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There is a rising medical need for novel therapeutic targets of physical activity. Physical
activity spans from spontaneous, low intensity movements to voluntary, high-intensity
exercise. Regulation of spontaneous and voluntary movement is distributed over many
brain areas and neural substrates, but the specific cellular and molecular mechanisms
responsible for mediating overall activity levels are not well understood. The hypothalamus
plays a central role in the control of physical activity, which is executed through coordination
of multiple signaling systems, including the orexin neuropeptides. Orexin producing
neurons integrate physiological and metabolic information to coordinate multiple behavioral
states and modulate physical activity in response to the environment. This review is
organized around three questions: (1) How do orexin peptides modulate physical activity?
(2) What are the effects of aging and lifestyle choices on physical activity? (3) What are
the effects of aging on hypothalamic function and the orexin peptides? Discussion of
these questions will provide a summary of the current state of knowledge regarding
hypothalamic orexin regulation of physical activity during aging and provide a platform
on which to develop improved clinical outcomes in age-associated obesity and metabolic
syndromes.
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INTRODUCTION: PHYSICAL ACTIVITY AND THE OREXIN
NEUROPEPTIDE SYSTEM
Physical activity can improve overall health. For example, it
can prevent obesity and reduce age-associated cognitive decline.
There is wide variation between individuals in their drive to be
physically active. The drive for physical activity is operationally
defined as spontaneous physical activity (SPA). In humans, SPA
includes time spent standing and ambulating, but not voluntary
exercise. The energy expended by SPA is termed “nonexercise
activity thermogenesis” or NEAT. Exercise is a necessary part
of a healthy lifestyle but many people cannot or do not exer-
cise. New treatments to target exercise-independent aspects of
achieving and maintaining a healthy weight are greatly needed.
Spontaneous physical activity is an excellent candidate, but our
understanding of the brain mechanisms driving SPA is incom-
plete. Therapies that enhance SPA will contribute to better clin-
ical outcomes for obesity and metabolic syndrome, diseases of
high prevalence in the developed world. This review describes
recent advances in our understanding of neuronal processes that
regulate SPA, with a specific focus on changes that occur in
the orexin neuropeptide system during normal and pathological
aging.

The orexin (hypocretin) neurons are a group of hypothala-
mic neurons defined by expression of the orexin peptides. The

orexin signaling system regulates a variety of complex behaviors,
including sleep/arousal, reward, food intake and SPA, with an
overall effect of increasing energy expenditure. Orexin neuron
activity is affected by multiple environmental and physiological
variables like fasting and circadian rhythms. Function of the
orexin system varies with lifestyle and age (see Figure 1), as
does its ability to influence factors that contribute to pathological
weight gain in humans and animals. Clarifying how these two
variables impact orexin-induced SPA will facilitate development
of improved obesity prevention and treatment programs.

OREXIN NEUROPEPTIDES AND RECEPTORS
The orexin signaling system consists of two orexin peptides
(orexin A and orexin B) and two G-protein coupled receptors
(orexin receptor 1, OXR1 and orexin receptor 2, OXR2) (de
Lecea et al., 1998; Sakurai et al., 1998). Orexin A and orexin B
are 33- and 28-amino acid peptides cleaved from a single gene
product, prepro-orexin (Sakurai et al., 1998). Orexin A has equal
affinity for both orexin receptors, while orexin B preferentially
binds to OXR2 (Sakurai et al., 1998; Ammoun et al., 2003). Both
OXR1 and OXR2 couple to the Gq/11-alpha subunit to activate
phospholipase C and induce cation influx, thereby depolarizing
neurons and increasing excitability (de Lecea et al., 1998; Zhu
et al., 2003). When overexpressed in cultured cells, OXR2 also
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FIGURE 1 | Prepro-orexin, SPA, and body weight during aging. Relative
levels of prepro-orexin (green), SPA (blue), and body weight (red)
throughout the mammalian life span.

signals through the pertussis-toxin sensitive Gi/o-alpha subunit
to reduce cAMP production (van den Pol et al., 1998; Zhu et al.,
2003). Electrophysiological studies of cell types that endogenously
express a single OXR subtype in vivo confirm that orexin receptors
are generally excitatory in nature and can affect neuronal
activity via both presynaptic and post-synaptic mechanisms
(Zhu et al., 2003; Aracri et al., 2013; Schöne et al., 2014).
Like the other neuropeptide systems lacking known reuptake
transporters, it is believed that orexin signaling is terminated
through diffusion, receptor sequestration, and enzymatic
degradation.

