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Abstract
This paper presents a scalable procedure for time-constrained planning of a class of uncertain nonlinear multi-robot systems.
In particular, we consider N robotic agents operating in a workspace which contains regions of interest (RoI), in which
atomic propositions for each robot are assigned. The main goal is to design decentralized and robust control laws so that each
robot meets an individual high-level specification given as a metric interval temporal logic (MITL), while using only local
information based on a limited sensing radius. Furthermore, the robots need to fulfill certain desired transient constraints such
as collision avoidance between them. The controllers, which guarantee the transition between regions, consist of two terms: a
nominal control input, which is computed online and is the solution of a decentralized finite-horizon optimal control problem
(DFHOCP); and an additive state feedback law which is computed offline and guarantees that the real trajectories of the
system will belong to a hyper-tube centered along the nominal trajectory. The controllers serve as actions for the individual
weighted transition system (WTS) of each robot, and the time duration required for the transition between regions is modeled
by a weight. The DFHOCP is solved at every sampling time by each robot and then necessary information is exchanged
between neighboring robots. The proposed approach is scalable since it does not require a product computation among the
WTS of the robots. The proposed framework is experimentally tested and the results show that the proposed framework is
promising for solving real-life robotic as well as industrial applications.

Keywords Multi-robot systems · Cooperative control · Decentralized control · Abstractions · Metric interval temporal logic
(MITL) · Nonlinear model predictive control (NMPC) · Robust control

1 Introduction

Over the last few years, the field of control of multi-robot
systems under high-level specifications has been gaining sig-
nificant attention (Wongpiromsarn et al. 2009; Nikou 2019;
Kantaros and Zavlanos 2016; Hasanbeig et al. 2019; Pant
et al. 2018, 2019; Raman et al. 2014). Applications arise
in the fields of autonomous driving, industrial work by
autonomously operating robot systems, indoor transporta-
tion in warehouses etc (Ulusoy et al. July 2013; Xu et al.
2019). The qualitative specification language that has primar-
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ily been used to express the high-level tasks is linear temporal
logic (LTL) (see, e.g., Fainekos et al. February 2009; Fang
et al. 2018). In practical applications, however, the desired
tasks need to be accomplished within certain quantitative
time bounds by the robots.

A suitable temporal logic for dealing with tasks that are
required to be completed within certain time bounds is the
metric interval temporal logic (MITL). MITL has been orig-
inally proposed in Alur and Dill (1994) and has been used in
control synthesis frameworks in Nikou et al. (2016). Given a
robot dynamics and an MITL formula, the control design
procedure is the following: first, the robot dynamics are
abstracted into aweighted transition system (WTS), in which
the time duration for navigating between states is modeled by
a weight in the WTS (abstraction); second, an offline prod-
uct between theWTS and an automaton that accepts the runs
that satisfy the given formula is computed; and third, once an
accepting run in the product is found, it maps into a sequence
of feedback control laws of the robot dynamics.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-020-09937-6&domain=pdf
http://orcid.org/0000-0002-8696-1536


1452 Autonomous Robots (2020) 44:1451–1467

Controller synthesis for multi-robot systems under MITL
specifications has been investigated in Nikou et al. (2017,
2018, 2017), Karaman and Frazzoli (2008). In our previous
works (Nikou et al. 2017, 2018, 2017), the under consider-
ation dynamics were first order and we considered actuation
over each state of each agent. Additionally, a global product
WTS of the individual WTSs of each robot was computed.
Furthermore, no transient constraints between the agents
are taken into consideration. In particular, the work (Nikou
et al. 2017) can only handle multi-agent timed constrained
planning in R

2 dimension, which is usually not the case
in real-life robotic applications. Authors in Karaman and
Frazzoli (2008) have addressed the vehicle routing problem
(VHP), which is modeled as an optimization problem, that
aims at finding the optimal set of routes for a fleet of vehicles
to traverse, in order to deliver the load to a given set of cus-
tomers. However, the dynamics of the agents were not taken
into consideration. Moreover, issues such as control input
saturation and robustness against disturbances were not con-
sidered. In the same context, none of the aforementioned
works deal with real-time experimental validation of the cor-
responding proposed frameworks.

