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Biologia Celular e Tecidual, CBB, UENF, Campos dos Goytacazes, RJ, Brazil, 4 Laboratório de Quı́mica e
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Abstract

Salt stress is one of the most common stresses in agricultural regions worldwide. In particu-

lar, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently

show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows

elucidation of the important pathways involved in responses to various abiotic stresses at

the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic

effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and

RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data

are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is

more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analy-

sis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars

in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed

a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion

transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase,

photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were

more abundant in the RB855536 cultivar under salt stress. Our results provide new insights

into the response of sugarcane to salt stress, and the changes in the abundance of these pro-

teins might be important for the acquisition of ionic and osmotic homeostasis during exposure

to salt stress.

Introduction

Sugarcane (Saccharum spp.) is an important crop in several countries and Brazil is the largest

producer of sugarcane in the world [1]. The expansion of sugarcane cultivation is economically
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important for the commercialization of its main products, sugar, and ethanol [2]. Although it

is well-suited to high temperature, sugarcane is adversely affected by other abiotic stresses,

such as drought and salt stress [3]. In fact, salt stress constitutes one of the best-studied stresses

due to concerns regarding continuing increases in soil salinity. More than 50% of all arable

land will have high concentrations of salt in 2050 [4]. Proximity to the ocean favours the accu-

mulation of salt in coastal soils; however, other regions can also have saline soils depending on

the water used for irrigation, which usually has a high NaCl content and precipitation levels

[5].

Salinity affects the productivity of various plant species [6,7] and can cause morphological,

physiological, biochemical, and molecular changes [8]. Previous studies have suggested that

the effects of salt stress are multifactorial; in particular, a high salt concentration causes

osmotic stress and consequent ionic stress, primarily due to high concentrations of Na+ [9].

Osmotic stress decreases water absorption by the roots and causes various physiological effects,

such as low photosynthetic activity and the production of reactive oxygen species (ROS) [7].

Ionic stress is caused by an increased absorption of ions, primarily Na+ and Cl-, which results

in biochemical and physiological damage. In particular, high concentrations of intracellular

Na+ prevent the uptake of K+, which is an essential element in several cellular processes [10].

According to Zhu [11], salt tolerance depends on the interconnections among the biochem-

ical pathways involved in detoxification, homeostasis, and growth regulation. First, accumu-

lated ROS are removed through the synthesis of important compounds, such as osmolytes and

several proteins that decrease the intracellular concentration of ROS. Simultaneously, ionic

homeostasis is achieved via the compartmentalization of ions in vacuoles. Finally, the expres-

sion of important genes is regulated to efficiently maintain plant growth and high productivity

[11].

Salt tolerance is thus believed to be a complex process involving physiological, biochemical,

and molecular responses [12]. Proteomic analysis is fundamentally important for understand-

ing the mechanisms of the responses of plants because these analyses provide important infor-

mation regarding the dynamics of protein expression and post-translational modifications

involved in stress-related events [13]. Advances in protein identification techniques have

made it possible to identify proteins involved in the tolerance of various species to abiotic

stresses [14–16]. Recent studies on crop plants have identified the following five main groups

of proteins that present differential abundance and are directly related to salt tolerance mecha-

nisms in plants: I) heat shock proteins (HSPs), II) late embryogenesis abundant proteins (LEA

proteins), III) osmolyte biosynthetic enzymes, IV) proteins involved in carbon metabolism,

and V) enzyme scavengers of ROS [17]. In addition to these groups, proteins associated with

ion transport, protein synthesis/degradation, and signal transduction are also important in

response to salt stress in major crops, such as rice (Oryza sativa) [18], wheat (Triticum durum
L.) [16], and sugar beet (Beta vulgaris L.) [19]. Capriotti et al. [16] suggested that the proteins

identified in these studies might constitute useful molecular markers for future breeding

programmes.

In recent years, the available knowledge regarding the mechanisms underlying the tolerance

of sugarcane to salt stress has increased. These recent studies have identified genes and meta-

bolic pathways that might be important in the response to salt stress; in particular, proteins

associated with carbohydrate metabolism and energy might be involved in the response of sug-

arcane to salt stress [20,21]. Although these studies have increased our understanding of these

events, the biochemical and molecular changes that occur in different varieties of sugarcane

remain relatively unknown. Understanding the plant´s response to salt stress is difficult

because the morphological characteristics of plants, which present differences among species,

particularly among the root systems of different species, represent an important aspect of the
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tolerance mechanisms. Thus, the combination of molecular and morphological differences

between sensitive and tolerant cultivars makes it difficult to determine the specific role of each

tolerance factor. In this context, the combination of proteomic analysis with tissue culture,

which minimizes varietal differences in the root architecture and provides a controlled envi-

ronment, will aid the elucidation of the main metabolic pathways that are regulated in sugar-

cane under salt stress.

Although it is known that sugarcane is strongly affected by salt stress, knowledge regarding

the cellular, biochemical, and molecular mechanisms of the response of sugarcane to salt stress

is lacking. Thus, proteomic analysis conducted in this study, might help the identification and

understanding of novel response mechanisms of sugarcane to salt stress. In addition, the infor-

mation obtained through differential protein analysis might be used in modern breeding pro-

grammes for the production of new cultivars [22]. Therefore, this work aimed to evaluate

changes in the proteome of micropropagated shoots of two sugarcane cultivars (CB38-22 and

RB855536) under salt stress using a label-free proteomic approach to better understand the

mechanisms controlling the responses of sugarcane plants to salt stress.

