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Ketamine is a popular recreational substance of abuse that induces persistent behavioral
deficits. Although disrupted oxytocinergic systems have been considered to modulate
vulnerability to developing drugs of abuse, the involvement of central oxytocin in
behavioral abnormalities caused by chronic ketamine has remained largely unknown.
Herein, we aimed to investigate the potential role of oxytocin in the medial prefrontal
cortex (MPFC) in social avoidance and cognitive impairment resulting from repeated
ketamine administration in mice. We found that ketamine injection (5 mg/kg, i.p.) for
10 days followed by a 6-day withdrawal period induced behavioral disturbances in
social interaction and cognitive performance, as well as reduced oxytocin levels both
at the periphery and in the mPFC. Repeated ketamine exposure also inhibited mPFC
neuronal activity as measured by a decrease in c-fos-positive cells. Furthermore, direct
microinjection of oxytocin into the mPFC reversed the social avoidance and cognitive
impairment following chronic ketamine exposure. In addition, oxytocin administration
normalized ketamine-induced inflammatory cytokines including TNF-a, IL-6, and IL-18
levels. Moreover, the activation of immune markers such as neutrophils and monocytes,
by ketamine was restored in oxytocin-treated mice. Finally, the reversal effects of oxytocin
on behavioral performance were blocked by pre-infusion of the oxytocin receptor
antagonist atosiban into the mPFC. These results demonstrate that enhancing oxytocin
signaling in the mPFC is a potential pathway to reverse social avoidance and cognitive
impairment caused by ketamine, partly through inhibition of inflamsnmatory stimulation.

Keywords: oxytocin, ketamine, medial prefrontal cortex, social avoidance, cognitive impairment, inflammatory
mediators, immune markers
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INTRODUCTION

Ketamine abuse has become a global issue, although it was
originally developed as a dissociative anesthetic for medical
purposes. For the past two decades, ketamine has been a popular
recreational substance of abuse due to its hallucinogenic and
addictive properties, leading to major risks and challenges to
public health worldwide (Sassano-Higgins et al., 2016). However,
the mental and psychological profiles of ketamine, particularly
the neurocognition potentials, are quite underestimated relative
to those of traditional drugs. Hence, it is important to be able
to evaluate the neurobiological processes that are relevant to
ketamine exposure-encoded behavioral phenotypes, including
social avoidance and cognitive deficits, which are associated with
an increased risk of drug relapse. Therefore, we must clarify
whether neuropeptide signaling pathways and neuronal activity
in specific brain regions are involved in the behavioral and
cognitive changes caused by ketamine.

Mounting evidence has indicated that the neuropeptide
oxytocin modulates vulnerability to developing drugs of
abuse (Bowen and Neumann, 2017), suggesting the possibility
of targeting oxytocin signaling for the treatment of drug
dependence (McGregor and Bowen, 2012). Ketamine abusers
showed significantly decreased blood levels of oxytocin compared
with healthy controls, without restoration even after 2 weeks of
abstinence (Huang et al., 2018). Previous studies have shown that
oxytocin is associated with neurobehavioral processes, including
social recognition and cognitive performance (Popik et al., 1992;
Feifel et al., 2016). Social avoidance, as seen in decreased contacts
and time with partners in the social interaction, and impaired
cognitive function are characteristic behavioral changes induced
by ketamine (Lipska and Weinberger, 2000; Gama et al., 2012).
However, the social interaction is a protective factor to prevent
drug relapse with increased social support and positive coping
against drug effects in several rodent models (Venniro et al.,
2018; Sampedro-Piquero et al., 2019). Moreover, addictive drug
abuse and withdrawal also caused impairments in the social
interaction behavior through the enhancement of ketamine’s
rewarding effects and deficits in social recognition (Liao et al.,
2018), suggesting that behavioral changes might partially explain
the increased risk of relapse in drug abusers. Meanwhile, social
avoidance and cognitive deficits are observed in drug dependence
and relapse (Albein-Urios et al., 2019). Therefore, disturbed
oxytocin may participate in the pathophysiology of ketamine-
induced neurobehavioral phenotypes.

It has been shown that ketamine-induced cognitive
dysfunction is associated with increased levels of inflammatory
cytokines, such as TNF-a (Sedky and Magdy, 2021). In addition,
the counts of immune cell neutrophils and monocytes, as well as
the neutrophil-lymphocyte ratio (NLR), reliable inflammatory
biomarkers for systemic inflammatory response (Gibson et al.,
2007; Azab et al, 2011), were found increased in ketamine
and psychiatric disorders with a core symptom of impaired
social behaviors (Aydin Sunbul et al, 2017; Kayhan et al,
2017; Kido et al, 2019). These findings suggest that novel
pharmacotherapies targeting neuroinflammatory processes may
result in improvements in behavioral dysfunctions induced by

addictive drugs. Based on these previous studies, we aimed to
investigate the potential role of oxytocin in the medial prefrontal
cortex (mPFC) in the social avoidance and cognitive impairment
resulting from repeated ketamine administration in mice and
the possible involvement of inflammatory stimulation. We chose
the mPFC because of its critical role in both inflammatory
response (Costa-Pinto et al., 2005; Tonelli et al., 2009) and social
behaviors, as well as its rich expression of oxytocin receptors in
rodents (Smeltzer et al., 2006; Li et al., 2016).

