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A B S T R A C T   

Currently, coronavirus disease 2019 (COVID-19), has posed an imminent threat to global public health. Although 
some current therapeutic agents have showed potential prevention or treatment, a growing number of associated 
adverse events have occurred on patients with COVID-19 in the course of medical treatment. Therefore, a 
comprehensive assessment of the safety profile of therapeutic agents against COVID-19 is urgently needed. In this 
study, we proposed a network-based framework to identify the potential side effects of current COVID-19 drugs 
in clinical trials. We established the associations between 116 COVID-19 drugs and 30 kinds of human tissues 
based on network proximity and gene-set enrichment analysis (GSEA) approaches. Additionally, we focused on 
four types of drug-induced toxicities targeting four tissues, including hepatotoxicity, renal toxicity, lung toxicity, 
and neurotoxicity, and validated our network-based predictions by preclinical and clinical evidence available. 
Finally, we further performed pharmacovigilance analysis to validate several drug-tissue toxicities via data 
mining adverse event reporting data, and we identified several new drug-induced side effects without labeling in 
Food and Drug Administration (FDA) drug instructions. Overall, this study provides forceful approaches to assess 
potential side effects on COVID-19 drugs, which will be helpful for their safe use in clinical practice and pro-
moting the discovery of antiviral therapeutics against SARS-CoV-2.   

1. Introduction 

The current Coronavirus disease 2019 (COVID-19) has presented a 
serious threat to global public health (Del Rio and Malani, 2020). As of 
July 18th, 2020, the confirmed cases have reached up to 14 million and 
caused more than 600,000 deaths (Yang, 2020). However, many aspects 
of transmission, infection, and treatment of COVID-19 remain unclear 
(Wiersinga et al., 2020). Nowadays, a large number of clinical trials are 
being conducted on repurposed or experimental drugs to identify pro-
phylactic and therapeutic treatments against COVID-19. Although some 

current therapeutic agents have showed potential in ameliorating 
symptoms and reducing mortality in patients (Ledford, 2020), a growing 
number of associated adverse events have occurred on patients with 
COVID-19 in the course of medical treatment. For example, the malaria 
medication chloroquine, has been brought into multiple clinical trials (e. 
g. ClinicalTrials.gov number, NCT04353336) to determine its effect on 
inhibiting severe acute respiratory syndrome coronavirus 2 (SAR-
S-CoV-2). Unfortunately, a latest research has demonstrated that 
hydroxychloroquine or chloroquine used alone or with a macrolide, do 
not show a benefit on in-hospital outcomes for COVID-19 and on the 
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contrary, were relevant to decrease in-hospital survival as well as in-
crease frequency of ventricular arrhythmias (Mehra et al., 2020). 
Therefore, a comprehensive evaluation of the safety profile of potential 
therapeutic agents against COVID-19 is of paramount importance 
(Javorac et al., 2020). 

Generally, conventional experimentally approaches including in vivo 
and in vitro assays for toxicity determination are time-consuming and 
costly (Merz et al., 2014). Thus, computational strategies to assess side 
effects of therapeutic drugs are propitious to improve efficiency and 
accelerate the development of drug discovery (Cai et al., 2018, 2019; Wu 
et al., 2019). Recent technological and computational advances in ge-
nomics and systems biology have offered possibilities for identifying 
side effects or therapeutic agents by integrating disease proteins and 
drug-target interactions in human protein–protein interactome (Cheng 
et al., 2018, 2019; Fang et al., 2019). Since drug targets do not work in 
isolation from the complex system of proteins that comprise the mo-
lecular environment of the cell, each drug-target interaction must be 
examined in an appropriate integrative context (Menche et al., 2015). 
Several network-based methodologies, such as network proximity, offer 
powerful tools for efficient identification of potentially adverse effects or 
new indications for existing drugs (Fang et al., 2020). In order to pri-
oritize these drug-side effect pairs identified by network-based ap-
proaches, rigorous validation is mandatory (Cheng et al., 2018). Since 
approved drugs are already in clinical practice, their potential side effect 
can be validated via pharmacovigilance analysis that utilizes adverse 
drug event data available (Böhm et al., 2012). 