The expression pattern of the orexin receptors differs widely
among brain sites but is often complimentary in nature. Most
brain sites investigated thus far predominately express a sin-
gle receptor subtype and those that express both subtypes
typically do so in separate cell types (Trivedi et al., 1998;
Marcus et al., 2001). Functional differences between the two
orexin receptor subtypes are not clearly delineated. Many studies
are limited by the use of methods that affect both receptor
populations, as is the case with exogenous administration
of orexin A and genetic manipulations of the prepro-orexin
gene. Direct comparison of OXR1 and OXR2 knockout mice
report contributions of both subtypes to body weight and
sleep patterns, albeit with one receptor subtype typically dis-
playing a greater effect (Funato et al., 2009; Mieda et al.,
2011).

Orexin signaling takes on a modulatory nature in many
experimental paradigms. Behavioral or physiological effects dif-
fer depending on the brain site of action. In other words,
the function of the brain area in which orexin signaling is
being manipulated is the primary determinant of the partic-
ular orexin-dependent effects that are observed at both the
behavioral and cellular levels. For example, orexin A signal-
ing via OXR1 in the periaquaductal gray area induces analge-
sia through cannabinoid-mediated retrograde inhibition whereas
OXR1 signaling in the dorsal hippocampus facilitates excitatory
LTP and formation of new associative memories (Ho et al.,
2011; Riahi et al., 2013; Yang et al., 2013). Thus, while it is
tempting to assign distinct functions to each receptor subtype,
the currently available body of data does not fully support a
simple, dichotomous characterization. A more refined under-
standing is needed of functional dissociations in brain-site specific
receptor subtypes and the molecular mechanisms underlying
them.

OREXIN NEURONS
In the mammalian brain, orexin neurons are concentrated in the
lateral hypothalamus (LH), perifornical area, and dorsomedial
hypothalamus (Peyron et al., 1998). Orexin fibers are found
throughout the central nervous system (CNS), including nuclei
in cortical and limbic areas, basal ganglia, midbrain, brainstem,
and spinal cord (de Lecea et al., 1998; Peyron et al., 1998; Taheri
et al., 2001; Colas et al., 2014). In addition to orexin, these
neurons synthesize glutamate, as well as other neuropeptides,
notably dynorphin (Chou et al., 2001; Rosin et al., 2003; Torrealba
et al., 2003). Orexin neuron activity is affected by a variety of
metabolic signaling molecules (i.e., glucose, leptin, amino acids)
and environmental factors which will be discussed in more detail
below (Yamanaka et al., 2003; Karnani and Burdakov, 2011;
Karnani et al., 2011; Leinninger et al., 2011). For example, activity
levels of orexin neurons, as measured by the immediate early
gene Fos, increased during the waking phase of the circadian
cycle and during fasting or caloric restriction (Sakurai et al.,
1998; Estabrooke et al., 2001). Orexin neurons, in turn, regulate
physiological and behavioral processes that have major impacts
on energy balance and metabolic state, physical activity, blood
glucose levels, and food intake (Sakurai et al., 1998; Akiyama
et al., 2004; Alam et al., 2005; Kotz et al., 2006; Inutsuka et al.,
2014).