Materials and methods

Plant materials and growth conditions

Sugarcane plants (cv. CB38-22 and cv. RB855536) were obtained from the Universidade

Federal Rural do Rio de Janeiro (UFRRJ), Campus Campos dos Goytacazes, located in

Campos dos Goytacazes, RJ, Brazil (21˚48’S and 41˚17’W). Both cultivars have a high

sucrose content and exhibit a high agroindustrial productivity. CB38-22 is a cultivar with a

curved posture that can be planted in soils with average to high fertility [23]. Farmers con-

sider CB38-22 tolerant to salt stress, although no conclusive experimental evidence exists.

RB855536 is characterized by a more erect posture and resistance to brown rust, leaf scald,

mosaic, and coal viruses. Its planting in favourable environments is recommended due to

its low tolerance to water stress [24]. Water stress is one of the main factors that affect sug-

arcane productivity [25], and its effects are very similar to those of salt stress. Thus, these

cultivars were selected for use in this study because the available knowledge regarding their

molecular responses to salt stress is scarce, and increased knowledge of these cultivars will

be important for sugarcane cultivation.

Four-week-old plants that were cultivated in a field trial were used as sources of explants

for in vitro culture. After removing the mature leaves, the remaining leaf roll was surface-steril-

ized with 70% ethanol for 1 min and with 1.25% sodium hypochlorite (v/v) for 20 min. Some

leaf primordia were then excised to obtain a cylinder of approximately 0.5 x 5 cm, and the

material was washed in sterile distilled water and transferred to a laminar flow cabinet. In the

laminar flow cabinet, the surface of the cylinder was disinfected with 1.25% sodium hypochlo-

rite solution for 20 min and subjected to three washes with sterile water. The shoot tips were

excised near the meristems and inoculated in liquid MS culture medium [26] (PhytoTechnol-

ogy Laboratories, Overland Park, KS, USA) supplemented with 2% sucrose, 0.887 μM benzyla-

minopurine (BA, Sigma-Aldrich, St. Louis, MO, USA), and 0.46 μM kinetin (KIN, Sigma-

Aldrich), and the pH of the medium was adjusted to 5.8. The medium was dispensed into test

tubes (150 x 25 mm) containing 10 mL of MS medium per tube before autoclaving at 121˚C

and 152 kPa for 15 min. After inoculation, the explants were incubated for seven days at 25˚C

in the absence of light. Subsequently, the first leaf primordia were multiplied in periods of 15

days in the same MS medium and incubated in a growth chamber at 20 ± 3˚C with a photope-

riod of 16 h (38 μmol/m2/s).
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Induction of salt stress

To induce salt stress, the sugarcane cultivars CB38-22 and RB855536 were incubated in liquid

MS culture medium supplemented with 2% sucrose, 0.887 μM BA, 0.46 μM KIN, and 0 mM

(control) or 180 mM NaCl. The NaCl concentration of 180 mM was selected by evaluating a

salt stress curve that was generated to determine the optimal NaCl concentration for inducing

salt stress (S1 Fig). The pH of the medium was adjusted to 5.8, and the medium was dispensed

into culture flasks with filters that allow gas exchange (Bio-sama) (95 x 60 mm). Each flask

contained 30 mL of MS medium and was autoclaved at 121˚C and 152 kPa for 15 min. The

plantlets were distributed randomly among the different culture flasks and maintained for 20

days in a growth chamber at 23 ± 2˚C with a photoperiod of 16 h (38 μmol/m2/s). After 20

days of exposure to the different treatments, the shoots were collected and stored at -20˚C for

proteomic analysis.

The experiments were performed using a randomized factorial design consisting of a 2x2

factorial arrangement with five replicates. Each experimental sample consisted of a flask con-

taining one cluster of shoots.

Proteomic analysis

Extraction and quantification of proteins. Proteins were extracted using the method

described by Damerval et al. [27]. Five biological replicates (500 mg of fresh matter each) were

homogenized in liquid nitrogen using a mortar and pestle. Each biological replicate consisted

of one flask containing one plantlet. The resulting powder was placed in a 2-mL microtube,

and 1 mL of extraction buffer [10% trichloroacetic acid (TCA; Sigma-Aldrich) in acetone] was

added. The samples were incubated for 60 min at 4˚C and then centrifuged at 16,000 g for 30

min. The supernatant was discarded, and the pellet was washed three times in cold acetone

with 20 mM dithiothreitol (DTT; Bio-Rad Laboratories, Hercules, CA, USA). Subsequently,

the pellets were resuspended in 1 mL of buffer containing 7 M urea (GE Healthcare, Piscat-

away, NJ, USA), 2 M thiourea (GE Healthcare), 1% DTT (Bio-Rad Laboratories), 2% Triton-

100 (GE Healthcare), and 1 mM phenylmethanesulfonyl fluoride (PMSF; Sigma-Aldrich) and

stirred for 60 min at 4˚C until the samples were completely resuspended. The samples were

incubated on ice for 30 min and then centrifuged at 16,000 g for 10 min. The supernatants

were then collected and stored at -20˚C. The total protein concentration was determined using

a 2-D Quant Kit (GE Healthcare).

Protein digestion. Total protein samples (100 μg) were prepared according to Reis et al.

[28]. Before trypsin digestion, the samples were desalted on 5000 MWCO Vivaspin 500 mem-

branes (GE Healthcare) using 50 mM ammonium bicarbonate (pH 8.5; Sigma-Aldrich) as the

buffer. The membranes were loaded to their maximum capacity with ammonium bicarbonate

buffer and centrifuged at 15,000 g and 8˚C for 20 min. This procedure was repeated at least

three times until approximately 50 μL of the sample remained.

The methodology used for protein digestion was previously described by Heringer et al.