MATERIALS AND METHODS

Animals

Male C57Bl/6 (6-8 weeks old) mice were obtained from the
Peking University Experimental Animal Center. The mice
were group housed under a standard facility with a constant
temperature (23 & 2°C) and humidity (50 £ 5%) and maintained
on a 12 h/12h light/dark cycle (7 a.m. light on; 7 p.m. light off)
with ad libitum food and water access. All of the procedures were
performed with the approval from the Animal Experimentation
Ethics Committee of Peking University and in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals (Approval No.: LA2018314 and Approval
time: October 26, 2018). All of the behavioral tests, drug
administrations, and tissue collections were performed during
the active phase of the animals.

Ketamine Treatment and Withdrawal

Procedure

Ketamine (provided by the Drug Intelligence and Forensic
Center, Ministry of Public Security, purity >99%) was dissolved
in fresh, sterile 0.9% saline before the experiment and then
diluted to the required volume. The procedure for chronic
ketamine administration and withdrawal was based on a previous
study (Jacobskind et al, 2018). Ketamine was administered
intraperitoneally (i.p.) in a volume of 0.2 ml/10g bodyweight
once daily for 10 days in mice, and the dose of 5 mg/kg was
referred to a previous publication (Kumbol et al., 2018) and
our pilot study. Control animals received 0.9% saline with the
same injection volume as that in the ketamine group. After a
10-day ketamine administration, the mice were exposed to a
withdrawal period of 6 days. On day 17, the open field and
social interaction tests were performed; on day 18, the NORT was
conducted, respectively.

Locomotor Activity Test

To exclude the possible effect of ketamine on the overall
locomotion that may affect the social interaction data, we
conducted locomotor activity using an activity-monitoring
system in the apparatus (42 x 42 x 42cm) 1 day after a 6-day
withdrawal period of ketamine on day 17. Each mouse was placed
in the center of the open field and monitored for 5min, during
which the total distance (cm) traveled was recorded by a video
camera to evaluate locomotor activity.
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Social Interaction Test

Social interaction test was performed on the next day after 6-
day withdrawal of ketamine following previously established
protocols (Zhang et al., 2016). Briefly, during the social
interaction test, C57Bl/6 mice were placed in an open field
equipment (42 x 42 x 42 cm) with a small empty Plexiglas cage
(3 x 6 x 25cm) placed on the middle of one wall. In this time
that the animal spent in the area around this cage in which
there was no partner, C57Bl/6 mouse was measured over 2.5 min.
After a 1-min interval, a C57Bl/6 mouse was introduced into the
Plexiglas cage full of small holes, and the procedure was repeated.
The time (seconds) the mice spent in the interaction zone with
a C57Bl/6 mouse (with partner) or without a C57Bl/6 mouse
(no partner) was recorded. The social interaction ratio = time
in the interaction zone with a mouse (with partner)/time in the
interaction zone without a mouse (no partner).

Novel Object Recognition Test

The novel object recognition test (NORT) was used to assess
the nature of mice to explore novel or unfamiliar objects and
differentiate them from those that they were already familiar with
(Ennaceur and Delacour, 1987). A day before the training session,
the mice were allowed to explore an open-field arena (42 x 42 x
42 cm) without objects for 5 min 1 day before the training session.
The next day, two identical objects were placed in opposite and
symmetrical corners of the arena. The mice were then placed
in the center of the arena with their backs to the objects for
5min (training session) and, thereafter, returned to their home
cages. After 1h, one of the familiar objects (a yellow cylinder)
was replaced with a different one (a green cube); the mice were
returned into the arena again and were allowed to explore the
objects for 5 min (testing session), in which the time that the mice
spent with both objects was recorded. Data were presented as
recognition ratio = time (seconds) spent with the novel object <
(time spent with the novel object + time spent with the familiar
object) (Wang et al., 2007).

Enzyme-Linked Immunosorbent Assays for
Oxytocin in Blood and the Medial

Prefrontal Cortex

To measure the plasma oxytocin levels, blood was collected from
the inferior vena cava of each mouse and centrifuged (4,000 rpm,
15 min, 4°C) to obtain plasma. Oxytocin levels were determined
using an enzyme-linked immunosorbent assay (ELISA) kit
(Product Number: ADI-900-153A, Enzo Life Sciences, Inc., New
York, NY, USA) following the instructions of the manufacturer.
The plasma sample of each mouse was assayed in duplicate, and
the mean of the two values was used for analysis. The intra-
and inter-assay precisions were 11 and 16%, respectively. The
detection range of the oxytocin assay was 15.6-1,000 pg/ml.