As the orexin neurons are known to modulate multiple
behaviors, it has been suggested there are functionally special-
ized subpopulations of orexin neurons, yet this critical issue
remains unresolved. The most well-known hypothesis proposes
that orexin neurons located in the lateral portion of the LH
mediate reward behaviors and those located more medially in the
perifornical/dorsomedial areas are involved in arousal and stress
(Harris and Aston-Jones, 2006; Harris et al., 2008). This theory is
in part supported by the observation that circadian fluctuations
in Fos expression in orexin neurons are most pronounced in the
medial LH and less so in the more lateral portions, as well as,
by differential activation of orexin neurons in reward behavioral
paradigms (Estabrooke et al., 2001; Harris and Aston-Jones, 2006;
Harris et al., 2008). However, orexin neurons send collateral
projections throughout the CNS, indicating that anatomical loca-
tion of orexin cell bodies is unlikely to be the most informa-
tive criterion when attempting to identify or predict functional
specialization of orexin neurons. Accordingly, subpopulations of
orexin neurons have been described based on electrophysiolog-
ical and morphological variables (España et al., 2005; Oldfield
et al., 2007; Schöne et al., 2011). Analysis of orexin neuron
projections to the ventral tegmental area and locus coeruleus
revealed that differences in electrophysiological properties and
neuronal architecture are better parameters compared to location
of soma when attempting to categorize distinct subpopulations
of orexin neurons (Schöne et al., 2011; González et al., 2012).
While there is some degree of specialization of orexin neurons, the
characteristics that define specific subpopulations and whether
they have overlapping or unique functions remain poorly defined.

OREXIN AND ENERGY EXPENDITURE
Orexin peptides modulate energy metabolism, arousal, and
physical activity (Chemelli et al., 1999; Hara et al., 2001;

Frontiers in Systems Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 211 | 2

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Zink et al. Orexins, aging, spontaneous physical activity

Kiyashchenko et al., 2002; Mileykovskiy et al., 2005; Adamantidis
et al., 2007; Takahashi et al., 2008; Sasaki et al., 2011; Inut-
suka et al., 2014). Orexin system activity is positively associ-
ated with activity levels in animals and humans (Kiyashchenko
et al., 2002; Wu et al., 2002; Kok et al., 2003). Orexin signal-
ing promotes obesity resistance via enhanced SPA and energy
expenditure (Perez-Leighton et al., 2012). Animal models lack-
ing a functional orexin system develop obesity despite con-
suming fewer calories than their wildtype counterparts (Hara
et al., 2001, 2005). Pathological weight gain in these animals
is most likely due to energy imbalance resulting from reduced
physical activity. Animals in which there is progressive loss of
orexin neurons display more severe obesity phenotypes than
mice who are only deficient in prepro-orexin, indicating that
multiple factors and signaling systems coalesce in orexin neu-
rons to regulate body weight (Hara et al., 2005). To comple-
ment genetic ablation approaches, pharmacological studies of
repeated orexin A injection into the brain result in body weight
loss and protection against obesity (Novak and Levine, 2010;
Perez-Leighton et al., 2012; Teske et al., 2013). Indeed, selective
activation of orexin neurons in the LH via Designer Receptors
Exclusively Activated by Designer Drugs (DREADDs) stimu-
lates SPA, food intake, and energy expenditure (Inutsuka et al.,
2014).

Orexin-dependent modulation of SPA involves several brain
sites with site-specific participation of OXR subtypes (Kiwaki
et al., 2004; Thorpe and Kotz, 2005; Kotz et al., 2006). Data from
our laboratory and others show that a major effect of orexin A
signaling is to promote SPA and NEAT (Kotz et al., 2006; Inutsuka
et al., 2014). Increased SPA and NEAT are observed following
injection of the orexin peptides directly into the rostral LH,
hypothalamic paraventricular nucleus, nucleus accumbens, locus
coeruleus, dorsal raphe nucleus, tuberomammillary nucleus, and
substantia nigra (Kotz et al., 2002, 2006; Kiwaki et al., 2004;
Thorpe and Kotz, 2005; Novak and Levine, 2010; Perez-Leighton
et al., 2012; Teske et al., 2013). Of these sites, our work suggests
that orexin A in the rostral LH has the greatest effect on SPA.
As this brain area has been the focus of previous reviews the
reader is referred to those reviews for additional information
(Kotz et al., 2008, 2012; Teske et al., 2010). It is worth emphazing
that the effect of orexin A on SPA is a primary outcome that
occurs within minutes whereas effects on body weight are con-
siderably more delayed (Teske et al., 2010; Perez-Leighton et al.,
2012).