[29]. Twenty-five microliters of 0.2% (v/v) RapiGest1 surfactant (Waters, Milford, CT, USA)

was added to each sample. The resulting mixtures were briefly vortexed and incubated in an

Eppendorf Thermomixer1 for 15 min at 80˚C, and 2.5 μL of 100 mM DTT was added. After

the tubes were vortexed and incubated at 60˚C for 30 min with agitation, 2.5 μL of 300 mM

iodoacetamide (GE Healthcare) was added, and the samples were vortexed and incubated in

the dark for 30 min at room temperature. Digestion was performed by adding 20 μL of trypsin

solution (50 ng/μL; V5111, Promega, Madison, WI, USA) prepared in 50 mM ammonium

bicarbonate and then incubating the samples overnight at 37˚C. For RapiGest1 precipitation,

10 μL of 5% (v/v) trifluoroacetic acid (TFA, Sigma-Aldrich) was added, and the samples were
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incubated at 37˚C for 90 min and then centrifuged at 16,000 g for 30 min. The samples were

subsequently transferred to Total Recovery Vials (Waters) for mass spectrometry analysis.

Mass spectrometry analysis. A nanoAcquity UPLC connected to a Synapt G2-Si HDMS

mass spectrometer (Waters) was used for ESI-LC-MS/MS analysis according to Reis et al. [28].

Chromatography was performed by injecting 1 μL of each digested sample for normalization

prior to the relative quantification of proteins. To ensure standardized molar values for all con-

ditions, the normalization among samples was based on stoichiometric measurements of the

total ion counts of scouting runs performed prior to the analyses. After normalization, the

injection volumes were adjusted to ensure the injection of equal protein quantities for each

sample. The runs consisted of three technical replicates. During separation, the samples were

loaded onto the nanoAcquity UPLC 5-μm C18 trap column (180 μm x 20 mm) at 5 μL/min

for 3 min and then onto the nanoAcquity HSS T3 1.8-μm analytical reverse-phase column

(100 μm x 100 mm) at 600 nL/min. The column temperature was 60˚C. For peptide elution,

a binary gradient was used: mobile phase A consisted of water (Tedia, Fairfield, Ohio, USA)

and 0.1% formic acid (Sigma-Aldrich), and mobile phase B consisted of acetonitrile (Sigma-

Aldrich) and 0.1% formic acid. Gradient elution was performed as follows: 7% B for 3 min,

ramping from 7 to 40% B until 90.09 min, ramping from 40 to 85% B until 94.09 min, holding

constant at 85% until 98.09 min, decreasing to 7% B until 100.09 min, and holding constant at

7% B until the end of the run at 108.09 min. Mass spectrometry was performed in the positive

and resolution mode (V mode) with a resolution of 35000 FWHM with ion mobility and in

the data-independent acquisition mode. The IMS wave velocity was set to 600 m/s; the transfer

collision energy was ramped from 19 V to 45 V in the high-energy mode; the cone and capil-

lary voltages were 30 V and 2800 V, respectively; and the source temperature was 70˚C. The

nano flow gas was set to 0.50 Bar, and the purge gas flow ranged from 145 to 150 L/h. The TOF

parameters included a scan time of 0.5 s in the continuum mode and a mass range of 50 to

2000 Da. Human [Glu1]-fibrinopeptide B (Sigma-Aldrich) at 100 fmol/μL was used as an

external calibrant, and lock mass acquisition was performed every 30 s.

Bioinformatics analysis. The spectra processing and database searching conditions were

established using Progenesis QI for Proteomics Software v.2.0 (Nonlinear Dynamics, Newcas-

tle, UK). The Progenesis software platforms use the Apex3D algorithm (Waters Corporation),

which processes the data using a low-energy threshold of 135 (counts), an elevated energy

threshold of 30, and an intensity threshold of 750. In addition, the analysis was performed

using the following parameters: one missed cleavage, minimum fragment ion per peptide

equal to 1, minimum fragment ion per protein equal to 3, minimum peptide per protein equal

to 1, fixed modifications of carbamidomethyl and variable modifications of oxidation and

phosphoryl, a default maximum false discovery rate of 4%, a score greater than 5, and a maxi-

mum mass error of 10 ppm. The Sorghum bicolour protein sequence set was downloaded

from JGI (ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/Sbicolor/annotation/

Sbicolor79protein.fa.gz). This file was used as a reference database for peptide mapping using

Progenesis software. For the comparison of protein abundance among different samples, each

run was defined as an individual condition to enable the reporting of protein quantities as sin-

gle values for subsequent data analysis. After Progenesis analysis, only the proteins present in

all three runs with a coefficient of variation less than 0.5 were included to ensure the quality of

the results. The proteins that presented differential abundances were considered to be up-regu-

lated if the log2 of the fold change (FC) was greater than 0.5 and down-regulated if the log2 of

the FC was less than -0.5 (both P<0.05). Using MapMan software (v. 3.6.0RC1) and Blast2GO

(v. 3.1), functional annotation of the proteins that presented differential abundances among

the samples subjected to the different treatments was performed. The mass spectrometry
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proteomics data have been deposited to the ProteomeXchange Consortium [30] via the

PRIDE [31] partner repository with the dataset identifier PXD006075".

Results

To analyse the effects of salinity on the developmental characteristics of RB855536 and CB38-

22, in vitro shoots of the two cultivars were exposed to 0 mM (control) of 180 mM NaCl for 20

days and were evaluated in terms of fresh and dry matter. The salt stress treatment caused sig-

nificant reductions in the fresh matter of RB855536 and CB38-22 compared with the control

plants (Fig 1). Notably, CB38-22 presented a greater reduction in its aerial growth, indicating

that this cultivar is more affected by salt stress (Fig 1).

The comparison of the two cultivars showed that CB38-22 presented a more pronounced

growth reduction than RB855536 (55% vs. 33%). The response of each cultivar to exposure to

180 mM NaCl showed differences in the dry matter parameter: the RB855536 cultivar did not

change in comparison to its control, and the CB38-22 cultivar showed a reduction of 29%,

confirming its greater sensitivity to salt stress.