Motivated by the aforementioned, in this work, we aim to
address the latter issues. In particular, we deal with nonlinear
dynamics inR

n with input constraints and external uncertain-
ties/disturbances. Then, by assigning an MITL formula to
each agent, we provide decentralized feedback control laws
that guarantee robust transitions between neighboring agents
under transient constraints. The controllers consist of two
terms: a nominal control input, which is computed online and
is the solution of a decentralized finite-horizon optimal con-
trol problem (DFHOCP); and an additive state feedback law
which is computed offline and guarantees that the real trajec-
tories of the systemwill belong to a hyper-tube centered along
the nominal trajectory. More specifically, the online part is
responsible for minimizing the error and the control input
effort in order for the robot to be navigated between RoI,
while transient constraints and control input saturation are
satisfied. The second part is introduced in order to guarantee
that while the DFHOCP is solved for the nominal dynamics,
the controller compensates for the uncertain part due to exter-
nal disturbances andkeeps the trajectory of the robot bounded
inside a tube. Furthermore, an algorithm that computes the
runs of each agent that in turn map into continuous control
laws and provably satisfy the MITL formulas is provided.
These control laws correspond to the transitions indicated
above. The proposed scheme is experimentally validated in
our lab facilities with a group of Nexus robots (see Fig. 1).
Moreover, the proposed approach is scalable since does not
require a product computation among theWTS of the agents.

The idea of avoiding the global product between the agents
lies in the fact that we address the multi-agent coupling with
the low-level continuous time control design. More specif-

Fig. 1 The experimental setup demonstrating the proposed framework.
Three Nexus 10011 mobile robots, in the workspace of Smart Mobility
Lab (SML) (n.d.) that contains 5 RoI

ically, we exploit the inherent advantage of NMPC with
reference to other control techniques: we capture the cou-
pling constraints through the hard constraints of each agent
by assuming communication capabilities between the agents.
In the same context, all the algorithmic computations are
performed offline and the robots are executing online only a
sequence of a control actions that are the outcome of the plan-
ner. Thus, the latter leads to a framework that is scalable with
the number of agents. Our contribution is thus a fully auto-
mated framework for a general class of uncertain multi-robot
systems consisting of both constructing purely decentralized
abstractions and conducting timed temporal logic planning
with transient constraints in a scalable way.

This paper is structured as follows. In Sect. 2 a descrip-
tion of the necessary mathematical tools, the notations and
the definitions are given. Section 3 provides the modeling
of the proposed framework along with the formal problem
statement. Section 4 discusses the technical details of the
solution, while Sect. 5 is devoted to a real-time experiment
demonstrating the proposed approach. Finally, conclusions
and future research directions are discussed in Sect. 6.

2 Notation and preliminaries

In this section, the notation that will be used hereafter as
well as the necessarymathematical background for nonlinear
control systems and formal verification are provided.

2.1 Notation

The set of positive integers, positive rational numbers and real
numbers are denoted by N, Q+, and R, respectively. Given a
set S, we denote by |S| its cardinality, by Sn = S × · · · × S
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its n-fold Cartesian product, and by 2S the set of all its sub-
sets; ‖y‖2:=

