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Basic and clinical studies have shown that hydrogen (H2), the lightest gas in the air, has
significant biological effects of anti-oxidation, anti-inflammation, and anti-apoptosis. The
mammalian cells have no abilities to produce H2 due to lack of the expression of
hydrogenase. The endogenous H2 in human body is mainly produced by anaerobic
bacteria, such as Firmicutes and Bacteroides, in gut and other organs through the
reversible oxidation reaction of 2 H+ + 2 e- ⇌ H2. Supplement of exogenous H2 can
improve many kinds of liver injuries, modulate glucose and lipids metabolism in animal
models or in human beings. Moreover, hepatic glycogen has strong ability to accumulate
H2, thus, among the organs examined, liver has the highest concentration of H2 after
supplement of exogenous H2 by various strategies in vivo. The inadequate production of
endogenous H2 play essential roles in brain, heart, and liver disorders, while enhanced
endogenous H2 production may improve hepatitis, hepatic ischemia and reperfusion
injury, liver regeneration, and hepatic steatosis. Therefore, the endogenous H2 may play
essential roles in maintaining liver homeostasis.
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INTRODUCTION

Hydrogen (H2) is the lightest and diffusible gas molecule. H2 is produced as an endproduct of
carbohydrate fermentation, and is reoxidized primarily by sulfate-reduction, methanogenesis, and
acetogenesis (Wolf et al., 2016). However, due to lack of the functional hydrogenase genes,
mammalian cells fail to produce H2 themselves; the endogenous H2 in mammalian is mainly
produced by hydrogenases-containing bacterial species present in human gastrointestinal tract, the
respiratory system, mouth and pharynx, vagina, and skin (Zhang et al., 2018b; Tan et al., 2019).
Over 200 pathogens and pathobionts, and 70% of microbial species in gastrointestinal tract listed in
the Human Microbiome Project encode genes for hydrogenases (Wolf et al., 2016; Benoit et al.,
2020). Early in 1975, Malcolm Dole et al. firstly reported that exposed hairless albino mice with
squamous cell carcinoma to a mixture of 97.5 percent H2 and 2.5 percent oxygen (O2) at a total
pressure of 8 atmospheres for periods up to 2 weeks would cause a marked regression of the skin
tumors possibly by neutralizing toxic free radicals (Dole et al., 1975). In 2007, the milestone
publication in Nature Medicine by Ikuroh Ohsawa et al. had confirmed that H2 acted as a
therapeutic antioxidant by selectively reducing the cytotoxic hydroxyl radicals in PC12 cells,
however, H2 did not react with other reactive oxygen species (ROS), which possess physiological
in.org June 2020 | Volume 11 | Article 8771
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roles (Ohsawa et al., 2007). Thus, inhalation of H2 gas markedly
suppressed focal ischemia and reperfusion (I/R)-induced brain
injury in rats by buffering the effects of oxidative stress. From
then on, researchers have extensively investigated the functions
and mechanisms of H2, studies indicated that supplement of
exogenous H2 has the potential abilities to protect against acute
or chronic damage of tissues or organs, including brain,
heart, blood vessel, lung, stomach, intestine, pancreas, liver,
gallbladder, kidney, testis, ovary, breast, eye, ear, bones, skin, et
al. (Guo et al., 2013; Sun et al., 2013; Zhang et al., 2016a; Zhang
et al., 2016b; Ge et al., 2017; Zhang et al., 2017; Frajese et al.,
2018; Zhang et al., 2018b; Chen et al., 2019; Tan et al., 2019; Tao
et al., 2019). H2 dissolved in medium protected PC12 cells
against cell death in a dose-dependent manner, as that H2 > 25
mM had significant anti-oxidative effect (Ohsawa et al., 2007).
The concentrations of H2 is about 168 mM in small intestine and
43 mM in the stomach of mice, with similar levels predicted in
humans (Benoit et al., 2020), this indicates that the concentration
of endogenous H2 in human body is significantly higher than
that needed for anti-oxidative effect.
THE EXOGENOUS HYDROGEN IN LIVER
DISEASES