Based on the proteomic analysis, we identified 1172 proteins and 1160 of these were

observed in both cultivars in the absence or presence of NaCl (CB-0, CB-180, RB-0, and RB-

180 treatments; S2 Fig). Seven proteins were shared specifically among the CB-180, RB-0, and

RB-180 treatments; one protein was observed in both the CB-0 and RB-180 treatments; one

protein was shared specifically between the RB-0 and RB-180 treatments; and three proteins

were observed in both cultivars specifically under salt stress (CB-180 and RB-180 treatments).

The three proteins shared by the two cultivars under salt stress were MEMO1-like (Sb03g

046030.1), hexokinase 1 (Sb09g026080.1), and glutathione S-transferase (GST; Sb03g044

550.2). A complete list of all the proteins identified in the cultivars subjected to the different

treatments is presented in S1 Table.

Among the 1160 proteins observed under all conditions, the majority showed similar pat-

terns of abundance in both varieties under salt stress. In the CB38-22 cultivar, 420, 506, and

235 proteins presented lower, unchanged, and higher abundance under salt stress compared

with the control, respectively. In contrast, in the RB855536 cultivar, 468, 560, and 140 proteins

exhibited lower, unchanged, and higher abundance compared with the control, respectively. A

GO analysis of the proteins presenting differential abundances proteins, which aimed to iden-

tify the main biological processes regulated by salt stress in each cultivar, was performed using

the Blast2GO programme (Fig 2). The analysis revealed that the majority of proteins regulated

by salt stress in both cultivars are involved in the processes of carbohydrate metabolism,

response to stress, transport, and photosynthesis. The comparison of the two cultivars under

salt stress revealed that the abundance of proteins related to photosynthesis and protein com-

plex biogenesis is higher in the RB855536 cultivar. In contrast, proteins related to the processes

of carbohydrate metabolism, lipid metabolism, homeostasis, transport, and response to stress

presented increased abundance in the CB38-22 cultivar.

The pattern reflecting the regulation of proteins with differential abundances in the two cul-

tivars in response to saline stress was analysed using MapMan software (Fig 3). An analysis of

the major cellular response categories revealed that a greater number of these proteins in

CB38-22 were involved in the response to abiotic stress and the redox response. In the

RB855536, a greater number of the down-regulated proteins were found to be involved in the

antioxidant response (Fig 3).

Differences in protein abundance might be a common response to salt stress or might

reveal genotype-specific alterations. The comparison of dissimilar cultivars can reveal both

common and genotype-dependent responses. The analysis of the abundance patterns of
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Fig 1. Morphological characteristics (A), fresh matter (B) and dry matter (C) of micropropagated

plantlets of the sugarcane cultivars CB38-22 and RB855536 in liquid MS culture media with 0 mM NaCl

(control) or 180 mM NaCl. Bars = 0.75 cm. The same letter above the bars indicates no significant difference

according to Tukey’s test at 5% probability.

https://doi.org/10.1371/journal.pone.0176076.g001
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proteins that show significant alteration in both varieties but present differences in abundance

between tolerant and sensitive genotypes might provide more accurate conclusions regarding

the biological roles of these proteins during exposure to salinity stress. Twenty-three proteins

with differential abundance between the two cultivars were found and these might reflect

potential genotype-specific responses of sugarcane to salt stress (Table 1). Proteins such as

photosystem I subunit l (Sb03g004560.1), glyceraldehyde-3-phosphate dehydrogenase (GAPC;

Sb09g001600.1), calcium-dependent protein kinase (CDPK; Sb08g014910.1), phospholipase D

(PLD; Sb10g023630.1), and translation initiation factor 2 (eIF2; Sb06g017820.1) were differen-

tially regulated under salt stress (Fig 4). These proteins are known to exert direct and indirect

effects on the responses to various abiotic stresses and might therefore be important proteins

involved in the response of sugarcane to salt stress (Fig 4 and Table 1).

Discussion

Salinity is one of the abiotic stresses that exert the greatest effects on agriculture worldwide

[11]. One of the first processes affected by this stress in plants is photosynthesis and cell growth

[32], which culminate in reductions in shoot and root growth. Studies using different species

have revealed that the development of shoots is limited in plants that are susceptible to abiotic

stress, whereas the growth of plants that are considered tolerant remains essentially unchanged

Fig 2. Functional analysis of proteins showing differential abundance between cultivars CB38-22 and

RB855536 under salt stress (180 mM NaCl) compared with their respective controls (without NaCl).

A = CB-180/CB-0. B = RB-180/RB-0. The log2 values of the fold changes obtained for each cultivar under salt

stress compared with their respective controls were used to determine the levels of protein abundance. The

up-regulated proteins showed log2 values greater than 0.5, and the down-regulated proteins showed log2

values less than -0.5.

https://doi.org/10.1371/journal.pone.0176076.g002
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[33,34]. In the present work, we used micropropagated shoots of two sugarcane cultivars

(CB38-22 and RB855536) exposed to salt stress, and our results showed that the RB855536 cul-

tivar had greater salt tolerance than the CB38-22 cultivar (Fig 1). As quoted in the methodol-

ogy, farmers consider the CB38-22 cultivar as tolerant to salt, which is different from our

experimental results. Although CB38-22 is an important cultivar planted in the region of Cam-

pos dos Goytacazes-RJ, this study describes the first assay of these cultivars under salt stress.