Orexin, energy expenditure, and obesity
The strong correlation between orexin signaling, SPA, and NEAT,
makes orexin an attractive anti-obesity target. Indeed, selective
activation of orexin neurons is sufficient to drive increased SPA
and energy expenditure in mice (Inutsuka et al., 2014). Many
reports exist implicating reduced physical activity and NEAT in
the etiology of obesity in humans (Levine et al., 1999, 2005).
Our work using two different animal models of obesity reveals
a strong link between endogenous orexin function, SPA, and
body weight. In rats selectively bred for their weight gain in
response to high-fat diet (HFD), obesity resistant rats have higher
sensitivity to the behavioral effects of orexin A (Levin, 1991;

Teske et al., 2006, 2013). Over time, HFD decreases SPA in
obesity prone animals, whereas obesity resistant rats maintain
pre-HFD levels of SPA and sensitivity to orexin-induced SPA
(Perez-Leighton et al., 2012, 2013). Additionally, higher SPA
in obesity resistant rats predicts lower fat mass gain through-
out their lifetime (Teske et al., 2012). Consistent with these
findings, non-selectively bred rats that display greater levels of
SPA are significantly more resistant to pathological weight gain
induced by a HFD compared to animals with naturally lower
SPA (Perez-Leighton et al., 2012, 2013). Animals who are resis-
tant to diet induced obesity also exhibit higher expression of
prepro-orexin in the LH and enhanced sensitivity to effects of
orexin A in rostral LH on SPA (Perez-Leighton et al., 2012,
2013). Importantly, 10 daily treatments of orexin A admin-
istration into the rostral LH prevented HFD induced obesity
without altering caloric intake (Perez-Leighton et al., 2012).
Together, these data implicate orexin signaling in determin-
ing sensitivity to diet induced obesity and provide clear evi-
dence that orexins regulate energy expenditure through SPA and
NEAT.

Animal models of diet-induced-obesity consistently display
attenuated levels of orexin signaling molecules in both the CNS
and peripheral tissues (Kotz et al., 2005; Zhang et al., 2005a,b;
Sellayah and Sikder, 2014). Similarly, obese humans have lower
circulating levels of orexin and impaired orexin receptor activity
in adipose tissue (Adam et al., 2002; Digby et al., 2006). No
comparable studies have been performed investigating differ-
ences in the orexin system in the CNS of obese and healthy
humans. Unlike in animal studies, we are unable to distinguish
between the contributions of individual differences in orexin
signaling that predispose humans to develop obesity, and the
consequences of environmental effects of calorie-rich diets and
sedentary lifestyles (Kotz et al., 2006; Perez-Leighton et al., 2012,
2013). Nonetheless, physical activity is a promising candidate
for improving clinical outcomes in aged humans at both the
metabolic and neurological levels (Castaneda et al., 2002; Larson
et al., 2006).

Orexin, energy expenditure, and narcolepsy
There is a near complete loss of central orexin production
in human narcolepsy with cataplexy, as measured by orexin
immunoreactivity in post-mortem brain slices (Nishino et al.,
2000; Peyron et al., 2000). Human narcoleptic patients suffer from
extreme episodes of daytime sleepiness. In both humans and ani-
mals, narcolepsy is accompanied by higher BMI, increased preva-
lence of obesity, and reduced physical activity levels (Daniels,
1934; Hara et al., 2001; Kok et al., 2003; Heier et al., 2011). It
should be noted that some research groups have attempted to
correlate BMI with orexin levels in blood or CSF, samples which
can be relatively easily obtained in a clinical setting. However,
studies of circulating orexin, either in serum or CSF, should be
interpreted with caution, as one study reported no correlation
between orexin A concentrations in serum and CSF samples in
either control or narcoleptic patients (Dalal et al., 2001). Here,
narcoleptic individuals had normal serum levels of orexin A
yet CSF levels were below detectable levels, in agreement with
post-mortem tissue analysis showing a widespread loss of orexin
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production in the hypothalamus (Nishino et al., 2000; Dalal et al.,
2001). Perhaps of greater consequence is the issue that measures
of freely available orexin neuropeptides do not effectively capture
orexin neuropeptide concentrations at important sites of action in
the CNS or peripheral tissues nor will this approach fully appreci-
ate the dynamic changes that may be occurring in the signaling
system as a whole, including changes in receptor efficacy and
cellular excitability (Estabrooke et al., 2001; Kiyashchenko et al.,
2002; Wu et al., 2002). Despite these methodological limitations,
selective optogenetic or DREADD stimulation of orexin neurons
unmistakably rescues deficits in sleep and wake patterns in mouse
models of narcolepsy (Adamantidis et al., 2007; Hasegawa et al.,
2014).