Liver has strong ability to increase and accumulate H2 after
supplement (Kamimura et al., 2011; Sun et al., 2011; Sobue et al.,
2015; Iketani et al., 2017; Yamamoto et al., 2019). Among the
organs examined in vivo, liver has the highest mean maximum
concentration (Cmax, 29.0 ± 2.6 mmol/L) in rats by continuous
inhalation of 3% H2 (Yamamoto et al., 2019). The concentration
of H2 in liver peaked approximately 5 min following
intraperitoneal injection of 8 ml/kg H2 rich saline in mice, and
returned to the normal levels 40 min later (Sun et al., 2011). Oral
intake of H2 rich water rapidly but transiently increased H2

concentrations in liver and atrial blood, while H2 concentrations
in arterial blood and kidney were one-tenth of those in rat liver
and atrial blood (Sobue et al., 2015). Mechanistically, hepatic
glycogen accumulated H2 after oral administration of H2 rich
water in vivo, and the in vitro experiment also confirmed that
glycogen solution maintained H2, explaining why consumption
of even a small amount of H2 over a short span time efficiently
improved various liver diseases in animal models (Kamimura
et al., 2011; Ohta, 2014).

The imbalance of redox homeostasis plays an important role
in liver homeostasis (Chen et al., 2020). Supplements of
exogenous H2 by the strategies of drinking H2 rich water,
intraperitoneal injection of H2 rich saline, H2 saturated lactate
Ringer’s solution infused via portal vein, and breathing H2 gas et
al., safeguarded various acute or chronic liver injuries in animal
models, for example, hepatic I/R injuries, including hepatic
portal vein occluding, partial hepatectomy, and cold I/R in
liver transplantation et al. (Fukuda et al., 2007; Xiang et al.,
2012; Matsuno et al., 2014; Tan et al., 2014; Zhang et al., 2015a;
Shimada et al., 2016; Lu et al., 2017; Bai et al., 2018; Ishikawa
et al., 2018; Li et al., 2018a; Li et al., 2018b; Zhang et al., 2018a;
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Ge et al., 2019; Uto et al., 2019; Zhang et al., 2019), bile duct
ligation (BDL)- (Liu et al., 2010; Liu et al., 2016), sepsis- (Sun
et al., 2011; Iketani et al., 2017; Yan et al., 2019), drugs- (Sun
et al., 2011; Koyama et al., 2014; Zhang et al., 2015b; Gao et al.,
2016), and carbon dioxide (CO2) pneumoperitoneum- (Chen
et al., 2018) induced liver injuries, et al. by suppressing excessive
oxidative stress, inflammation and cell death et al. (Supplementary
Table 1). In addition, H2 alleviated chronic intermittent hypoxia
(IH)-induced liver injury via reducing oxidative stress levels (Yang
et al., 2018), and improved chronic IH-induced renal injury through
reducing renal iron transporting related proteins expression to
alleviate iron overload (Guan et al., 2019). It is known that liver is
an essential organ that orchestrates systemic iron balance by
producing and secreting hepcidin, which acts as the iron
hormone, induces degradation of the iron exporter ferroportin to
control iron entry into the bloodstream from dietary sources, iron
recycling macrophages, and body stores (Wang and Babitt, 2019).
However, it is not known whether H2 can modulate liver iron
sensing and body iron homeostasis.