The Genotype-Tissue Expression (GTEx) is a functional genomics 
database that provides genotype-tissue expression to study the rela-
tionship between genetic variation and gene expression in human tissues 
(GTEx project, 2013). In this study, we developed a network-based 
framework to identify side effects of the ongoing drugs in COVID-19 
pipeline (Fig. 1). We posited that systematic examination of the rela-
tionship between drug targets (or drug regulatory genes) and specific 
expression genes in each tissue from GTEx, will serve as a foundation for 
generating predictive models to identify potential side effects in tissue. 
Specifically, we first collected the ongoing drugs in COVID-19 through 
searching for clinical trials and built their drug-target network from six 
data sources available as well as drug-gene signature from the Connec-
tivity Map (CMap). To determine the potential adverse events related to 
COVID-19 drugs, we established the associations between COVID-19 
drugs and 30 kinds of human tissues based on network proximity and 
gene-set enrichment analysis (GSEA) approaches. Moreover, we 
concentrated on side effects of four tissues including liver, kidney, lung 
and nerve, and validated several drug-tissue associations utilizing 
large-scale adverse drug event data and more than half of them sup-
ported our network-based prediction. Our overall framework is sum-
marized in Fig. 1. 

2. Material and method 

2.1. Collection of ongoing drugs in COVID-19 pipeline 

The ongoing drugs in COVID-19 pipeline were integrated from cur-
rent clinical trials. We first searched for clinical trials (accessed in 21st 
April 2020) related to COVID-19 medication by using terms ‘COVID OR 
COVID-19 OR coronavirus OR SARS-COV-2’ in ClinicalTrials.gov data-
base (https://clinicaltrials.gov/). Only trials labeled with “Drug” in 
“Interventions” column were preserved. In total, we collected 116 drugs 
from 308 COVID-19 clinical trials after removing duplicates (Table S1). 
Each drug was subsequently matched by the unified DrugBank ID and 
classified by the Anatomical Therapeutic Chemical Classification (ATC) 
code. 

2.2. Integration of coronavirus (CoV) host proteins 

The host proteins of coronavirus (CoV) were collected from four 

recent public references (Gordon et al., 2020; Maryam Al-Motawa, 
2020a; Shen et al., 2020; Zhou et al., 2020). Zhou et al. has integrated 
119 high-quality experimental validated host proteins for drug repur-
posing for human CoV (Zhou et al., 2020). Additionally, a latest research 
has identified 332 high-confidence SARS-CoV-2-human protein-protein 
interactions (PPIs) which were connected to multiple biological pro-
cesses (Gordon et al., 2020). Moreover, 204 and 50 host proteins of 
SARS-CoV-2 have been separately acquired from two recent proteomics 
publication (Maryam Al-Motawa, 2020a; Shen et al., 2020). In total, 705 
CoV-related host proteins were consequently integrated (Table S2). 

2.3. Construction of drug-target network 

We assembled high-quality physical drug target interactions (DTIs) 
for ongoing COVID-19 drugs from six authoritative databases, including 
DrugBank database (v4.3) (Wishart et al., 2018), the Therapeutic Target 
Database (TTD, v4.3.02) (Yan et al., 2018), the PharmGKB database 
(Barbarino et al., 2018), ChEMBL (v20) (Gaulton et al., 2017), Bind-
ingDB (Gilson et al., 2016), and IUPHAR/BPS Guide to PHARMA-
COLOGY (Harding et al., 2018). A physical DTI was defined by using 
reported binding affinity data: inhibition constant/potency (Ki), disso-
ciation constant (Kd), median effective concentration (EC50), or median 
inhibitory concentration (IC50) ≤ 10 μM. Only physical DTIs that meet 
the three criteria were preserved: (i) proteins targets owning unique 
UniProt accession number; (ii) proteins targets labeled as “reviewed” in 
the UniProt database; and (iii) proteins targets marked as Homo sapiens 
species. Eventually, 1222 DTIs covering 81 ongoing COVID-19 drugs 
were obtained (Table S3). 

2.4. Tissue-specific protein network 

The RNA-seq data (RPKM value) of 30 tissues were extracted from 
the GTEx V6 release (https://gtexportal.org/home/). We asserted that a 
gene is expressed in a specific tissue if its RPKM value is larger or equal 
to 1 in over 80% of samples, and vice versa. To quantify the expression 
significance of a tissue-expressed gene i in a tissue t, the average 
expression E(i) and the standard deviation δE(i) of a gene’s expression 
across all considered tissues were calculated. The significance of gene 
expression in tissue t is defined as below: 

ZE(i,t) =
E(i, t) − E(i)

δE(i)

The gene was considered as high expressed in a specific tissue if its Z- 
expression was higher than 2 in this tissue. 

2.5. Network-based approaches 

2.5.1. Network proximity 
Given A, the module formed by specific high expressed proteins in a 

given tissue (tissue module), and B, the module formed by target pro-
teins of a given drug (drug module), the closest distance dAB represents 
the average shortest path length of all the nodes in tissue module (A) to 
drug module (B) in the human protein–protein interactome, which can 
be described as: 

dAB =
1

||A|| + B

(
∑

a∈A
minb∈Bd(a, b)+

∑

b∈B
mina∈Ad(a, b)

)

where d(a, b) indicates the shortest path length between tissue protein a 
and drug target b. 