For the assessment of oxytocin levels in the mPFC using
ELISA, the mouse brains were quickly extracted, frozen in —60°C
N-hexane, and transferred to a —80°C freezer. Using a freezing
cryostat (—20°C, Reichert-Jung 2800 Frigocut E), bilateral tissue
punches (8 gauge) of the mPFC were taken from 1-mm-
thick coronal sections approximately 1.70 mm from the bregma,

following stereotaxic coordinates. The tissue punches were
diluted with the assay buffer in the ELISA kit and homogenized
using a high-throughput tissue homogenizer (Smith and Wang,
2014). The tissue homogenate was centrifuged for 15min at
4°C and 13,000 x g, and the supernatant was collected. The
brain tissue extraction oxytocin concentrations were measured
using the oxytocin ELISA kit, following the instructions of the
manufacturer. The total oxytocin content of each sample was
normalized by the tissue weight. The plate was read at an optical
density of 405nm using a microplate reader, and the data were
calculated from a four-parameter logistic curve fit using ELISA
Clac software.

c-fos Immunohistochemistry

On the next day after the behavioral test, the mice were
anesthetized with sodium pentobarbital (60 mg/kg, i.p.)
and were transcardially perfused with PBS followed by 4%
paraformaldehyde. =~ Immunofluorescence  procedure  was
performed as previously described (Xue et al, 2014). The
mouse brains were removed and immediately postfixed for 6h.
Fixed brain tissues were placed in 15-20-30% gradient sucrose
solution in phosphate buffer saline (PBS). After the dehydration
of the sucrose, the brain tissues were rapidly frozen in —65°C
N-hexane. The brains were then sectioned coronally with a
microtome into 15-pm-thick sections. All of the sections were
incubated for 60 min at 37°C in a blocking solution (3% bovine
serum albumin and 0.2% Triton X-100 in PBS, pH 7.4). The
sections were incubated for 18-24h at 4°C with monoclonal
primary mouse-antibody c-fos (1:1,000; ab208942, Abcam,
USA) in the blocking solution. All sections were washed three
times in PBS, stained with goat anti-mouse IgG H&L secondary
antibody (1:500; Alexa Fluor® 488, ab150117, Abcam, USA),
and incubated for 2-4h. The cell counts on either side of the
specific mPFC region were averaged and taken as the positive
immunoreactive cell count for each mouse. The number of
fluorescent-labeled cells was measured using a fluorescence
microscope (Olympus) with an image-analysis program
(MetaMorph, version 4.65). For c-fos analysis, x10 bilateral
images were acquired and were manually quantified as those
with intensities higher than the background in the mPFC. Data
were expressed as the average number of c-fos+ cells per mm? of
each section. All quantifications and analyses were completed by
an experimenter who was blinded to the treatment conditions.

Stereotactic Surgery and Intra-Medial

Prefrontal Cortex Microinjection

Mice were anesthetized by sodium pentobarbital (Merck KGaA,
Darmstadt, Germany, Batch No. 921019, 60 mg/kg, i.p.,) before
guide cannulae (OD 0.41 mm x ID 0.25mm) were implanted
into their brains using the following stereotaxic coordinates for
mPFC: anterior/posterior, +1.75 mm; medial/lateral, £0.75 mm;
dorsal/ventral, —2.65mm at a 15° angle (Zhang et al.,, 2016).
After surgery, the general health conditions of all mice were
monitored, and they were allowed a 7-day recovery period before
ketamine treatment. Mice were intracranially microinjected with
either oxytocin (Biorbyt, orb71832, 5 ng/pl) or its vehicle (saline)
using 10-pl Hamilton syringes (Hamilton, Reno, NV, USA) that
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were connected via polyethylene-50 tubing (OD 0.61 x ID 0.28)
to injectors (OD 0.21 x ID 0.11, RWD Lifescience, Shenzhen,
China) extending 0.8 mm beyond the tip of the cannula. A total
volume of 0.2 pl oxytocin was infused into the mPFC over 5 min,
and the injection syringe was left in place for an additional
5min to allow for diffusion. For intra-mPFC infusion, oxytocin
or its vehicle (saline) was infused once daily for 6 days during
the ketamine withdrawal period at a dose of 1 ng/side/mouse
referring to a previous report (Kovacs and Marko, 1993). To
explore the antagonism of oxytocin receptors, atosiban (MCE,
2.5 ng/pl) or its vehicle (artificial cerebrospinal fluid, 145 mM
NaCl, 2.8 mM KCl, 1.2mM CaCl2, 1.2 mM MgCl2, 54 mM D-
glucose, pH = 7.4) was infused into the mPFC 30 min before daily
oxytocin treatment, and a total volume of 0.2 j11 was infused into
the mPFC over 5 min. Data from mice with incorrect placements
(8 out of 78 mice) assessed using Nissl staining of the bilateral
injection cannula were excluded from the statistical analysis.