The liver is a central hub for lipids metabolism, with uptake,
esterification, oxidation and secretion of fatty acids (FAs) all
occurring in hepatocytes (Chen, 2015; Gluchowski et al., 2017).
Hepatic FAs originate from three sources, plasma non-esterified
free FAs (lipolysis in adipocytes and unabsorbed portions of
lipoproteins after lipoprotein lipase hydrolysis in peripheral
tissues), de novo biosynthesis from acetyl CoA derived from
different sources, and lipoproteins such as chylomicron
remnants (leftover of triacylglycerol (TAGs) from the dietary
source) (Chen, 2015). FAs in hepatocytes are esterified with
glycerol 3-phosphate to generate TAG or with cholesterol to
produce cholesterol esters, which are either stored in hepatic
lipid droplets or secreted into the circulation in the forms of very
low-density lipoprotein (VLDL) particles (Rui, 2014; Chen,
2015). FAs are also incorporated into phospholipids, which are
an essential component of cell membranes, and the surface layer
of lipid droplets, VLDL, and bile particles (Rui, 2014). During
fasted state, FAs are transported into mitochondria for b-
oxidation to generate acetyl CoA, which in mitochondria can
be used for the production of ketone bodies (Chen, 2015). H2 has
the abilities to modulate lipids profiles and functions in vivo. H2

rich saline decreased plasma total cholesterol (TC) and low-
density lipoprotein (LDL) cholesterol levels, and reduced the
levels of apolipoprotein (apo) B100 in LDL and apo E in VLDL,
improved hyperlipidemia-injured high-density lipoprotein
(HDL) functions, including the capacity of enhancing cellular
cholesterol efflux and protecting against LDL oxidation, in high-
fat diet (HFD)-fed Syrian golden hamsters (Zong et al., 2012). In
a before-after self-controlled study, patients with potential
metabolic syndrome consuming H2 rich water for 10 weeks
resulted in decreased serum TC and LDL-cholesterol levels, and
apo B100 and apo E levels, improved dyslipidemia-injured HDL
functions, including the ability to inhibit LDL oxidation, the
ability to suppress TNF-a-induced monocyte adhesion to
endothelial cells (ECs) and TNF-a-induced ECs apoptosis, and
the ability to stimulate cholesterol efflux from macrophage foam
cells (Song et al., 2013). These were further confirmed in patients
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with hypercholesterolemia in a double-blinded, randomized, and
placebo-controlled trial (Song et al., 2015). They found that H2

treatment increased plasma HDL3-mediated cholesterol efflux
via ATP-binding cassette transporter A1 from macrophages ex
vivo; enhanced HDL antiatherosclerotic functions as that of
suppressing LDL oxidation, oxidized-LDL-induced THP-1
monocytes adhesion to ECs, ox-LDL-induced ICAM-1,
VCAM-1, and IL-6 expression in ECs, and oxidized-LDL-
induced ECs apoptosis; decreased plasma levels of TC and
LDL cholesterol, apo B100; and decreased plasma levels of
malondialdehyde (MDA), interleukin-6 (IL-6) and TNF-a,
increased the activity of superoxide dismutase (SOD) in
plasma, and increased the activity of paraoxonase-1 (PON-1),
an antioxidant enzyme associated with HDL, in both plasma and
HDL3 fractions (Song et al., 2015). Using cigarette smoke
exposure mice model, Qin Shucun et al. found that H2

saturated saline minimized the impaired plasma lipid profiles
and HDL functionalities, moreover, improved the impaired
process of reverse cholesterol transport (RCT), in which it
promoted the efflux of excess cholesterol from peripheral
tissues and returned it to the liver for utilization, direct
secretion into bile and feces disposal (Zong et al., 2015).
Therefore, H2 is an essential regulator of lipids profiles, HDL
functions and RCT et al.

Hepatic glucose production accounts for ~90% of
endogenous glucose production, and it is crucial for systemic
glucose homeostasis, and the net hepatic glucose production is
the summation of glucose fluxes from gluconeogenesis,
glycogenolysis, glycogen synthesis, glycolysis, and other
pathways (Petersen et al., 2017). H2 has been shown to
maintain the glucose homeostasis, improve fatty liver diseases
in animal models and in human beings. Drinking H2 rich water
reduced obesity, decreased levels of plasma glucose, insulin, and
triglyceride, and improved hepatic oxidative stress in db/dbmice,
and alleviated fatty liver in db/db mice and HFD-fed wild-type
mice (Kamimura et al. , 2011; Jackson et al. , 2018).
Mechanistically, H2 increased O2 consumption and CO2