To assess the significance of the network distance between each drug 
module and tissue module, we constructed a reference distance distri-
bution corresponded to the expected distance of each two randomly 
selected groups of proteins from human protein–protein interactome 
which have the same size and degree distribution as the original protein 
modules. This process was repeated 1000 times. According to the mean d 
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and standard deviation (σd) of the reference distribution, the Z-score (zd) 
was computed by converting an observed (non-Euclidean) distance to a 
normalized distance: 

zd =
d − d

σd  

2.5.2. Gene-set enrichment analysis (GSEA) 
The gene set enrichment analysis (GSEA) was performed as an 

additional prioritization method. Drug-gene signatures were collected 
from the Connectivity Map (CMap2.0), a pharmacogenomics database 
inducing over 7000 gene expression profiles from cultured human cell 
lines treated with 1309 bioactive molecules at different concentrations, 
covering 6100 individual instances (Lamb et al., 2006). CMap offers a 
measure to evaluate the extent of differential expression for a given 
probe set. The amplitude (a) is defined as follows: 

a=
t − c

(t + c)/2  

where t refers to the scaled and threshold average difference value for 
the drug treatment group, and c represents the threshold average dif-
ference value for the control group. Therefore, a > 0 and a < 0 indicate 
increased expression (upregulation) and decreased expression (down-
regulation) upon treatment respectively, while a = 0 means no differ-
ential expression. In this study, drug gene signatures with absolute value 
of a greater than two-fold induction (|a| > 0.67) were defined as drug- 
gene pairs. Finally, we obtained the drug regulatory gene network for 38 
COVID-19 ongoing drugs, covering 91,164 drug-gene pairs. (Table S4). 

We assumed that a drug would have a correlation with a specific 
tissue if its regulatory genes tend to be the specific high expressed 
proteins in this tissue. For each drug-tissue pair, we calculated the 
number of proteins in each tissue-specific protein network, drug regu-
latory gene network, as well as their overlap. The statistical significance 
(P-values) of the gene-set enrichment was calculated by Fisher’s exact 
test and corrected by Benjamini–Hochberg method (Benjamini and 
Hochberg, 1995). We set corrected P-value (q) < 0.05 as a threshold to 
define significantly predicted drug–tissue pairs. 

2.6. Pharmacovigilance analysis 

We retrieved adult adverse drug event data from the US Food and 
Drug Administration’s (FDA) Adverse Event Reporting System (AERS) 
compiled from the first quarter of 2010 to the last quarter of 2019 using 
OpenVigil 2.1 (Böhm et al., 2012) (http://openvigil.sourceforge.net), 
which is a platform for data mining and analysis of adverse drug event 
data. In the AERS, adverse events can be specified at different levels of 
the medical dictionary for regulatory activities (MedDRA) terminology. 
We employed 9 preferred terms (PTs) for collecting relevant cases 
associated with “drug-induced liver injury”, 7 PTs for cases associated 
with “drug-induced kidney injury”, 4 PTs for cases associated with 
“drug-induced lung injury”, and 4 PTs for cases associated with “dru-
g-induced neuropathy”. Detailed PTs and their number for each 
drug-induced organ injury were listed in Table 1. Moreover, the major 
advantage of the OpenVigil 2.1 is that the platform could perform Yates’ 
chi-square test and calculate disproportionality (like reporting odds 
ratio (ROR), proportional reporting ratios (PRRs), and relative reporting 
ratio (RRR)) from adverse drug event data to determine the relationship 
between the drug and adverse event.Fig. 1-7 and figs1. 

In this study, number of adverse events of drugs >4, Chi square 
values > 4, and the lower limit of the 95% confidence interval (CI) of the 
ROR>1 indicate that the adverse event and the drug is related and can 
be considered as “likely an adverse reaction”. The RORs and 95% CIs for 
drugs and adverse events of interest were shown using the forest plots. 

2.7. Statistical analysis and network visualization 

The statistical analysis in this study was performed by Python (v3.2, 
http://www.python.org/) and R platforms (v3.01, http://www.r-pro 
ject.org/). Networks were generated by Cytoscape (v3.2.1, http:// 
www.cytoscape.org/) and Gephi (v0.9.2, https://gephi.org/). In the 
graphical network, drugs or genes were presented by nodes and in-
teractions were encoded by edges. The degree of each node was calcu-
lated to evaluate its topological property, as this characterizes the most 
important nodes in a network. 

Table 1 
Preferred terms for collecting relevant cases associated with adverse drug events.  