Central orexin and peripheral physiology
As described above, a critically important function of the orexin
system is its ability to maintain a healthy energy balance by
driving physical activity. Orexins act at sites both in the brain
and peripheral tissues to regulate physiological processes that
contribute to body weight, notably, glucose mobilization, uti-
lization, and adipocyte differentiation (Cai et al., 1999; Sellayah
et al., 2011; Tsuneki et al., 2012). The overwhelming majority
of orexin production occurs in the hypothalamus, yet orexin
signaling is not limited to the CNS (Sakurai et al., 1998). Small
amounts of orexins produced by the enteric nervous system
and secretory organs result in circulating plasma levels that
are a fraction of those observed in the brain (Sakurai et al.,
1998; Kirchgessner and Liu, 1999). Importantly, orexin A given
intravenously or intranasally to non-human primates is able
to rescue cognitive impairments due to sleep-deprivation, indi-
cating central action of systemically administered neuropep-
tides and viability of clinical applications (Deadwyler et al.,
2007).

Orexin receptors are found in a number of tissues outside of
the brain, including adipose tissue, gonads, and the gut (Jöhren
et al., 2001; Digby et al., 2006; Ducroc et al., 2007). While most
tissues display relatively low levels of orexin receptor expression
there is approximately four-fold higher expression of OXR2 in
the adrenal glands of rats than of that in the brain (Jöhren et al.,
2001). This is consistent with our understanding of the orexin sys-
tem being involved in HPA-activation and the responses to phys-
iological and environmental stressors. Although the functional
significance is unclear, it is worth noting that orexin receptor
levels in the adrenal cortex are dysregulated in an animal model
of diabetes (Jöhren et al., 2006).

Numerous studies indicate a clear relationship between central
orexin signaling and pathological changes in peripheral physiol-
ogy. Selective loss of orexin neurons in the hypothalamus of mice
increases susceptibility to diet-induced obesity and age-related
weight gain, despite having an intact orexin system in periph-
eral tissues (Hara et al., 2001, 2005). As expected, transgenic
mice engineered to over-express prepro-orexin, thereby increas-
ing orexin signaling tone, exhibit improved insulin-sensitivity and
protection against the negative effects of a HFD on adiposity
(Funato et al., 2009). Furthermore, DREADD-dependent activa-
tion of orexin neurons in food-deprived mice promoted glucose
mobilization into the blood stream, suggesting enhanced ability to

access energy stores during a state of energy imbalance (Inutsuka
et al., 2014). As a whole, the studies described above demonstrate
the importance of orexin signaling in promoting healthy energy
balance through coordinated mechanisms in both the CNS and in
the periphery.

EFFECTS OF LIFE-STYLE CHOICES ON PHYSICAL ACTIVITY
AND THE OREXIN SYSTEM
Evidence that moderate, aerobic physical activity has positive
effects on health and body weight is well established. One of
the most well characterized phenomena is the ability of physical
activity to improve cognitive performance (Colcombe et al., 2004,
2006; Lindwall et al., 2008; Erickson et al., 2011; Miller et al.,
2012). This is a two-way interaction, as choices made throughout
life and aging, either directly or indirectly, impact physical activity
levels. This section focuses on how excessive calorie consumption
(i.e., over-nutrition), which commonly results in obesity and
metabolic syndrome, affects physical activity, in particular, SPA,
and the orexin system.

In the current climate of rising obesity trends, a great deal
of focus has been given to the deleterious effects of seden-
tary lifestyles on body weight and overall health. Studies have
reported that obese individuals spend significantly less time
engaged in physical activity. Lean people spend an extra 150
min per day moving compared to obese people, while obese
patients sat for 2 h longer per day than lean individuals (Levine
et al., 2005). This difference in SPA equates to an additional
energy expenditure of 5 kcal/kg in non-obese participants, indi-
cating excellent therapeutic potential for treating pathological
body weight (Levine et al., 2005). Severity of obesity (mea-
sured as accumulation of fat mass) is negatively correlated with
NEAT, although this effect only appears in humans after long-
term overfeeding (Levine et al., 1999; Schmidt et al., 2012).
These data reinforce the view that obesity decreases physical
activity, but there is large inter-individual variability in this
effect.