production without influencing movement activities, and
enhanced the expression of hepatic fibroblast growth factor 21
(FGF21), which functioned to improve carbohydrate and lipid
homeostasis (Kamimura et al., 2011; BonDurant and Potthoff,
2018). H2 rich saline alleviated streptozotocin (STZ) and HFD-
induced nonalcoholic fatty liver disease (NAFLD) in rats,
decreased fasting blood glucose and insulin levels, improved
insulin sensitivity and glucose tolerance, lowered hepatic
TNF-a, IL-1b, 8-hydroxy-2′-deoxyguanosine (8-OHdG), 3
−nitrotyrosine levels, and Caspase-3 activity, increased hepatic
expression of PPARa, which induced the expression of medium-
chain acyl-CoA dehydrogenase and acyl-CoA oxidase 1, the rate-
limiting enzymes in mitochondrial and peroxisomal fatty acids
b-oxidation, respectively, and PPARg, which contributed to
hepatic steatosis (Zhai et al., 2017; Wang et al., 2020).
Intraperitoneal injection of H2 gas had the therapeutic effect
on methionine-choline-deficient (MCD) diet-induced NAFLD
in mice via inhibiting hepatic MDA levels and JNK
phosphorylation (Zhou et al., 2020). Daisuke Kawai et al.
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revealed that H2 rich water improved MCD diet-induced
nonalcoholic steatohepatitis (NASH) in mice by decreasing
plasma ALT levels, hepatic TNF-a and IL-6, oxidative stress
and apoptosis related markers, free fatty acid (FFA) uptake-
related gene fatty acid translocase (FAT) (Kawai et al., 2012). H2

rich water also reduced tumor numbers and maximum tumor
size in STZ-induced NASH-related hepatocarcinogenic mice
model (Kawai et al., 2012). However, they found that H2

decreased hepatic PPARa and its targeted gene FFA b-
oxidation-related gene acyl-CoA oxidase expression in MCD
diet-induced NASH mice model (Kawai et al., 2012). Therefore,
the regulated effects of H2 on PPARamight be dependent on the
animal models examined, it is possible that H2 regulates hepatic
lipid metabolism via maintaining the balance of hepatic de novo
lipogenesis/FFAs uptake and b-oxidation. H2 also had the
protective effects on chronic-plus-binge ethanol (EtOH)
feeding-induced liver injury, possibly by inducing acyl ghrelin
to suppress the expression of pro-inflammatory cytokines TNF-a
and IL-6 and induce the expression of IL-10 and IL-22, thus
activating antioxidant enzymes against oxidative stress (Lin et al.,
2017). In human beings, drinking H2 rich water improved lipids
and glucose metabolism in patients with type 2 diabetes or
impaired glucose tolerance (Kajiyama et al., 2008), reduced
liver fat accumulation in overweight patients suffering from
mild-to-moderate NAFLD (Korovljev et al., 2019), improved
liver function and reduced viral load in patients with chronic
hepatitis B (Xia et al., 2013), attenuated biological reaction to
radiation-induced oxidative stress without compromising anti-
tumor effects in patients with liver tumors (Kang et al., 2011), and
alleviated liver injury of colorectal cancer patients treated with
mFOLFOX6 chemotherapy (Yang et al., 2017). Therefore,
exogenous H2 has the abilities to regulate hepatic glucose and
lipids metabolism, attenuate virus and chemotherapy related liver
injuries, and improve I/R or drugs-induced hepatic inflammation
and oxidative stresses.
THE ENDOGENOUS HYDROGEN IN LIVER
HOMEOSTASIS