Measurements of Cytokines TNF-«, IL-6,
and IL-1p Levels in Plasma and the Medial

Prefrontal Cortex

For cytokine measurements, plasma was collected using the
same procedure as for oxytocin measurement. The tissues of
mPFC were weighed and homogenized in PBS by centrifugation
for 5min at 5,000 x g at 4°C, and the supernatant was
collected. The levels of cytokines (TNF-a, IL-6, and IL-18) in
the plasma and mPFC extracts were analyzed using commercially
available ELISA kits, according to the instructions of the
manufacturer. The ELISA Kit of mouse TNF-ao (MM-0132M2),
mouse IL-6 (MM-0163M2), and mouse IL-1f (MM-0040M2)
were purchased from Jiangsu Meimian Biological Technology
Co. Ltd (Jiangsu, China).

Measurements of Neutrophil, Monocyte,

and Lymphocyte Counts

Mice were anesthetized with chloral hydrate (5.0%), and
1-ml syringes were immersed in EDTA-2Na before blood
collection. Blood was collected from the inferior vena cava
using 1-ml syringes and immediately transferred to the EDTA-
2K anticoagulant tubes (IDEXX Vet Collect™), The blood
samples were analyzed using a fully automatic hematology
analyzer (IDEXX procyte DX™) within 6 h after blood collection
(Ahmad et al., 2019). The neutrophil to lymphocyte ratio (NLR)
and monocyte to lymphocyte ratio (MLR) were calculated as
the ratio of the blood neutrophil or monocyte to lymphocyte
counts, respectively.

Statistical Analysis

Statistical analysis was performed using the Prism software
(GraphPad 8, San Diego, CA, USA). Data are presented in the
figures as mean + SEM. Differences between the two groups
were assessed using two-tailed t-tests. Differences among three or
more groups were assessed using one-way ANOVA with Tukey’s
multiple comparisons test. Significant differences are indicated
in the figures by *p < 0.05, **p < 0.01, **p < 0.001, and
BREED < 0.0001.

RESULTS

The Behavioral Deficits Induced by
Repeated Ketamine Administration Is
Associated With Impaired Oxytocin

Function

To test the effect of exposure to ketamine on the social behavior
and cognitive function, we used social interaction and NORT
after a consecutive 10-day ketamine treatment followed by a 6-
day withdrawal period (Figure 1A). Mice that received ketamine
injection exhibited a significant reduction in social interaction
compared with saline-treated mice; this was shown as a reduction
in both time in the social interaction zone (p < 0.0001,
Figures 1B,C) and social interaction ratio (p < 0.001, Figure 1D)
without alterations in locomotor activity (Figure 1E), suggesting
that repeated ketamine administration and withdrawal-induced
social avoidance in mice. In the NORT, ketamine-treated mice
showed a significantly decreased recognition ratio compared
with mice in the saline group (p < 0.001, Figures 1E,G). These
findings reveal that ketamine-treated mice exhibit behavioral
deficits, including social avoidance and cognitive impairment.
We further found that exposure to ketamine after withdrawal
induced a robust decrease in oxytocin levels in both the plasma
(p < 0.0001, Figure 2A) and the mPFC (p < 0.0001, Figure 2B).
Since the normal physiological activity of the mPFC is involved
in the development of the social and cognitive processes, we
next measured the neuronal activity of the mPFC. Data analyses
from the immunohistochemistry assay of c-fos staining in
the mPFC showed that c-fos-positive cells in the ketamine-
injected group were higher than those in the saline group (p <
0.001, Figures 2C,D). These results indicate that the behavioral
deficits induced by repeated ketamine administration might be
associated with a decrease in oxytocin signaling and neuronal
activity in the mPFC.

Microinjection of Oxytocin Into Medial
Prefrontal Cortex Reverses the Behavioral
Deficits Induced by Repeated Ketamine