Animal studies support the idea that higher SPA prior to
overfeeding, as well as increased SPA during overfeeding, protects
against obesity (Teske et al., 2006; Perez-Leighton et al., 2012,
2013). Similarly, development and maintenance of obesity is asso-
ciated with decreased levels of physical activity in rodents (Bjursell
et al., 2008). The question then becomes, what brain mechanisms
contribute to obesity via regulation of physical activity levels?
Different lines of evidence support the orexin peptides as key
modulators of physical activity, especially in response to nutrition
levels and energy availability.

The orexin system is well-placed to both modulate and be
influenced by metabolic state. Overall, orexin signaling is sup-
pressed in an obese state (Kok et al., 2003; Perez-Leighton et al.,
2012). Caloric restriction, as occurs during food deprivation
in animals or dieting in humans, increases orexin mRNA and
orexin receptor expression (Mondal et al., 1999; Komaki et al.,
2001; Alam et al., 2005). Furthermore, orexin neurons act as
adaptive glucosensors and are inhibited directly at higher glu-
cose concentrations, suggesting that hyperglycemia results in
decreased orexin signaling (Burdakov et al., 2006; Williams et al.,
2008; Gonzàlez et al., 2009). This would promote lower SPA
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and energy expenditure, contributing to the development of
obesity, but there are currently no reported electrophysiologi-
cal studies comparing orexin neuron activity in lean and obese
states.

The short- and long-term consequences of diet and lifestyle
on orexin neuron activity merit further investigation. It must
be emphasized that orexin neurons are part of a local (intra-
hypothalamic) and global (across the brain) network involved
in the control of behavior and energy balance (Peyron et al.,
1998; Burt et al., 2011; Kotz et al., 2012). Thus, when considering
specific mechanisms that contribute to obesity, orexin signaling is
but one part of an interconnected system influenced by multiple
genetic and environmental factors.

AGING AND THE OREXIN SYSTEM
A number of physiological functions controlled by the hypotha-
lamus vary with age, including SPA, circadian rhythms, and
cognitive function. Weight is typically gained throughout early
and middle age, followed by gradual, age-associated anorexia
(Figure 1, Chumlea et al., 1988; Schoenborn et al., 2002; Sullivan
et al., 2002). The evidence reviewed above indicates orexin signal-
ing is an important driver of energy expenditure and modulates
energy metabolism via blood glucose levels and food intake. Sim-
ply put, increases in physical activity are generally accompanied
by greater energy needs. Anecdotally, one might consider the diet
of a professional athlete when training compared to off-season
calorie consumption. In line with this reasoning, reduced physical
activity levels observed in studies of aged humans and animals
may underlie decreased appetite and changes in body weight
observed in these populations (Meijer et al., 2001; Schoenborn
et al., 2002; Kotz et al., 2005; Bordner et al., 2011). Many
patients near the end of life undergo precipitous weight loss,
suggesting severe dysregulation of mechanisms that normally
maintain a healthy body weight (Aziz et al., 2008). Moreover,
elderly populations experience a greater prevalence of sleep dis-
turbances and cognitive decline/dementia (Foley et al., 2004;
Corrada et al., 2010). The diminished physical activity, blunted
circadian rhythms, and cognitive deficits associated with aging
could be readily explained by compromised orexin signaling in
the aged brain.

AGING IN HUMANS
Reductions in the orexin system are observed in humans under
a variety of conditions in which symptom onset and sever-
ity are strongly tied to aging (Drouot et al., 2003; Fronczek
et al., 2007, 2012; Karakus et al., 2012). Dramatic drops in
body weight often precede the rapid cognitive and physical
decline seen in age-related neurodegenerative diseases, clearly
indicating disruption of neurological and physiological processes
that promote healthy energy balance (Fronczek et al., 2007,
2012; Aziz et al., 2008). While it is clear that patients with
Parkinson’s and Alzheimer’s disease display significant loss of
orexin neurons in post-mortem exams, analysis of CSF levels
in living patients do not always bear this pattern, suggesting
there may be a progressive and possibly sudden loss of central
orexin synthesis or compensatory peripheral production (Ripley
et al., 2001; Drouot et al., 2003; Baumann et al., 2005; Fronczek