Additionally, the micropropagated shoots used in our work were devoid of root systems and

thus showed a faster response, and the effects were observed directly on leaf tissues. A more

Fig 3. Protein mapping of the CB38-22 and RB855536 cultivars under salt stress (180 mM NaCl)

compared with their respective controls (without NaCl). A = CB-180/CB-0. B = RB-180/RB-0. All proteins

with functions related to “response to biotic and abiotic stresses” are displayed on the maps. The log2 values

of the fold changes obtained for each cultivar under salt stress compared to their respective controls were

used to determine the levels of protein abundance.

https://doi.org/10.1371/journal.pone.0176076.g003
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Table 1. Proteins that were up-regulated or down-regulated under salt stress compared with their respective controls (CB-180/CB-0; RB-180/RB-

0*) and proteins showing differential regulation between the two cultivars (RB-180/CB-180).

Accession Peptide

Count

Score Log2_FC Relative abundance

regulation

Description Function

CB-180/

CB-0

RB-

180/

RB-0

RB-

180/

CB-

180

CB-180/

CB-0

RB-

180/

RB-0

RB-

180/

CB-

180

Sb03g004560.1 2 15.1 -1.859 0.599 0.774 DOWN UP UP Photosystem I subunit l Photosynthesis

Sb02g006860.1 2 11.9 -1.229 0.648 1.876 DOWN UP UP Galactose oxidase/kelch

repeat superfamily protein

Lipid transport

Sb04g023210.1 1 6.0 0.076 0.871 0.810 UNCHANGED UP UP Glutathione S-transferase

(class zeta) 2

Response to toxic substance

Sb03g020160.1 3 24.7 -0.066 0.941 1.190 UNCHANGED UP UP Photosystem II reaction

centre protein B

Photosynthesis

Sb03g028050.1 12 77.9 -0.397 0.942 0.552 UNCHANGED UP UP Oxidoreductase, aldo/keto

reductase family protein,

putative, expressed

Starch biosynthetic process,

maltose metabolic process

Sb07g002070.1 3 18.0 0.414 1.008 0.804 UNCHANGED UP UP Succinate dehydrogenase

2–2

Mitochondrial electron

transport

Sb06g028330.1 8 50.9 Unique

CB-180

0.767 0.614 Unique CB-

180

UP UP Ribosomal protein

S11-beta

Translation

Sb09g001600.1 13 144.5 Unique

CB-180

1.044 6.657 Unique CB-

180

UP UP Glyceraldehyde-

3-phosphate

dehydrogenase C2

Glycolytic process,

carbohydrate metabolic

process

Sb03g011460.1 2 10.5 Unique

CB-180

1.395 0.828 Unique CB-

180

UP UP Coatomer, beta subunit Intracellular protein transport

Sb03g025720.1 1 5.6 Unique

CB-180

2.106 2.665 Unique CB-

180

UP UP Carbamoyl phosphate

synthetase B

Urea cycle, arginine

biosynthetic process

Sb05g004860.1 1 7.1 Unique

CB-180

4.399 2.656 Unique CB-

180

UP UP Cleavage stimulating

factor 64

Regulation of gene silencing,

gene silencing by RNA

Sb01g037950.1 3 18.7 1.897 0.823 1.157 UP UP UP Pathogenesis-related Bet

v I family protein, putative,

expressed

Defence response, response to

biotic stimulus

Sb02g042550.1 3 18.1 0.777 0.928 0.775 UP UP UP Rubber elongation factor

protein (REF)

Translation elongation factor

activity

Sb03g028020.1 6 36.7 0.514 0.936 0.586 UP UP UP Oxidoreductase, aldo/keto

reductase family protein,

putative, expressed

Starch biosynthetic process,

maltose metabolic process

Sb03g000850.1 2 22.4 0.847 1.031 0.720 UP UP UP Phosphorylase

superfamily protein

Nucleoside metabolic process

Sb09g030530.1 1 5.7 3.083 1.266 0.845 UP UP UP Hypersensitive-induced

response protein, putative,

expressed

Cellular cation homeostasis,

regulation of plant-type

hypersensitive response

Sb08g014910.1 2 13.0 3.116 1.389 2.578 UP UP UP Calcium-dependent

protein kinase 1

Protein phosphorylation,

intracellular signal

transduction, abscisic acid-

activated signalling pathway

Sb03g032760.1 3 17.9 1.435 0.661 2.140 UP UP UP Myosin family protein with

the Dil domain

Actin filament-based

movement

Sb09g004430.1 2 10.3 1.318 1.473 1.687 UP UP UP Dihydrolipoyl

dehydrogenase, putative,

expressed

Cell redox homeostasis,

response to cadmium ion

Sb10g023630.1 6 34.7 1.543 1.655 1.071 UP UP UP Phospholipase D alpha 1 Lipid catabolic process,

response to abscisic acid,

regulation of stomatal

movement

(Continued )
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Table 1. (Continued)

Accession Peptide

Count

Score Log2_FC Relative abundance

regulation

Description Function

CB-180/

CB-0

RB-

180/

RB-0

RB-

180/

CB-

180

CB-180/

CB-0

RB-

180/

RB-0

RB-

180/

CB-

180

Sb04g029040.2 5 29.8 0.526 1.663 1.065 UP UP UP Aldehyde dehydrogenase

2B7

Aldehyde dehydrogenase

(NAD) activity

Sb04g027630.1 3 26.2 4.756 2.095 2.025 UP UP UP Lipase/lipoxygenase,

PLAT/LH2 family protein

Jasmonic acid biosynthetic

process, response to wounding

Sb06g017820.1 1 5.6 0.645 2.209 0.829 UP UP UP Translation initiation factor

2, small GTP-binding

protein

Protein biosynthesis, initiation

factor

*CB-0 and RB0 = cultivars CB38-22 and RB855536, respectively, cultured without NaCl (control); CB-180 and RB-180 = cultivars CB38-22 and RB855536,

respectively, cultured with 180 mM NaCl.