Administration

We next examined the effects of oxytocin enhancement in
the mPFC on the behavioral deficits induced by repeated
ketamine administration. Stereotactic surgery was performed
for intra-mPFC microinjection in both ketamine- and saline-
treated mice. The mice were then subjected to a 10-day
ketamine injection and 6-day withdrawal. Oxytocin (1 ng per
side) or its vehicle was microinfused into the mPFC during
withdrawal period once daily for 6 days before the social
interaction and NORT (Figure 3A). The results showed that
administering ketamine induced social avoidance as measured
by the social interaction time [F(z 26y = 8.67, p < 0.0001,
Figures 3B,C] and reduced interaction ratio [F(; 26) = 3.93, p
< 0.05, Figure 3D], and impaired cognition compared with the
saline group [F(,, 26) = 12.24, p < 0.0001, Figure 3E]. However,
mPFC infusions of oxytocin increased the social interaction time
[F(2,26) = 5.33, p < 0.01, Figure 3C] and social interaction
ratio [F(y 26) = 3.59, p < 0.05, Figure 3D]. A similar effect
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(B) the levels of medial prefrontal cortex (MPFC) oxytocin measured by enzyme-linked immunosorbent assay (ELISA). ****p < 0.0001, compared with saline group.

n = 8-9 per group. (C) The representative photographs of the c-fos-positive cell staining with immunohistochemistry and coronal brain sections in the mPFC. Scale
bars indicate 0.5 mm (left images) and 100 um (right images). (D) The number of fluorescent-labeled c-fos™ cells for each of the quantified regions (four to six images
per mouse, standardized to 1 mm?). Data are presented as mean & SEM. **p < 0.001, ***p < 0.0001 compared with saline group. n = 6 per group.
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was found after the infusion of oxytocin in the mPFC in
the NORT, in which the recognition ratio exhibited in the
ketamine treatment group was significantly increased by oxytocin
infusion [F(; 26y = 10.51, p < 0.0001, Figure 3E]. Our data
are consistent with previous reports that central administration
of oxytocin enhanced certain social behaviors and cognitive
capacities (Meyer-Lindenberg et al, 2011). These results
indicate that oxytocin in the mPFC mediates the development

and reversal of social avoidance and cognitive impairment
induced by ketamine.

Medial Prefrontal Cortex Oxytocin
Normalizes Ketamine-Induced Increase in
TNF-«, IL-6, and IL-1§ Levels

We next investigated the potential pathway underlying the
beneficial effects of oxytocin on the reversal of social behaviors.
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FIGURE 3 | Microinjection of oxytocin into mPFC reverses the behavioral deficits induced by repeated ketamine administration. (A) Experimental timeline for ketamine
treatment, oxytocin microinjection, and behavioral protocol. (B) The indicative photograph of the injection sites of coronal brain sections and representative cannula
placements in the mMPFC. (C) The time spent in the social interaction zone and (D) the social interaction ratio measured in social interaction test. (E) The recognition
ratio measured in the novel object recognition test. Data are presented as mean + SEM. *p < 0.05, *p < 0.01, **p < 0.0001 compared with saline or
ketamine-vehicle group. n = 9-10 per group. OT, oxytocin.
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Previous studies have shown that the inflammation is involved in
the psychosocial behaviors during the drug withdrawal period,
with increased levels of TNF-a, IL-6, and IL-1f (Hu et al,
2016). Additionally, the anti-inflammatory effects of oxytocin are
linked to its social interactions by decreasing the inflammatory
cytokines TNF-a, IL-6, and IL-1p in both rodents and humans
(McQuaid et al., 2014). We attempted to provide direct evidence
that intra-mPFC oxytocin regulates the inflammatory process
that occurs in ketamine-induced behavioral deficits. To achieve
this goal, the mice were treated with ketamine for 10 days and
exposed to a 6-day withdrawal period, during which the mice
were microinjected with oxytocin or its vehicle in the mPFC. On
day 17, both blood samples and mPFC brain tissues from mice
were collected for ELISA measurements of TNF-a, IL-6, and IL-
1B levels. We found that chronic ketamine treatment significantly
increased TNF-a [F(; 26) = 7.64, p < 0.0001, Figure 4A], IL-
6 [F(z) 26) = 533, p < 0.01, Figure 4B], and IL-1B [F(Z, 26) =
10.12, p < 0.0001, Figure 4C] at the periphery, and intra-mPFC
oxytocin blocked these activated cytokines of TNF-a [F(5, 26) =
6.57, p < 0.001, Figure 4A], TL-6 [F(, 6 = 4.13, p < 0.05,
Figure 4B], and IL-1B [F(y, 26) = 5.84, p < 0.001, Figure 4C].
Consistently, the levels of TNF-a [F, 26y = 4.84, p < 0.01,
Figure 4D], IL-6 [F(3 26y = 9.97, p < 0.0001, Figure 4E], and

IL-1p [F(3,26) = 7.24, p < 0.0001, Figure4F] in the mPFC
were also increased by chronic ketamine, whereas intra-mPFC
oxytocin reduced TNF-a [F(, 26) = 4.03, p < 0.05, Figure 4D],
IL-6 [F(, 26) = 6.45, p < 0.001, Figure 4E], and IL-1P levels
[F2, 26) = 4.92, p < 0.01, Figure 4F]. These results indicated that
both circulating and mPFC pro-inflammatory cytokine levels
were elevated in ketamine-treated mice. Infusion of oxytocin in
the mPFC during the withdrawal period significantly decreased
TNF-a [F(3,26) = 4.03, p < 0.05, Figure 4D], IL-6 [F(3, 2)
= 645, p < 0.001, Figure4E], and IL-1B [F(3 26) = 4.92,
p < 0.01, Figure 4F] levels not only in the plasma but also
in the mPFC (Figures 4D-F), suggesting an attenuated effect
of oxytocin on increased inflammatory factors in mice with
ketamine withdrawal.