H2 has antioxidant activity and, in the healthy colon, physiological
concentrations of H2 might protect the mucosa against oxidative
insults, whereas an impaired H2 economy might facilitate
inflammation or carcinogenesis (Carbonero et al., 2012).
Moreover, the decreased endogenous H2 levels might also play
essential roles in Parkinson’s disease, cerebral and myocardial I/R
injuries, and chronic heart failure pathogenesis, while supplement
of exogenous H2 may act as a possible therapy for these brain and
heart diseases (Fu et al., 2009; Fujita et al., 2009; Shinbo et al., 2013;
Yoritaka et al., 2013; Zhai et al., 2013; Hasegawa et al., 2015;
Ostojic, 2018; Shibata et al., 2018; Suzuki et al., 2018). In liver, the
endogenous H2 produced by intestinal flora had the ability to
improve Concanavalin A (Con A)-induced hepatitis by decreasing
serum TNF-a and IFN-g, while inhibition of intestinal flora by
antibiotics aggravated Con A-induced hepatitis (Kajiya et al.,
2009). Feeding diet with 20% high amylose cornstarch enhanced
June 2020 | Volume 11 | Article 877
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H2 generation in intestine, and subsequently alleviated hepatic I/R
injury in rats (Tanabe et al., 2012). Lactulose accelerated liver
regeneration after hepatectomy in rats by inducing endogenous H2

production, which may increase hepatic SOD expression and
activity, decrease hepatic MDA, IL-6 and TNF-a levels (Yu
et al., 2015). Supplement of exogenous H2 by H2 rich saline had
a similar protective effect as lactulose, in contrast, the antibiotics
inhibited the regeneration-promoting effect of lactulose
by reducing H2 production (Yu et al., 2015). L-arabinose, a
naturally occurring plant pentose, elicited gut-derived
endogenous H2 production and alleviated HFD-induced
metabolic syndrome, including reduced body weight gain
especially fat weight, alleviated liver steatosis, improved glucose
homeostasis, reduced systemic dyslipidemia and inflammation in
mice (Zhao et al., 2019). Mechanistically, L-arabinose modulated
gene-expressions involved in lipid metabolism and mitochondrial
function in key metabolic tissues (Zhao et al., 2019). Therefore,
endogenous H2 is an essential regulator of liver homeostass, such
as improving hepatitis, hepatic I/R injury, liver regeneration,
hepatic steatosis as well as glucose and lipids homeostasis.
DISCUSSION

The total H2 levels in mammals are dependent on the balance
between H2-producing fermentative bacteria, such as colonic
Firmicutes and Bacteroidetes et al., and H2 consumers, H2 acts as
a substrate for acetic acid producing bacteria, methanogenic
bacteria, and sulfate reducing bacteria to utilize and support
their energy metabolism (Nakamura et al., 2010; Carbonero
et al., 2012; Wolf et al., 2016). The H2 cycling is central to
microbial composition and metabolic homeostasis in the human
gastrointestinal tract (Wolf et al., 2016). The gastrointestinal
tract-products such as host and/or microbial metabolites
(including H2) and pathogen-associated molecular patterns
translocate to the liver via the portal vein or by free diffusion
Frontiers in Pharmacology | www.frontiersin.org 4
and influence liver functions (Tripathi et al., 2018). In contrast,
liver transports bile salts, antimicrobial molecules as well as other
liver metabolites to the intestinal lumen through the biliary tract
and systemic circulation, some of which maintain microecology
balance by controlling unrestricted bacterial overgrowth
(Tripathi et al., 2018). Therefore, H2 might be as a novel
bridge between gut and liver, and play an important role in
gut-liver axis (Figure 1).

Colonic gases, including H2, CO2, methane (CH4), nitrogen
and O2 as well as other trace gases including volatile amines, NH3,
mercaptans, and sulfur-containing gases, such as hydrogen
sulphide (H2S), which is synthesized by cystathionine
g-lyase (CSE), cystathioine b-synthase (CBS), and 3-
mercaptopyruvate sulfurtransferase (3-MST) in concert with
cysteine aminotransferase (CAT) in mammalian cells, and is also
a by-product of H2 metabolism by sulphate-reducing bacteria, are
among the most tangible features of digestion, clinically, changes
in volume or composition of colonic gases have linked with bowel
disorders, including lactose and glucose intolerance, small
intestinal bacterial overgrowth (SIBO), irritable bowel syndrome
(IBS), inflammatory bowel diseases, constipation, colorectal cancer
et al., and measurement of H2 and CH4 by breath can indicate
lactose and glucose intolerance, SIBO and IBS (Nakamura et al.,
2010; Carbonero et al., 2012; Mani et al., 2014). It should be
noticed that both probiotics and harmful bacteria (such as
carcinogenic strains of Helicobacter pylori) can produce H2