https://doi.org/10.1371/journal.pone.0176076.t001

Fig 4. Differential abundance of proteins with important roles in the response of sugarcane plants to

salt stress. The abundances of glyceraldehyde-3-phosphate dehydrogenase (A), calcium-dependent protein

kinase 1 (B), photosystem I subunit I (C), phospholipase D alpha 1 (D), and translation initiation factor 2 (E)

are shown for both cultivars under control and salt stress conditions. The bars represent the means ± SD

(n = 3). CB-0 and RB-0 = cultivar CB38-22 and RB855536, respectively, cultured without NaCl (controls); CB-

180 and RB-180 = cultivars CB38-22 and RB855536, respectively, cultured with 180 mM NaCl.

https://doi.org/10.1371/journal.pone.0176076.g004
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developed root system can lead to a greater tolerance to water stress and consequently to salt

stress because the plant uptake water from deeper soil layers [35]. In this study, the use of an in
vitro system was important for maintaining the controlled experimental conditions, which is

required to associate the effects observed in the analysis with the induced salt stress response.

Two factors are very important in studies of abiotic stresses, particularly salt stress: the age

of the plant and the concentration used to promote a stress condition. According to Shavrukov

[36], the salt concentration used to promote salt stress is directly related to the type of damage

caused by this stress in the plant, which ranges from osmotic stress under low concentrations

to osmotic shock and plasmolysis under high concentrations. Recent studies have shown that

the strategy of using juvenile plants and an NaCl concentration ranging from 100 to 200 mM

is efficient for studying the molecular pathways associated with the response of sugarcane cul-

tivars to salt stress [37,38]. Using this concentration range as a basis, the present study used

180 mM that was selected using a previously obtained curve (S1 Fig).

Long-term environmental changes, such as increased soil salinity, induce changes in differ-

ent biochemical pathways. Salt stress can regulate the expression of numerous genes, resulting

in significant changes in the cell proteome, including alterations in the expression of proteins

directly involved in the plant’s response to stress [16]. In the present study, changes in the pro-

teome were identified through the use of gel-free techniques followed by the label-free identifi-

cation and quantification of proteins. This analysis allowed thorough protein identification

and comparisons among the cultivars are important to determine the genotype-dependent

responses and identify potential proteins related to the responses of sugarcane to salt stress. In

particular, the greater abundance of proteins related to photosynthesis and ionic and oxidative

homeostasis detected in the RB855536 cultivar compared with the CB38-22 cultivar can be

directly correlated with the superior development and survival of RB855536 in the presence of

salt stress.

An analysis of changes in the protein composition under stress and non-stress conditions is

fundamental for understanding the major biochemical pathways involved in the molecular

responses of plants [17]. The identification and functional analysis of key proteins related to

these responses are important in the search for biomarkers [39]. We identified three proteins

in both cultivars only during salt stress (S2 Fig and S1 Table), and two of these three proteins,

hexokinase and GST, have been associated with responses to different abiotic stresses [40,41].

Because these proteins were observed in both cultivars only under salt stress conditions, they

might be important proteins involved in the response to salt stress and might be useful as bio-

markers associated with the response of sugarcane to salt stress.

In addition, in this study, we observed other groups of proteins that were regulated under

stress conditions and might therefore play important role in the response to salt stress. The

increase in the abundance of proteins related to photosynthesis is directly associated with

increased plant growth under stress conditions (Fig 2). Proteins such as photosystem I sub-

unit I (Sb03g004560.1), which exhibited a higher abundance in the stress-tolerant cultivar

RB855536 than in CB38-22 (Fig 4 and Table 1), might be directly associated with a more

robust response to salt stress conditions. An increase in the abundance of proteins associated

with the photosystems is important for the prevention of severe damage to the photosynthetic

apparatus and for the maintenance of energy production and plant development [42]. Main-

taining a high photosynthetic rate under salt stress is a characteristic associated with tolerant

sugarcane genotypes, which suggests that this factor is important for growth and development

under these conditions [21]. Carbonic anhydrase-like 2 (γCAL2; Sb04g020630.1), which was

discovered in Arabidopsis thaliana [43], is another photosynthesis-related protein that showed

increased abundance under salt stress and might therefore play an important role in the

response to salt stress. This protein forms part of complex I of the respiratory chain in the
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mitochondria of photosynthetic organisms and is an important enzyme in the carbon metabo-

lism that catalyses the interconversion of CO2 and HCO3 [44]. The excess CO2 derived from

the TCA cycle and photorespiration in the mitochondria becomes a substrate for γCAL2 and

is converted to HCO3, which is transported to chloroplasts. In chloroplasts, HCO3 is converted

into CO2, which servers as a substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase

(Rubisco) [45]. Therefore, an increase in γCAL2 might be important for reusing the CO2 pro-

duced in mitochondria through other biochemical pathways [46], and this protein is essential

for regulating the carbon metabolism and for reducing the level of intracellular CO2, which

might otherwise cause severe oxidative damage to the cell. An association between γCAL2 and

an increased abundance of Rubisco and other photosynthetic proteins was also observed in the

tolerant cultivar RB855536 (S1 Table). Therefore, this signalling pathway is associated with the

regulation and greater efficiency of the photosynthetic apparatus and might play an important

role in the response of sugarcane to salt stress.