Medial Prefrontal Cortex Oxytocin
Regulates the Blood Immune Markers in
Ketamine-Treated Mice

Since it has been evidenced that there is a significant relationship
between immune markers and cognitive symptoms or drug abuse
(Guzel et al., 2018; Fourrier et al., 2020), we determined the
parameters related to the immune system such as neutrophils,
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lymphocytes, monocytes, NLR (the calculated ratio of the
blood neutrophil to lymphocyte count), and MLR (calculated
by dividing the monocyte count by the lymphocyte count)
(Figure 5A). We found that the neutrophils [F(, ) = 11.40,
p < 0.0001, Figure5B] and monocyte counts [F(; ) =
9.68, p < 0.0001, Figure 5D] increased with chronic ketamine
administration, whereas the upregulation of neutrophils [F(,, 12
= 8.40, p < 0.0001, Figure 5B] and monocytes [F(y, 22y = 7.95,
p < 0.0001, Figure 5D] significantly reduced by intra-mPFC
oxytocin treatment. Neither ketamine nor oxytocin showed
alterations in the lymphocyte count (p > 0.05, Figure 5C). In
addition, higher values of NLR [F(5 2) = 7.74, p < 0.0001]
and MLR [F(3 7y = 6.30, p < 0.0001] were observed in the
ketamine group than in the saline group, but oxytocin infusion
decreased the NLR [F(, 75y = 6.02, p < 0.001, Figure 5E] and
MLR [F(,, 23 = 5.64, p < 0.01, Figure 5F]. Our results raised
the possibility that there may be a potential relationship between
the protective effects of oxytocin on behavioral deficits and the
restoration of blood immune biomarkers in mice chronically
treated with ketamine.

Oxytocin Receptor Antagonist Blocks the
Reversal Effects of Oxytocin on Behavioral

Impairments in Ketamine-Treated Mice

We next examined the role of oxytocin in the mPFC in the
behavioral impairment of ketamine withdrawal by the infusion
of an oxytocin antagonist atosiban into the mPFC after a
10-day ketamine injection and 6-day abstinence (Figure 6A).
Pretreatment with atosiban 30 min before each oxytocin infusion
in the mPFC showed a trend of attenuation of the social
interaction behavior, which was improved by oxytocin in
ketamine-treated mice, although there was no significant
difference between groups (Figure 6B). Statistical analyses
revealed significant effects of oxytocin [F(3 37y = 4.52, p < 0.05,
Figure 6C] and atosiban [F(3, 37y = 4.07, p < 0.05, Figure 6C] on
the social interaction ratio. Oxytocin significantly increased the
social interaction impaired by chronic ketamine administration,
whereas atosiban microinfusion in the mPFC in oxytocin-
treated mice reversed the increase in the social interaction
ratio. Finally, in the NORT, the recognition ratio reduced by
chronic ketamine administration was increased by intra-mPFC
oxytocin [F(3 37y = 6.88, p < 0.0001, Figure 6D]; however, this
increased recognition ratio was hindered by pre-infusion of
atosiban into the mPFC [F(3 37y = 4.06, p < 0.05, Figure 6D].
Altogether, these results indicate that the enhanced function of
oxytocin in the mPFC was associated with improvement of social
interaction and cognitive performance in ketamine-treated mice,
and antagonism of oxytocin receptors by atosiban in the mPFC
blocked the beneficial effects of oxytocin.

DISCUSSION

The results of the present study showed that repeated ketamine
administration (5 mg/kg, i.p.) for 10 days and withdrawal for
6 days induced behavioral deficits in both social interaction
and cognitive performance as well as reduced oxytocin levels
in the mPFC. Furthermore, direct microinjection of oxytocin

into the mPFC reversed the social avoidance and cognitive
impairment, whereas pre-infusion of the oxytocin receptor
antagonist atosiban blocked the reversal effects of oxytocin.
Repeated ketamine exposure also inhibited mPFC neuronal
activity as measured by a decrease in c-fos-positive cells. In
addition, oxytocin administration normalized ketamine-induced
inflammatory cytokines including TNF-a, IL-6, and IL-1f levels
both at the periphery and in the mPFC. Finally, the activation
of immune markers such as neutrophils and monocytes by
ketamine was restored in oxytocin-treated mice. Taken together,
these results demonstrate that enhancing oxytocin signaling in
the mPFC is a potential pathway to reverse social avoidance
and cognitive impairment via normalization of inflammatory
mediators as well as immune markers and may represent a
promising therapeutic strategy for treating ketamine-induced
behavioral disturbances (Figure 7).