√
y�y and ‖y‖M :=√

y�My, M ≥ 0 stand for
the Euclidean and the weighted norm of a vector y ∈ R

n ,
respectively;λmin(M) stands for theminimumabsolute value
of the real part of the eigenvalues of M ∈ R

n×n ; In ∈ R
n×n

and 0m×n ∈ R
m×n are the identity matrix and the m × n

matrix with all entries zeros, respectively. A n × n sym-
metric real matrix M is said to be positive semidefinite
(M ≥ 0) if x�Mx ≥ 0 for every x ∈ R

n . The nota-
tion diag{M1, . . . , Mn} stands for the block diagonal matrix
with the matrices M1, . . . , Mn in the main diagonal. The set
M(χ, ρ) = {y ∈ R

n : ‖y − χ‖2 ≤ ρ}, represents the n-
dimensional ball with center χ ∈ R

n and radius ρ ∈ R>0. It
should be noticed that, throughout this manuscript, the nom-
inal signals and the magnitude of upper bounds of signals are
denoted with ·, ·̃, respectively. Tables 1 and 2 show a list of
symbols and a list of acronyms, respectively, that are used in
this manuscript.

Definition 1 Given the sets S1, S2 ⊆ R
n , S ⊆ R

m and the
matrix M ∈ R

n×m , the Minkowski addition, the Pontryagin
difference as well as the matrix-set multiplication are respec-
tively defined by:

S1 ⊕ S2:={s1 + s2 : s1 ∈ S1, s2 ∈ S2},
S1 	 S2:={s1 : s1 + s2 ∈ S1,∀ s2 ∈ S2},

M ◦ S:={m = Ms, s ∈ S}.

Lemma 1 (Nikou and Dimarogonas 2019) For any constant
ρ > 0, vectors z1, z2 ∈ R

n and matrix P ∈ R
n×n, P > 0 it

holds that:

z1Pz2 ≤ 1

4ρ
z�
1 Pz1 + ρz�

2 Pz2.

2.2 Nonlinear control

Definition 2 Khalil (1996)Acontinuous functionα : [0, a) →
R≥0 belongs to class K if it is strictly increasing and
α(0) = 0. A continuous function β : [0, a) × R≥0 → R≥0

belongs to class KL if: 1) for a fixed s, the mapping β(r , s)
belongs to class K with respect to r ; 2) for a fixed r , the
mapping β(r , s) is strictly decreasing with respect to s; and
it holds that: lims→∞ β(r , s) = 0.

Definition 3 Yu et al. (2013) Consider a dynamical system:

ẋ = f (x, u, δ), x ∈ X , u ∈ U , δ ∈ D,

with initial condition x(0) ∈ X . A set X ′ ⊆ X is a Robust
Control Invariant (RCI) set for the system, if there exists a
feedback control law u:=κ(x) ∈ U , such that for all x(0) ∈
X ′ and for all disturbances δ ∈ D it holds that x(t) ∈ X ′ for
all t ≥ 0, along every solution x(t).

Table 1 List of symbols

N, Q, R Natural, rational & real numbers

[N ]:={1, . . . , N } Labeling set of robots

[Z ]:={1, . . . , Z} Labeling set of RoI

R = ⋃
z∈[Z ] Rz Union of RoI

W The workspace of the robots

L Lipschitz constant

Ti , Ai , T̃i WTS, TBA, product WTS of robot i

(S, Sinit,Act,−→, t, Γ ,L) (states, init. states, actions, transition
relation, weight, atomic propos.,
labeling function)

(Q, Qinit,CL, Inv, E,FS) (states, init. states, clocks, invariance,
accepted states)

xi , vi , ui position/orientation, velocity and
control input of robot

ei = xi − xi,d Error signal to be minimized through
DFHOCP

ξi = [ei , vi ]� stack vector

fi , Gi , δi Dynamic model of robot i and
disturbance δi

ei = ei − ei , vi = vi − vi Errors between real and nominal
signals (state and velocity
respectively)

Ωi,1,Ωi,2 Invariant tubes for the errors ei , vi

Pi , Qi , Ri Positive definite weight matrices used
in DFHOCP

Ei ,Vi ,Ui ,Fi State constraints, velocity constraints,
control input constraints, terminal
set of DFHOCP