Drug-induced tissue toxicity Preferred terms MEDDRA Number Drugs for validation 

Drug-induced liver injury 
(Number = 25,443) 

Drug-induced liver injury 10072268 6388 sirolimus, folic acid, enoxaparin, cholecalciferol, ibuprofen, primaquine, deferoxamine, 
fluvoxamine, naproxen, sildenafil, human immunoglobulin G Hepatotoxicity 10019851 5942 

Acute hepatic failure 10000804 4312 
Hepatic failure 10019663 8409 
Liver disorder 10024670 12,389 
Hepatic lesion 10061998 1181 
Liver function test 
increased 

10077692 4074 

Transaminases increased 10054889 5654 
Hepatic enzyme increased 10060795 15,087 

Drug-induced kidney injury 
(Number = 60,024) 

Renal failure 10038435 41,907 captopril 
Renal failure acute 10038436 15,616 
Acute kidney injury 10069339 37,440 
Blood creatinine 
increased 

10005483 15,069 

Urinary nitrogen 
increased 

10046547 8 

Renal injury 10061481 16,385 
Renal tubular injury 10078933 124 

Drug-induced lung injury 
(Number = 16,808) 

Acute lung injury 10069351 487 methylprednisolone, sirolimus 
Acute respiratory failure 10001053 3930 
Respiratory failure 10038695 19,653 
Pulmonary function test 
decreased 

10061922 726  

Headache 10019211 170,461 doxycycline 
Drug-induced neuropathy Acute polyneuropathy 10066699 69 
(Number = 114,264) Neuropathy peripheral 10029331 22,716  

Nervous system disorder 10029202 14,631 

Note: MEDDRA: medical dictionary for regulatory activities terminology. 
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3. Results 

3.1. Overview of ongoing drugs in COVID-19 pipeline 

As of April 21, 2020, there were 116 agents in 308 clinical trials of 
anti- SARS-CoV-2 therapies. Here, a comprehensive overview of avail-
able information on potential drugs for treatment of COVID-19 was 
presented (Fig. 2). Most of ongoing drugs in COVID-19 clinical trials are 
approved drugs since existing drug could shorten the time and reduce 
the cost in comparison with developing novel compounds from scratch 
(Kupferschmidt and Cohen, 2020). In addition, there are still 16 inves-
tigational agents (e.g. remdesivir) and 4 experimental agents (e.g. tet-
randrine) enrolled into the clinical trials for their potential therapeutical 
effects on COVID-19. As shown in Fig. 2, there are 21 antineoplastic and 
immunomodulating agents in the clinical trials for COVID-19 treatment, 
occupying the highest proportion (18.1%) among all the ongoing drug 
classes except “various & others”. These agents are mainly designed to 
act on the coronavirus directly (such as inhibiting crucial viral enzyme 
and blocking viral entry to human cells) or modulate the human immune 
system (such as boosting the innate response and inhibiting the in-
flammatory processes) (Wiersinga et al., 2020). As recent study 
demonstrated that chemotherapy could produce selective toxicity to 
SARS-CoV-2 via improving the levels of endogenous reactive metabo-
lites (Maryam Al-Motawa, 2020b), scientists have turned their attention 
to antineoplastic agents. Besides, coronavirus was able to decrease im-
mune capacity since it primarily exerts cytotoxic action on the he-
matopoietic and immune systems with reducing the number of 
neutrophils (Remuzzi and Remuzzi, 2020). Thus, immunomodulating 

agents were also brought into the clinical trials in view of its positive 
regulation on immunity of the organism. Furthermore, Fig. 2 shows that 
16 drugs intend to be classified as antiinfectives for systemic use. Since 
SARS-CoV-2 is a single-stranded RNA-enveloped virus that can be 
infected from person to person, drugs for antiinfectives for systemic use 
such as azithromycin (Parra-Lara et al., 2020) are also considered to own 
the potential of suppressing the virus. 

Among the 116 ongoing agents in pipeline, 76% of them (88 agents) 
are being tested in phase 2 and phase 3 trials with uncertain effects 
rather than confirmed therapeutic effects on COVID-19. Although a few 
agents in COVID-19 trials (Fig. 2) seem to show promising results based 
on current researches and clinical trials, they may play a limited role in 
COVID-19 treatment or even remain controversial (Ko et al., 2020). 
Meanwhile, it also needs to be alerted for the potential toxicity of these 
drugs. For example, case reports study in France has demonstrated that 
four patients of COVID-19 developed adverse events including eleva-
tions of alanine transaminase (ALT) levels and renal failures after 
treatment with remdesivir (Dubert et al., 2020). 

