one experiment.
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