(Olson and Maier, 2002; Benoit et al., 2020), therefore, during
H2 breath test, the relative ratio and balance of these two kinds of
bacteria in human body should be taken into consideration for
evaluating the long term benefits or harms of H2 breath in health.

Similar to the protective effects of endogenous H2 on hepatic I/R
injury, H2S can also act as an endogenous gas molecule that protects
against hepatic I/R injury (Hine et al., 2015). Through knockdown
or knockout (KO) of H2S-generating enzymes in cells or in animals,
endogenous H2S has been shown to have essential roles in affecting
glucose and lipids metabolism, insulin sensitivity, hepatic oxidative
FIGURE 1 | The model of endogenous H2 in modulating liver homeostasis. The endogenous H2 is primarily produced by hydrogenase-expressing fermentative
bacteria in the gastrointestinal tract. Moreover, H2S and CH4 are by-products of H2 metabolism derived from sulphate-reducing bacteria and methanogenic bacteria,
respectively. It should be noticed that hepatocyte can also produce H2S and CH4. The colonic gas mixture, including H2, H2S, CH4, and other bioactive gas
molecules produced by gut microbiota, can arrive at the liver by free diffusion or by blood circulation. These gas molecules may influence hepatic redox homeostasis,
glucose and lipids homeostasis, immune and inflammatory homeostasis, respectively, together by another one or more. Therefore, H2 may act as a novel bridge
between gut and liver, and play a central role among the colonic gas mixture in modulating liver homeostasis.
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stress, hepatic mitochondrial bioenergetics (modulating
mitochondrial structure and function, respiratory chain, and
cellular bioenergetics), hepatic fibrosis and autophagy et al. (Mani
et al., 2014; Sun et al., 2015; Ci et al., 2017; Wang et al., 2017;
Wenzhong et al., 2017; Untereiner and Wu, 2018; Wu et al., 2019).
However, genetically manipulating the H2S-producing enzymes in
mammalian cells could not exclude the biological effects of
endogenous H2S produced by sulphate-reducing bacteria in
animals. In addition, CH4 is another by-product of H2

metabolism derived from methanogenic bacteria, and Mihaĺy
Boros group found that CH4 can also be produced by rat liver
mitochondria, it has hepatic protective effects by exogenous
supplement (Ghyczy et al., 2008; Ye et al., 2015; He et al., 2016;
Strifler et al., 2016; Yao et al., 2017; Feng et al., 2019; Li et al., 2019a;
Li et al., 2019b), however, the hepatic functions of endogenous CH4

produced by methanogenic bacteria or by hepatocytes are not clear.
As that H2, H2S, and CH4 are endogenous gas molecules, they may
exist as colonic gas mixture and transport into liver by blood
circulation or free diffusion, H2S and CH4 can also be produced
in liver. Therefore, the functional crosstalk among H2, H2S and CH4

in liver, and the influences of these gas mixture on hepatic
homeostasis are interesting topics for further investigation. It
seems that H2 might have a central role among these gases in
regulating liver homeostasis (Figure 1). The temporal and spatial
metabolism of microbial H2 in human body is relevant to health
status, modulating endogenous H2metabolism either by diminished
utilization or enhanced production, and the strategies such as
developing personalize dietary supplementation and precision
medicine based on an individual’s H2-producing or consuming
microbiome, might provide a novel means of regulating
liver homeostasis.
Frontiers in Pharmacology | www.frontiersin.org 5
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