Oxytocin, synthesized in the magnocellular neurons situated
in the supraoptic and paraventricular nuclei of the hypothalamus
and processed to the pituitary, has been shown to increase
social interaction and improve cognitive performance in mental
disorders characterized by social impairments (MacDonald et al.,
2013; Tengetal., 2013; Havranek et al., 2015). Given that previous
studies prescribed a negative relationship between oxytocin
levels and ketamine treatment (Huang et al., 2018), there is a
potential for introducing oxytocin as a therapeutic candidate
to restore impaired functions in social and cognitive behaviors.
As expected, we found from the present study that the plasma
oxytocin was significantly decreased by repeated ketamine
administration and withdrawal, suggesting that there might be
a direct association between the oxytocin system and ketamine-
induced social disorders. It is also noteworthy that reduced
central oxytocin levels were observed in the mPFC, which is
thought to play an essential role in cognition and social behavior
(Ferguson and Gao, 2018; Jung et al., 2021). Dysfunction of the
mPFC may be responsible for impairments in social interaction
and cognitive performance in several studies (Ferguson and Gao,
2018). Importantly, whether the social interaction deficits caused
by ketamine could be restored by oxytocin is determined by
the pattern of administration. For example, systematic oxytocin
did not ameliorate social deficits, contrary to studies in which
this deficit was restored by intracerebroventricular oxytocin
administration (Havranek et al., 2015). In the present study, we
aimed to investigate whether a specific infusion of oxytocin in the
mPFC has a positive effect on the social and cognitive functions
in mice with ketamine withdrawal. Our results showed that
ketamine treatment was associated with a significant decrease in
social interactions and cognitive deficits, which is consistent with
previous studies (Silvestre et al., 1997). In addition to reduced
oxytocin levels in the mPFC, we further found that the neuronal
activity in the mPFC was also inhibited by ketamine relative
to mice in the control group, suggesting that the improvement
of mPFC activity as well as oxytocin function in the mPFC
may be necessary for reversal of these social deficits induced
by ketamine. We found here that oxytocin microinfused in
the mPFC during the withdrawal period reversed the social
avoidance and cognitive impairment induced by ketamine.
Although the mPFC activity after oxytocin administration has
not been investigated in this study, it is noteworthy that the
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normal function of the mPFC contributes to the neuronal
pathways underlying social and cognitive function; hence, we
found a potential association between mPFC oxytocin and
behavioral improvements. However, it is still necessary to further
determine the molecular regulators in this link.

Stressful situation performance is considered to be responsible
for the ketamine abstinence-induced impairment in social
interaction and cognitive performance due to the increased
stress hormones that can increase the risk of the development
of substance abuse and relapse (Huang et al, 2020). The
regulatory role of oxytocin in behavioral responses to stress
has also been investigated. For example, both peripheral blood
and central levels of oxytocin were elevated by various stressful
procedures, whereas administration of oxytocin restored these
changes by reducing stress adrenocorticotropic hormone and
corticosteroid concentrations (Wotjak et al., 1998; Windle et al.,
2004). Regarding the link between oxytocin function and
stress systems, numerous studies support the hypothesis that
oxytocin is generally associated with an active response to stress
by inhibiting the hyperactivity of the hypothalamic-pituitary-
adrenal (HPA) axis (Kormos and Gaszner, 2013), leading to
the mitigation of the negative effects of stress on social and
cognitive functions. In addition, stress-induced reinstatement of
addictive methamphetamine increased inflammatory cytokines
in the prefrontal cortex, leading to changes in neurotransmission,
thus, triggering reinstatement of methamphetamine (Karimi-
Haghighi et al., 2020). Moreover, the increased pro-inflammatory
cytokines (TNF-a, IL-6, and IL-1p) were found in addictive
psychostimulants including ketamine, methamphetamine, and
alcohol (Airapetov et al., 2019; Li et al., 2020; Sedky and
Magdy, 2021), suggesting that changes in peripheral markers of
inflammation are generally associated with drug abuse. These
data raised the possibility that oxytocin participates in social
and cognitive functions through interactions with inflammatory
processes, and reduction in inflammatory cytokines may play an
important role in the reversal effect of oxytocin on ketamine-
induced behavioral dysfunctions. Of note, pro-inflammatory
cytokines including IL-6 and IL-1p altered the oxytocin
receptor expression in tissues (Baribeau and Anagnostou,
2015), suggesting that reducing inflammatory activity in early
abstinence could change social and cognitive deficiencies.
Therefore, attenuation of the pro-inflammatory effects of
addictive drug administration may have implications on the
treatment of drug abuse. In the present study, we found that both
circulating and mPFC pro-inflammatory cytokine levels were
elevated in ketamine-treated mice, whereas infusion of oxytocin
in the mPFC during the withdrawal stage significantly decreased
TNF-a, IL-6, and IL-1P levels. These results suggest a protective
effect of oxytocin on increased inflammatory factors in mice with
ketamine withdrawal.