3.2. Drug-target network analysis 

We constructed a comprehensive drug-target network of ongoing 
drugs in COVID-19 pipeline through integrating curated physical DTIs 
and CoV host proteins. As depicted in Fig. 3, the drug-target network 
contains 1222 DTIs connecting 81 drugs with 719 human target pro-
teins. Among these human target proteins, 34 of them were CoV host 
proteins. The CoV host protein with the highest degree is ABCC1(K=5), 
which are targeted by 5 drugs, including indomethacin, methotrexate, 

Fig. 1. A schematic diagram illustrating network methodology and adverse drug event data-based validation for in silico prediction of side effects of 
ongoing drugs in COVID-19 pipeline. A Integration of ongoing drugs in COVID-19 pipeline, coronavirus (CoV)-related host proteins and specific high-expressed 
genes in tissues; B Network proximity and gene-set enrichment analysis (GSEA) approaches; C In silico prediction of side effects of drugs on 30 tissues; D Phar-
macovigilance analysis across four specific tissues (liver, lung, nerve and kidney)-induced side effects. 
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imatinib, verapamil and colchicine. Besides, the average target degree 
(D) of ongoing drugs is 8.88. Among the 81 drugs, the top 10 with largest 
target degree are: nintedanib (D = 215), ruxolitinib (D = 137), imatinib 
(D = 74), chlorpromazine (D = 62), amiodarone (D = 54), verapamil (D 
= 46), tofacitinib (D = 32), spironolactone (D = 31), sevoflurane (D =
27), and indomethacin (D = 25). Recent evidences have demonstrated 
their potential correlation with COVID-19 treatment. For instance, 
Goker et al. has revealed that ruxolitinib shows the promising efficacy 
on COVID-19 by inhibiting JAK/STAT pathway (Goker Bagca and Biray 
Avci, 2020). Imatinib might play its potentially beneficial immuno-
modulatory role in patients with COVID-19 by multiple mechanisms, 
such as reducing the transcription factor NF-κB signaling pathway and 
modulating tumor necrosis factor-α (TNF-α) and IL-6 production (Ber-
nal-Bello et al., 2020). However, according to the network analysis, the 
COVID-19 ongoing drugs could act on multiple targets, including both 
CoV and non-CoV host proteins. As most of the non-CoV host proteins 
targeted by COVID-19 drug candidates are likely to be highly expressed 
in different tissues of human, they may bring the potential to cause 
adverse side effects. 

3.3. Tissue-specific protein network analysis 

In this study, the expression level of genes across 30 human tissues is 
quantified by Z-expression, including colon, esophagus, fallopian tube, 
heart, kidney, liver, lung, muscle, nerve, ovary, adipose tissue, pancreas, 
pituitary, prostate, salivary, skin, small intestine, spleen, stomach, testis, 
thyroid, adrenal gland, uterus, vagina, bladder, blood vessel, blood, 
brain, breast, and cervix uteri. Genes in a tissue-protein network with Z- 
expression greater than 2 are considered as high expression. As shown in 
Fig. 4A, testis tissue possesses the largest number of high expressed 
genes (n = 3521), followed by brain (n = 733) and liver (n = 465). 

We further prioritized the high-expressed genes in each tissue by Z- 
expression and highlighted the top 10 specific genes of the 30 human 
tissues (Fig. 4B). Interestingly, we find that among these genes, there are 
no overlap between any two tissues, implying they tend to have a high 
multiplicity and tissue specificity. These high-expressed genes seem to 
possess high association with the occurrence of drug-induced tissue 
toxicity. For example, the top 10 specific genes of kidney are UMOD, 
SLC22A8, SLC22A12, SLC12A1, SLC22A11, AQP2, SLC12A3, NPHS2, 
KCNJ1, and SLC22A2. As previous studies reported, uromodulin 
(UMOD) is a kidney-specific protein (Tachibana et al., 2019) expressed 
by epithelial cells lining the thick ascending limb of the loop of Henle, 
the accumulation of mutated UMOD in endoplasmic reticulum can lead 
to renal injury (Johnson et al., 2017; Trudu et al., 2017). In addtion, 
recent literature also demonstrated that mutation of aquaporin 2 (AQP2) 
is able to cause nephrogenic diabetes insipidus since AQP2 is responsible 
for the water reabsorption by kidney collecting duct cells (Saglar Ozer 
et al., 2020). 