T , h Prediction horizon and constant
sampling time period

ki , ρi Tube gains

r t , wt Timed run & timed word

τ(l), l ≥ 0 Time stamp at position l ≥ 0

M(xi , ri ) A ball centered at xi , radius ri
covering robot i

di ,Gi (t) Sensing radius & set of neighbors of
robot i at time t

♦I ,�I ,UI Eventually, always and until MITL
operators

Table 2 List of acronyms

NMPC Nonlinear model predictive control

RoI Regions of interest

DFHOCP Decentralized finite horizon

Optimal control problem

TBA Timed Büchi automaton

WTS Weighted transition system

MITL Metric interval temporal logic

ISS Input to state stability

RCI set Robust control invariant set
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Definition 4 (Khalil 1996, Def. 4.7, p. 175) A nonlinear
system ẋ = f (x, u, δ), x ∈ X , u ∈ U , δ ∈ D with initial
condition x(0) ∈ X is said to be Input-to-State Stable (ISS)
with respect to δ ∈ D, if there exist functions β ∈ KL,
γ ∈ K such that for any initial condition x(0) ∈ X and for
any input u(t) ∈ U , the solution x(t) exists for all t ∈ R≥0

and satisfies:

‖x(t)‖2 ≤ β
(‖x(0)‖2, t

) + γ

(

sup
0≤s≤t

‖δ(s)‖2
)

.

2.3 Nonlinear model predictive control

NMPCChen andAllgöwer (1998) is formulated as solving at
each sampling time step an online finite horizon optimal con-
trol problem (FHOCP) subject to nonlinear system dynamics
and constraints involving states and controls. Based on mea-
surements obtained at each sampling time step, the controller
predicts the dynamic behavior of the system over a predictive
horizon in the future and determines the input such that a pre-
determined open-loop performance objective is minimized.
In order to incorporate feedback, the optimal open-loop input
is implemented only until the next sampling time step. Using
the new system state at the next sampling time step, thewhole
procedure—prediction and optimization—is repeated.

2.4 Formal verification

Definition 5 (Alur and Dill 1994) A time sequence τ =
τ(0)τ (1) . . . is an infinite sequence of time values τ(l) ∈
Q+, satisfying the following properties: 1) Monotonicity:
τ(l) < τ(l +1) for all l ∈ N; 2) Progress: For every t ∈ Q+,
there exists l ≥ 1, such that τ(l) > t .

An atomic proposition p is a statement that is either True
(�) or False (⊥).

Definition 6 (Alur and Dill 1994) Let Γ be a finite set of
atomic propositions. A timed word w over the set Γ is an
infinite sequence wt = (w(0), τ (0))(w(1), τ (1)) . . . where
w(0) w(1) . . . is an infinite word over the set 2Γ and τ(0)
τ (1) . . . is a time sequence with τ(l) ∈ Q+, l ∈ N.

Definition 7 A weighted transition system (WTS) is a tuple
(S, Sinit, Act,−→, t, Γ ,L) where S is a finite set of states;
Sinit ⊆ S is a set of initial states; Act is a set of actions;
−→⊆ S × Act × S is a transition relation; t :−→→ Q+
is a map that assigns a positive weight to each transition; Γ

is a finite set of atomic propositions; and L : S → 2Γ is a
labeling function.

Definition 8 A timed run of a WTS is an infinite sequence
r t = (r(0), τ (0))(r(1), τ (1)) . . ., such that r(0) ∈ S0,
and for all l ≥ 1, it holds that r(l) ∈ S and (r(l), α(l),

r(l + 1)) ∈ −→ for a sequence of actions α(1)α(2) . . .

with α(l) ∈ Act,∀ l ≥ 1. The time stamps τ(l), l ≥ 0
are inductively defined as: 1) τ (0) = 0; 2) τ (l + 1) =
τ(l) + t(r(l), α(l), r(l + 1)), ∀ l ≥ 1. Every timed run r t

generates a timed word wt = (w(0), τ (0)) (w(1), τ (1)) . . .

over the set 2Γ where w(l) = L(r(l)), ∀ l ∈ N is the subset
of atomic propositions that are true at state r(l).