et al., 2007, 2012). Some animal studies suggest a tentative
link between neurodegenerative disease symptoms and deficits
in orexin signaling in monoaminergic and cholinergic neurons
in the brainstem and forebrain (Drouot et al., 2003; Wu et al.,
2004; Sakurai et al., 2005; Zhang et al., 2005a,b; Downs et al.,
2007; Stanley and Fadel, 2012; Fadel et al., 2013; Yang et al.,
2013).

Orexin plasma levels are correlated with body weight in post-
menopausal females, such that individuals with more circulat-
ing orexin A in their blood have lower BMI (Karakus et al.,
2012). However, other studies have failed to identify a clear
relationship between changes in orexin CSF and plasma levels.
For instance, in narcolepsy, where there is a well-known loss
of orexin-producing neurons in the brain, there are reports of
patients with low orexin CSF, yet normal orexin plasma levels
(Peyron et al., 2000; Dalal et al., 2001). It should be noted
that assessments of circulating orexin neuropeptides provide very
limited insight into the orexin system as a whole, as they do
not accurately reflect the complex minutia of events occurring
at vital sites of action in the CNS (see Section Orexin, Energy
Expenditure, and Narcolepsy for further discussion). Measuring
absolute levels of orexin peptide also fails to capture dynamic
changes in orexin receptor signaling or changes in somatoden-
dritic excitability of orexin neurons, which are important factors
when considering the overall function of the orexin signaling
system. Evidence from non-human primates is in line with this
reasoning. There was no detectable difference in orexin B labeling
in the LH or serum levels of aged rhesus macaques (25–32
years old) compared to mature adults (9–13 years old), yet there
was significantly reduced innervation of orexin B fibers in the
locus coeruleus (Downs et al., 2007). Increased levels of orexin
in the periphery may be a compensatory response to reduced
production in the brain. Therefore, even if peripheral levels of
orexin do not decline in aged humans, there may be undetected
alterations in prepro-orexin production and/or efficacy of orexin
receptor activation in the brain. Unfortunately, given the present
lack of investigations using post-mortem human brain tissue or
functional imaging, it is still unknown whether age-dependent
alterations in physical activity and body composition observed
in humans can be attributed to decreased orexin signaling in the
CNS.

AGING IN ANIMAL MODELS
Animal models exhibit clear age-related reductions in the orexin
system in the hypothalamus and other brain regions (Brownell
and Conti, 2010; Sawai et al., 2010; Kessler et al., 2011). Aging
appears to have a uniform effect on orexin production throughout
the hypothalamus as orexin A labeling is reduced to a similar
degree in both medial and lateral portions of the hypothalamus
(Kessler et al., 2011). Although there is no overt neuronal loss
or degeneration in the hypothalamus of aged rats, there is a
substantial age-related decrease of both orexin A and orexin B
peptides (Sawai et al., 2010; Kessler et al., 2011). Aging also
results in reduction of one or both of the orexin receptors in the
brain, with some species-specific differences in orexin receptor
expression throughout life (Terao et al., 2002; Zhang et al., 2002;
Porkka-Heiskanen et al., 2004; Takano et al., 2004). As expected,
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transgenic mice with enhanced orexinergic tone exhibit resistance
to both age-related weight gain and diet-induced obesity (Funato
et al., 2009; Willie et al., 2009).

Research groups consistently report reduced behavioral effi-
cacy of orexin-neuropeptides in aged rodents. Intraventricular
and intrahypothalamic administration of orexin A increased food
consumption in adult rats less than 1 year old, but not in aged,
2-year old rats (Kotz et al., 2005; Akimoto-Takano et al., 2006).
The ability of both orexin A and orexin B to alter circadian
rhythms and increase time-spent awake was also diminished in
aged animals (Morairty et al., 2011). Furthermore, age-related
loss of prepro-orexin mRNA production in the LH of rodents
is accompanied by reduced orexinergic innervation in the hip-
pocampus, basal forebrain, and locus coeruleus, brain regions
associated with cognitive decline in neurodegenerative diseases
(Zhang et al., 2005a,b; Downs et al., 2007; Stanley and Fadel,
2012).