3.4. Uncovering significant associations between COVID-19 ongoing 
drugs and human tissues 

To identify the potential tissue toxicities of COVID-19 ongoing drugs, 
we applied two complementary approaches to compute the significance 
of the association between each tissue and drug, including: (i) network 
proximity approach which quantifies the network distance between 
each drug module and tissue module in human protein–protein inter-
actome; and (ii) GSEA approach that calculates the statistical signifi-
cance of the gene-set enrichment between each tissue-specific protein 
network and drug regulatory gene network. We herein assumed that a 
drug may induce potential toxicity on specific tissue if they have sig-
nificant associations (Pnetwork proximity or qGESA < 0.05). As illustrated in 

Fig. 2. Overview of ongoing drugs in COVID-19 clinical trials (as of April 21, 2020). Drugs are classified by the Anatomical Therapeutic Chemical Classification 
(ATC) code and clinical trial phase. The ATC label, number of drugs and percentage of each drug classification are presented on the outer circle. The four different 
levels from internal to external represent the corresponding drugs in phase 1, phase 2, phase 3 and phase 4 of COVID-19 clinical trials, respectively. The high- 
resolution version is provided in the Supporting Information. 
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Fig. 5A, there are in total 42 drugs significantly associated with multiple 
tissues via network proximity approach (Pnetwork proximity < 0.05), 
covering 140 significant drug-tissue pairs. It suggests that those drugs 
may cause corresponding predicted tissue toxicities. For example, 
deferoxamine, which targets kidney organ and exhibits great tissue 
specificity (Z-score = − 2.01), has been demonstrated the potential risk 
of inducing acute renal failure (Prasannan et al., 2003). Moreover, 
deferoxamine also has significant association with liver tissue (Z-score 
= − 1.97). In vitro studies have suggested that deferoxamine was toxic to 
hepatoma cells in the absence of iron (Christensen et al., 2001). Mean-
while, GSEA approach has predicted that 34 potential candidates (qGESA 
< 0.05, Fig. 5B) have significant associations with different human tis-
sues, including 132 significant drug-tissue pairs. Taking sirolimus (also 
known as rapamycin) as an example, GSEA gave a qGESA value of 0.003 
with lung tissue, indicating its potential lung toxicity. An in vivo study 
has revealed that sirolimus could augment lipopolysaccharide-induced 
lung injury and apoptosis in C57BL/6J mice through involving signal 
transducer and activator of transcription 1 (STAT1) and the induction of 
STAT1-dependent apoptosis genes (Fielhaber et al., 2012). Notably, we 
found that 9 drug-tissue pairs were simultaneously identified by 
network proximity and GSEA approaches, alerting their potential tissue 
toxicities, including captopril-liver, sirolimus-blood vessel, 

atovaquone-adrenal gland, deferoxamine-blood, doxycycline-blood 
vessel, deferoxamine-testis, deferoxamine-spleen, deferoxamine-blood 
vessel, and captopril-ovary. The detailed information of the 
network-based prediction results are provided in Table S5. 

To present specifically how drug candidate manifests itself and tar-
gets tissue toxicity within the drug-target networks and gene expression 
profiles, we further focus on adverse events on four tissues including 
lung, nerve, liver and kidney. As exhibited in Fig. 6, there are 42 drug- 
tissue pairs covering 32 agents predicted by network proximity or GSEA 
approaches. Among them, 64.3% (27/42) of the predicted tissue toxic-
ities were validated by drug labels retrieved from Drug@FDA database, 
clinical evidences including clinical studies and case reports, as well as 
preclinical evidence available (Table S6). Moreover, 8 out of the 32 
drugs are predicted to yield potential toxicities in at least 2 tissues. They 
are sirolimus, captopril, deferoxamine, fluvoxamine, ribavirin, prima-
quine, methylprednisolone and doxycycline. Despite drug-tissue asso-
ciations which had been validated by Drug@FDA files, clinical studies, 
in vivo or in vitro studies, it is worth noting that those drug-tissue asso-
ciations without validations (15/42) deserve further exploration. 

Taken together, these results mentioned above initially support the 
effectiveness of our approaches including network proximity and GSEA 
for identification of drug-tissue associations that are potentially relevant 

Fig. 3. Bipartite drug-target network 
covering 81 drugs with 719 human 
target proteins. The dot stands for the 
protein target while the square node 
represents the drug. The sizes of node 
and label are proportional to degree. 
Note: A: alimentary tract and meta-
bolism; B: blood and blood forming or-
gans; C: cardiovascular system; D: 
dermatologicals; G: genito urinary sys-
tem and sex hormones; J: antiinfectives 
for systemic use; L: antineoplastic and 
immunomodulating agents; N: nervous 
system; P: antiparasitic products: in-
secticides and repellents; R: respiratory 
system; S: sensory organs; V: various.   
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Fig. 4. Tissue-specific protein network analysis. A High-expressed genes with Z-expression higher than 2 across 30 human tissues. Overlapped genes refer to the 
genes highly expressed in multiple tissues simultaneously; B Top 10 specific high-expressed genes in each tissue. 