Tolerant genotypes generally exhibit high photosynthetic rates under both stress and non-

stress conditions. However, the photosynthetic rate is usually decreased in susceptible plants

cultivated under abiotic stress [47]. This decrease in photosynthetic activity under stress condi-

tions might affect energy metabolism and increase the production of ROS [7]. ROS are impor-

tant signalling molecules during plant development; however, their overproduction during

abiotic stress promotes intracellular accumulation and leads to the induction of oxidative dam-

age [48]. Thus, the decreased abundance of the photosynthetic proteins Sb01g015400.1 and

Sb03g020160.1 in the CB38-22 cultivar compared with the cultivar RB855536 (Table 1 and Fig

2) might induce ROS accumulation and consequently oxidative stress, preventing adequate

growth of the susceptible cultivar. We found that a greater number of stress-response proteins,

such as antioxidant proteins, were more abundant in CB38-22 (Figs 2 and 3), indicating that

these might be directly associated with increased oxidative stress in this cultivar. Proteins such

as peroxidase and GST act as ROS scavengers, preventing the intracellular accumulation of

ROS [49]. Increased antioxidant enzyme activity is considered a marker of oxidative stress

in a cell [50]. However, high expression of these proteins might not always be beneficial for

improving tolerance to salt stress [51]. Thus, the effective participation of antioxidant enzymes

might be species-dependent, and other antioxidant mechanisms might be more important and

more efficient. Non-enzymatic antioxidants, such as flavonoids and osmolytes, might also be

important in the oxidative stress response [52,53]. Plant genotypes, particularly sugarcane

that exhibit tolerance to salt stress showed greater synthesis of secondary metabolites such as

anthocyanins and flavonoids. These compounds can act directly in the response to stress,

which suggests that these metabolites constitute an important response of sugarcane to salt

stress [54].

Photosynthetic and antioxidant proteins are known to be tightly regulated under abiotic

stress conditions. In this study, an examination of the differences in protein abundances

between different cultivars revealed other classes of proteins that might be involved in the

response of sugarcane to salt stress. The enzyme GAPC (Sb09g001600.1), which was found to

be more abundant in the tolerant cultivar RB855536 under salt stress (RB-180 treatment; Fig 4

and Table 1), also plays a direct role in the cellular antioxidant mechanism. This enzyme is

mainly known for participating in glycolysis, specifically for catalysing the conversion of glyc-

eraldehyde 3-phosphate into 1,3-bisphosphoglycerate. However, it has other important func-

tions in higher plants [55]. Under salt stress, GAPC plays a direct role in photosystem repair

and consequently increases the photosynthetic rate. The acceleration of photosystem repair is

achieved primarily by decreasing ROS accumulation and increasing CO2 fixation [56]. GAPC

overexpression in Oryza sativa under salt stress effectively decreases the intracellular H2O2

concentration and consequently promotes greater tolerance [57]. In addition, GAPC-deficient
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mutants exhibit a lower respiration rate and decreased ATP production [58]. This decreased

ATP production affects the energy metabolism of cells, which is driven by H+-ATPases that

use ATP as a substrate. Thus, the increased abundance of GAPC in RB855536 compared with

CB38-22 (Fig 4 and Table 1) might be directly related to the increased abundance and activity

of H+-ATPase under salt stress in the more tolerant cultivar RB855536. H+-ATPase activity is

an important response to salt stress, particularly due to the compartmentalization and ion

exclusion of Na+ [11]. These processes are performed by an Na+/H+ antiporter that depends

exclusively on the changes in the electrochemical gradient generated by H+-ATPases and H+-

PPases [59]. The elevated expression of ion transport-related genes is important for increasing

salt tolerance in sugarcane [60]. Thus, ion homeostasis together with oxidative homeostasis,

which are regulated by the actions of the above-discussed proteins, might be essential for

increasing the tolerance of sugarcane to salt stress.

In association with the increased production of ATP, the elevated activity of H+-ATPases

are important for ionic homeostasis. In this context, calcium (Ca2+) serves as an important sec-

ond messenger that activates H+-ATPases. The high concentration of intracellular Na+

induced by salt stress results in the accumulation of Ca2+ in the cytosol [61]. Errabii et al. [62]

showed that susceptible sugarcane genotypes have a lower concentration of cytosolic Ca2+

than genotypes that are tolerant to salt stress. These researchers suggest that the difference in

the cytosolic Ca2+ concentration between genotypes can be an important factor associated

with the stress response. A high cytosolic Ca2+ concentration activates signalling cascades

mediated by various proteins, including CDPK, which regulates the intracellular concentration

of Na+, mainly by activating H+-ATPases [63]. Additionally, CDPKs are involved in other

important signalling pathways that are activated in response to various abiotic stresses. These

pathways include gene regulation, the absorption of potassium (K+), the scavenging of ROS,

and the production of osmolytes [64]. In particular, CDPKs act synergistically with abscisic

acid (ABA) and might be important for preventing tissue dehydration upon exposure to stress

conditions. Yu et al. [65] revealed that this relationship between CDPK1 and ABA signalling is

mainly related to the regulation of stomatal movement. In addition, CDPKs also regulate the

expression of other proteins such as aquaporins, which are essential for the avoidance of exces-

sive water loss [66]. Because osmotic stress is one of the main effects of severe salt stress, the

higher abundance of CDPKs in the RB855536 cultivar compared with CB38-22 (Fig 4 and

Table 1) might be directly associated with the higher tolerance of RB855536 to salt stress,

which might be primarily associated with ionic and osmotic homeostasis under these condi-

tions. Previous studies have shown that the overexpression of CDPKs increases the tolerance

of several plant species to salt stress, suggesting the importance of these proteins in the

response to salt stress [67,68]. In this context, our results suggest that CDPKs are important

players in the response of sugarcane to salt stress conditions.