Together with increased levels of pro-inflammatory
cytokines (i.e., TNF-a, IL-18, and IL-6), ketamine caused
redox dysregulations, such as elevated production of reactive
oxygen species (ROS) in the prefrontal cortex of adult mice (Bove
et al., 2020). It has also been shown that redox dysregulation
is significantly implicated in the development of cognitive
and social dysfunctions in rodents (Genius et al, 2013).

Moreover, oxidative alterations could prevent cognitive and
social behavioral deficits induced by ketamine administration in
mice (Phensy etal., 2017; Ben-Azu et al., 2018). Hence, ketamine-
induced neuroinflammation and consequent ROS release may
play a substantial role in the pathophysiology of the behavioral
deficits. Further investigations targeting the inhibition of
inflammatory pathways and enhancement of antioxidant defense
could be helpful in preventing the neurobehavioral abnormalities
caused by ketamine.

Regarding the association of immune markers and social
interaction, a recent study showed that repeated social defeat
stress increased neutrophils and monocytes in the blood, and
this increase may contribute to the development of social
avoidance (Ishikawa et al., 2021). Additionally, NLR and
MLR were significantly associated with cognitive performance
in patients with major depressive disorder (Fourrier et al.,
2020). However, the role of immune markers particularly
neutrophils, lymphocytes, monocytes, NLR, and MLR in
social interaction, and cognitive performance improved by
oxytocin remains unclear. We found that the neutrophils and
monocyte counts as well as NLR and MLR were increased
by chronic ketamine injection, and intra-mPFC oxytocin
treatment significantly reduced these immune markers. Our
results indicate that there is a potential relationship between
the protective effects of oxytocin on social and cognitive deficits
and the restoration of blood immune biomarkers in mice
chronically treated with ketamine. Although several studies
have summarized the potential treatment of oxytocin for social
deficits and cognitive dysfunction (Meyer-Lindenberg et al,
2011; Baribeau and Anagnostou, 2014), the specific effects of
oxytocin on inflammatory processes and the immune system
have not been fully identified. Furthermore, investigations
are needed to determine whether anti-inflammatory agents
can increase oxytocin levels reduced by chronic ketamine
treatment to provide a direct evidence supporting the link
between inflammation and the social behavior network regulated
by oxytocin.

Oxytocin distribution is consistent with the expression pattern
of its receptors, which are G protein-coupled receptors that
bind to oxytocin, expressed in several regions of the rodent
brain, including the mPFC (Shapiro and Insel, 1992; Donovan
et al,, 2018). The mPFC is known to play a crucial role in
both social interaction and cognitive function in a wide range
of domains such as social support, positive communication,
executive control, learning, and memory. Accordingly, the
specific receptor-binding activity is determined by different
oxytocin concentrations; the local oxytocin concentrations
in the brain are keys for the oxytocin receptor activation
and subsequent stimulation of intracellular signaling pathways
(Abramova et al., 2020). In the present study, we found
that specific antagonism of oxytocin receptors in the mPFC
blocked the reversal effects of oxytocin on the social interaction
and cognitive performance. Our results further demonstrate
that mPFC inactivation of oxytocin signaling pathway by
an oxytocin receptor antagonist is critically involved in
the behavioral deficits induced by ketamine. The positive
effects of oxytocin on behavioral changes are associated with
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its regulation of neural correlates of the prefrontal cortex,
nucleus accumbens, and ventral tegmental area and modulation
of the sensitivity to social stimuli with a shared input
from oxytocin receptors (Baribeau and Anagnostou, 2015).
Moreover, oxytocin was found to enhance the activity in
areas including the frontal cortex, nucleus accumbens, and
amygdala during social tasks (Gordon et al., 2013). However,
it is important to note that the synthetic oxytocin receptor
antagonists used in animal studies may not equally affect
human physiology; this could be interpreted by the significant
genetic variation in the receptor structure across different species
(Baribeau and Anagnostou, 2015).

CONCLUSION

In conclusion, our results indicate that enhancement of
oxytocin in the mPFC has beneficial effects on social
avoidance and cognitive deficits induced by chronic
ketamine treatment, and withdrawal may be mediated
through the regulation of inflammatory cytokines and
immune markers. These findings provide a potential
strategy for targeting mPFC oxytocin signaling for the
prevention of drug withdrawal associated with social and
cognitive dysfunctions.
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