Q. Wu et al.                                                                                                                                                                                                                                      



Food and Chemical Toxicology 145 (2020) 111767

8

Fig. 5. Heatmap presenting the associations between COVID-19 ongoing drugs and 30 human tissues predicted by network proximity approach (A) and 
GSEA approach (B). Hypothesis for the two methods: A Network proximity, a drug would have a potential specific tissue toxicity if there is a significant network 
distance between its drug module and tissue module in human protein–protein interactome; B GSEA, a drug would have a correlation with a specific tissue if its 
regulatory proteins tend to be the specific high expressed proteins in this tissue. The color key indicates the significance (-log(adj-P) value or Z-score) of drug-tissue 
toxicity associations, red: highest and blue: lowest. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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for side effects. 3.5. Validating the predicted drug-tissue associations via 
pharmacovigilance analysis 

Given the significance of clinical data, we further assessed whether 

Fig. 6. Circos plot exhibiting drug-tissue associations focusing on four specific tissues (liver, lung, nerve and kidney) predicted by network proximity and 
GSEA approaches. 

Fig. 7. Drug-Forest plot illustrating reporting odds ratios (RORs) and 95% confidence intervals (CIs) for drugs and adverse events of interest.  
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these drug-tissue associations mentioned above were of statistical dif-
ference regarding the side effects of drug in specific tissue via pharma-
covigilance analysis. Among 42 predicted significant drug-tissue pairs 
above, we selected drug-tissue pairs for further validation using subject 
matter expertise based on a combination of factors: (i) not being labeled 
by FDA drug instructions; (ii) strength of the network-based prediction; 
and (iv) availability of supportive experimental evidence. Applying 
these criteria resulted in identifying 15 potential drug-tissue toxicities 
across four tissues for further validation (Table 1). 

Specifically, we first retrieved a total of 3,004,759 adverse events 
from the AERS. We identified 25,443, 60,024, 16,808, and 114,264 
cases who developed drug-induced liver injury, drug-induced kidney 
injury, drug-induced lung injury, and drug-induced neuropathy while 
receiving any drugs, respectively. The statistical significant drug- 
induced toxicity across four tissues together with their RORs and 95% 
CIs were shown in Fig. 7 and the detailed information on all drug-tissue 
associations can be found in Figure S1. According to the criteria, drug- 
induced liver injury was significantly related to ibuprofen, enoxaparin, 
cholecalciferol, folic acid, and sirolimus. Indeed, recent literatures have 
reported that these drugs do cause liver injury, such as sirolimus (Neff 
et al., 2004; Umemura et al., 2014). Surprisingly, we found some 
drug-tissue associations which had not been labeled by FDA drug in-
structions were of statistical difference, such as the potential hepato-
toxicity of enoxaparin (Hahn et al., 2015; Pivarnik et al., 2016). 
According to the pharmacovigilance analysis of adverse drug event data, 
enoxaparin seems to possess significant association with hepatotoxicity 
(ROR = 1.312, 95% CI:1.098–1.566). Moreover, we also found that 
captopril (ROR = 4.966, 95% CI: 4.191–5.885) was potentially related 
to kidney injury. Besides, methylprednisolone and sirolimus were 
significantly related to drug-induced lung injury (ROR = 4.46, 95% CI: 
4.01–4.961; ROR = 3.233, 95% CI: 2.463–4.243), while doxycycline 
may lead to neuropathy (ROR = 1.548, 95% CI: 1.412–1.696). Overall, 
60% (9/15) of our network-based predictions are confirmed by phar-
macovigilance analysis, indicating the accuracy of our network-based 
approaches and implicating the potential tissue toxicities of these 
COVID-19 ongoing drugs. 

4. Discussion and conclusion 

The current 2019-nCoV outbreak is still moving fast, and a rebound 
of victims of COVID-19 in some areas become a more serious concern 
(Zhu et al., 2020). Although numerous drugs are under therapeutic 
evaluation in clinical trials toward SARS-CoV-2, several medications 
such as hydroxychloroquine and azithromycin have been reported to 
exacerbate cardiotoxicity and liver injury in COVID-19 patients 
(Boeckmans et al., 2020). Additionally, the pharmacological and 
toxicity properties of some investigational or experimental drugs in 
clinical trials have not been fully explored, meaning that there is greater 
safety risk within these drugs. Therefore, it is necessary to comprehen-
sively assess side effects of ongoing COVID-19 drugs, which could 
benefit for the discovery and clinical application of pharmacotherapy for 
COVID-19. 