As previously mentioned, an increase in the concentration of cytosolic Ca2+, which acts as a

second messenger, was observed during salt stress. Along with the aforementioned proteins,

Ca2+ activates other important proteins, particularly phospholipases, in response to salt stress

[69]. Among these proteins, PLD catalyses the rapid formation of lipid species, such as phos-

phatidic acid (PA), during exposure to different abiotic stresses [70]. PA plays roles in various

stress signalling pathways [71]. In particular, this compound acts synergistically with ABA and

CDPK in the regulation of important events such as stomatal closure and the activation of pro-

ton pumps [72,73]. Additionally, PLD can function in the structural re-organization of the

plasma membrane [74]. Although it is strongly associated with the response to biotic stresses,

this re-organization might also be important in the response to salt stress [70]. A recent study

showed that PLD overexpression increases the tolerance of A. thaliana to salt and drought

stresses [73]. These studies indicate the importance of PLD in the responses of multiple species
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to salt stress. In addition, phospholipases are important in the responses to other abiotic

stresses, such as low temperature and drought [75]. Thus, the greater abundance of this protein

in the RB855536 cultivar (Fig 4 and Table 1), which is the more tolerant cultivar, indicates that

this protein might also be important in the response of sugarcane to salt stress.

In addition to the above-discussed proteins, the role of pathogenesis-related (PR) proteins

in the response to abiotic stress remains unclear. Recent studies have demonstrated the poten-

tial involvement of PR proteins in defence mechanisms related to salt stress [76]. These pro-

teins are considered important in the innate immune response of plants due to their

involvement in responses to both pathogen attack and abiotic stimuli. PR proteins have been

found to be more abundant under salt stress, and the overexpression of these proteins pro-

motes an increase in salt tolerance [77]. This increase is primarily associated with signalling

molecules that are important for defence mechanisms, such as methyl jasmonate, ABA, and

salicylic acid [78,79]. In our studies, an increase in PR protein abundance was induced in the

RB855536, and this effect might be directly associated with important hormone signalling

pathways, such as the ABA, jasmonic acid, and ethylene pathways. Therefore, PR proteins

might be important players in the response of sugarcane to salt stress (S1 Table).

Additionally, proteins involved in transcription and translation might also be important in

the response to salt stress. Previous studies have shown that under stress conditions, epigenetic

changes (i.e., DNA methylation and histone modifications) can regulate the expression of

important genes related to stress tolerance [80] and can activate the transcription of genes that

respond to abiotic stress [81]. Proteins involved in the regulation of transcriptional and trans-

lational activity are important because oxidative stress caused by high NaCl concentrations

might affect protein integrity; thus, the synthesis of new proteins is critical for the maintenance

of growth [82]. The abundance of eIF2 increases during salt stress, and this protein might be

important in the synthesis of new proteins during the stress response [83]. eIF2 is responsible

for the binding of RNA to the ribosomal subunit to initiate protein translation; therefore, it is a

key protein in protein synthesis [84]. Pacheco et al. [21] showed that tolerant sugarcane geno-

types present a greater abundance of proteins involved in protein biosynthesis, suggesting that

Fig 5. Proposed scheme of the major regulated proteins affecting ionic and osmotic homeostasis and thereby yielding a greater tolerance to

salt stress in sugarcane. The blue arrows represent the more abundant proteins and red arrows represent the less abundant proteins when both cultivars

were compared under salt stress.

https://doi.org/10.1371/journal.pone.0176076.g005
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these proteins are important in the response of sugarcane to abiotic stress. We found that the

eIF2 protein level was higher in the tolerant cultivar RB855536 than in CB38-22 (Fig 4 and

Table 1), indicating that this protein might also be important in the response of sugarcane

plants to salt stress conditions. Therefore, proteins known to be involved in protein synthesis

that show differential abundance during salt stress might be crucial for the synthesis of pro-

teins in response to stress, the activation of signalling cascades, and the maintenance of plant

growth and development under stress conditions.

Conclusions

The cultivar RB855536 was found to exhibit higher tolerance to salt stress than CB38-22, and

proteins that presented differential abundance between these two cultivars might be directly

associated with the altered tolerance and the maintenance of plant growth under salt stress.

Proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthe-

sis were more abundant in the more tolerant cultivar, RB855536. The results suggest that the

greater abundance of different groups of proteins may be directly associated with ionic and

osmotic homeostasis in sugarcane during salt stress (Fig 5). In particular, the greater abun-

dance of CDPK and PLD, which act directly in maintaining the normal concentration of Na+

in the cytoplasm and a lower accumulation of ROS, reduce the ionic and oxidative stress

caused by salt stress. The proteins identified in the present study and their associated biochem-

ical pathways provide new information regarding the tolerance of sugarcane to salt stress. Par-

ticularly in view of the lack of knowledge regarding these molecular responses in sugarcane,

this study might aid the understanding of the physiological and molecular mechanisms used

by cultivars in response to salt. Future performance analyses in the field will be important for

confirming the response mechanisms employed by the cultivar RB855536.

Supporting information

S1 Table. Complete list of identified proteins.

(XLSX)

S1 Fig. Growth curve of the sugarcane cultivar RB855536 in response to different concen-

trations of NaCl. Shoot length (A), fresh matter (B), and dry matter (C) after exposure to 0,

75, 100, 150, and 180 mM NaCl for 15 days. The bars represent the means ± SD (n = 7). The

same letter above the bars indicates no significant difference according to Tukey’s test at 5%

probability.

(TIF)

S2 Fig. Venn diagram illustrating the numbers of proteins identified under all of the con-

ditions. The diagram shows unique proteins and proteins presenting differential abundances

in the sugarcane cultivars CB38-22 and RB855536 after 20 days of incubation in MS culture

media with 0 mM NaCl (control) or 180 mM NaCl. CB-0 and RB-0 = cultivars CB38-22 and

RB855536, respectively, cultured without NaCl (controls); CB-180 and RB-180 = cultivars

CB38-22 and RB855536, respectively, cultured with 180 mM NaCl.

(TIF)
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