Central orexin signaling modulates aspects of peripheral
physiology (e.g., blood sugar regulation and adipocity), which
are critically linked to obesity and often become dysregu-
lated with age (Cai et al., 1999; Tsuneki et al., 2008, 2012;
Sellayah et al., 2011; Inutsuka et al., 2014). Animals that do
not produce prepro-orexin in the brain develop insulin sensitiv-
ity, hyperglycemia, and increased susceptibility to diet-induced
obesity, all of which escalate in severity with age (Cai et al.,
1999; Hara et al., 2005; Tsuneki et al., 2008, 2012; Sellayah
et al., 2011). Age-associated impairments in brown adipose tis-
sue thermogenesis, which contribute to energy imbalance and
weight gain, can be rescued by systemic orexin administra-
tion (Sellayah and Sikder, 2014). Aging-dependent reductions
in brown adipose tissue thermogenesis are further exacerbated
in mice lacking orexin neurons (Sellayah and Sikder, 2014).
Importantly, dysregulation of insulin signaling is detected in the
hypothalamus of prepro-orexin knockout mice before abnormal
metabolic symptoms occur in the periphery (Tsuneki et al., 2008).
Together, these studies indicate that central orexin neuron dys-
function precedes development of overt changes in peripheral
tissues that result in metabolic disorders and pathological weight
gain.

The studies described above indicate that orexin release and
receptor activation in the brain declines with age, but additional
studies are needed to determine if this occurs in a consistent,
uniform fashion or if some projections are spared or possi-
bly increased in a compensatory manner (Zhang et al., 2002,
2005a,b; Stanley and Fadel, 2012). This will be an important
factor to consider when developing therapies that target orexin
signaling, as some treatments may be more or less effective with
age.

SUMMARY
The hypothalamus is an important regulator of energy balance.
Orexin neuropeptide-producing neurons in the hypothalamus
integrate metabolic cues (energy availability) and physical activ-
ity (energy expenditure). Orexin neurons alter their activity in
response to metabolic signals from the periphery, including lep-
tin, glucose, and insulin (Håkansson et al., 1999; Moriguchi et al.,
1999; Tsuneki et al., 2002, 2012; Yamanaka et al., 2003; Burdakov

et al., 2006; Karnani and Burdakov, 2011; Leinninger et al., 2011).
Orexin signaling is positively correlated with physical activity and
negatively correlated with adiposity in both humans and animals
(Hara et al., 2001; Adam et al., 2002; Perez-Leighton et al., 2012).
Aging has an overall inhibitory effect on orexin signaling, which is
likely exacerbated by unhealthy lifestyle choices (Kok et al., 2003;
Hara et al., 2005; Brownell and Conti, 2010; Sawai et al., 2010;
Kessler et al., 2011).

While much has been done in animal models and in humans
to show that SPA significantly impacts body weight, metabolic
and cognitive health, more work is needed to fully understand
the neurocircuitry and molecular mechanisms which regulate
SPA, in particular, what happens to this network during aging.
Given our current knowledge, therapies should be developed that
aim at producing behavioral and lifestyle changes that prevent
or ameliorate age-associated declines in physical activity. There
is a clear need for multifaceted approaches to altering SPA that
include targeted manipulations of the neural systems that drive
SPA. Knowing that aging is associated with an altered metabolic
and hormonal milieu, an important future research direction is to
understand how these molecular changes directly impact orexin
signaling and SPA.

In summary, hypothalamic orexin activity fluctuates over
the lifespan to impact physical activity and body weight
throughout the aging process (Figure 1). Aged animals have
reduced levels of orexin peptides and receptors, although
the magnitude is species dependent. Consistent with a loss
of signaling molecules are diminished behavioral, cognitive,
and metabolic responses to administration of OXR agonists;
a significant issue to consider when developing therapeu-
tics to enhance orexinergic tone. Elevating orexin system
activity during aging has the potential to improve both phys-
iologic and cognitive status. A significant strategy in mov-
ing forward will be to focus on developing treatments that
selectively enhance orexin neuron activity and/or receptor
function.
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