In this study, we utilized network-based approaches for rapid iden-
tification of potential side effects for ongoing COVID-19 drugs. Specif-
ically, after integration of drug-target network, drug-gene signatures, 
tissue-specific gene expression profiles from GTEx, and human 
protein-protein interactome, we established the associations between 
116 COVID-19 drugs and 30 kinds of human tissues based on network 
proximity and GSEA approaches. Our network proximity and GSEA 
approaches achieved a high accuracy to identify the associations be-
tween COVID-19 drugs and human tissues. For example, ibuprofen was 
deemed to own potential toxicity on liver based on our network-based 
prediction (Fig. 6). Emerging evidence shows that ibuprofen may elicit 
hepatotoxicity via altering several major pathways including energy 
metabolism, protein degradation, fatty acid metabolism as well as 
antioxidant system in mice (Tiwari et al., 2020). Additionally, an in vivo 

study (Wen et al., 2018) also revealed that ibuprofen treatment on rats 
increased the levels of alanine transaminase (ALT) and aspartate 
aminotransferase (AST), causing more serious liver injury than did 
aspirin. Moreover, we found several drugs could induce potential tox-
icities in multiple tissues. Taking captopril as an example, 
network-based prediction indicates that captopril have correlations with 
both liver and kidney tissues, which are consistent with previous clinical 
reports (LiverTox, 2012; Tan et al., 2011). 

In addition, we further validated the predicted drug-tissue associa-
tion via data mining and analysis of adverse drug event data. Evidences 
from Drug@FDA files, clinical studies, in vivo and in vitro studies have 
primarily validated the drug-tissue associations predicted by our in silico 
approaches. For instance, fluvoxamine is predicted to highly associate 
with liver tissue. It is reported that fluvoxamine therapy is associated 
with both transient asymptomatic elevations in serum aminotransferase 
levels and rare instances of clinically apparent acute liver injury (Liv-
erTox, 2018). Besides, network-based prediction indicates that captopril 
have correlations with both liver and kidney tissues. Clinical case re-
ports of hepatic injury (LiverTox, 2012) and acute renal failure (Tan 
et al., 2011) induced by captopril to some extent verified our pre-
dictions. Interestingly, we found that captopril-liver pair was simulta-
neously identified by network proximity and GSEA methods, further 
indicating its high probability of liver injury. In fact, Drug@FDA files on 
captopril have clearly labled its potential hepatoxicity. Moreover, we 
found several potential tissue toxicities of drugs which hadn’t been 
labeled by FDA drug instructions. For example, several clinical case 
reports have indicated the potential hepatotoxicity of enoxaparin, 
though there is no clear annotation of liver injury in FDA drug in-
structions yet. It is reported that patients with deep vein thrombosis 
(DVT) or dural venous thrombosis can develop drug-induced liver injury 
during treatment with enoxaparin (Hahn et al., 2015; Pivarnik et al., 
2016). Pharmacovigilance analysis conducted on AERS data further 
support these findings. Overall, our findings offered a comprehensive 
assessment of drug safety profiles for current COVID-19 medications, 
which should be further validated in animal studies and large scale 
patient data. 

However, several limitations should be acknowledged in present 
study. First, both network proximity and GSEA approaches were applied 
to predict tissue toxicity of drugs by integrating physical drug-target 
interactions and transcriptome data on CMap. Given lacking of large 
scale published available experimental data, whether combining the two 
methods (network proximity and GSEA) synergistically enhance the 
prediction performance remain further evaluation. Moreover, this study 
mainly focuses on the prediction and validation of drug-tissue associa-
tions, the specific mechanism of actions (MOAs) related with tissue 
toxicity need to be explored in future. In addition, adverse drug events 
obtained through the adverse reaction reporting system should be 
treated with caution, since there are inherent limitations, such as se-
lective reporting, under-reporting, and lack of information about total 
drug consumption. The results of disproportionality analyses using 
AERS data should not be considered as the quantification of the true risk, 
but rather as the assessment of signal detection. Finally, as current 
COVID-19 medications are being renewed very quickly, we can not 
cover all the ongoing drugs in COVID-19 pipeline. 

In summary, this study provides a powerful network-based meth-
odology for efficient identification of drug-induced potential side effects 
in COVID-19 drug pipeline, followed by pharmacovigilance analysis that 
utilized large scale clinical adverse drug event data. If broadly applied, 
our computational framework can be used to assess potential tissue 
toxicity for all drugs, such as cancer or cardiovascular drugs. In this 
manner, we can build bridges between basic medical research and 
clinical outcomes, which could shorten the time to prioritize side effects 
associated with drugs and alert the potential adverse effects of drugs 
during pharmacotherapy course of COVID-19. 
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