The syntax ofMetric Interval Temporal Logic (MITL) over
a set of atomic propositions Γ is defined by the grammar:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | ♦I ϕ | �I ϕ | ϕ1 UI ϕ2,

where p ∈ Γ , and ♦, � and U are the eventually, always
and until temporal operator, respectively; I = [a, b] ⊆ Q+
where a, b ∈ [0,∞] with a < b is a non-empty timed inter-
val. TheMITL formulas are interpreted over timedwords like
the ones produced by a WTS which is given in Definition 8.

Definition 9 (Souza and Prabhakar 2007; Ouaknine and
Worrell 2005) Given a timed wordwt = (w(0), τ (0))(w(1),
τ (1)) . . . , an MITL formula ϕ and a position l in the timed
word, the satisfaction relation (wt , l) |� ϕ, for l ≥ 0 (read
wt satisfies ϕ at position l) is inductively defined as follows:

(wt , l) |� p ⇔ p ∈ w(l),

(wt , l) |� ¬ϕ ⇔ (wt , l) �|� ϕ,

(wt , l) |� ϕ1 ∧ ϕ2 ⇔ (wt , l) |� ϕ1 and (wt , l) |� ϕ2,

(wt , l) |� ♦I ϕ ⇔ ∃ l ′ ≥ l, such that

(wt , l ′) |� ϕ, τ(l ′) − τ(l) ∈ I ,

(wt , l) |� �I ϕ ⇔ ∀ l ′ ≥ l, τ (l ′) − τ(l) ∈ I

⇒ (wt , l ′) |� ϕ,

(wt , l) |� ϕ1 UI ϕ2 ⇔ ∃l ′ ≥ l, s.t. (wt , l ′) |� ϕ2,

τ (l ′) − τ(l) ∈ I and (wt , l ′′) |� ϕ1,∀ l ≤ l ′′ < l ′.

We say that a timed run r t = (r(0), τ (0))(r(1), τ (1)) . . .

satisfies the MITL formula ϕ (we write r t |� ϕ) if and only
if the corresponding timed word wt = (w(0), τ(0))(w(1),
τ(1)) . . . with w(l) = L(r(l)),∀ l ≥ 0, satisfies the MITL
formula (wt |� ϕ).

Timed Büchi Automata (TBA) were originally introduced
in Alur and Dill (1994); Bouyer (2009); Tripakis (2009). Let
CL = {c1, . . ., c|CL|} be a finite set of clocks. The set of clock
constraints Φ(CL) is defined by the grammar:

φ := � | ¬φ | φ1 ∧ φ2 | c �� ψ,

where c ∈ CL is a clock, ψ ∈ Q+ is a clock constant and
�� ∈ {<,>,≥,≤,=}. A clock valuation is a function ν :
CL → Q+ that assigns a value to each clock. A clock cl has
valuation νl for l ∈ {1, . . . , |CL|}, and ν = (ν1, . . . , ν|CL|).
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We denote by ν |� φ the fact that the valuation ν satisfies the
clock constraint φ.

Definition 10 A Timed Büchi Automaton is a tuple (Q, Qinit,

CL, Inv, E,FS, Γ ,L) where Q is a finite set of locations;
Qinit ⊆ Q is the set of initial locations; CL is a finite set of
clocks; Inv : Q → Φ(C) is the invariant; E ⊆ Q×Φ(CL)×
2C × Q gives the set of edges of the form e = (q, g,RS, q ′),
where q, q ′ are the source and target states, g is the guard of
edge e and RS is a set of clocks to be reset upon executing
the edge; FS ⊆ Q is a set of accepting locations; Γ is a finite
set of atomic propositions; and L : Q → 2Γ labels every
state with a subset of atomic propositions.

AnyMITL formula ϕ overΓ can be algorithmically trans-
lated into a TBAwith the alphabet 2Γ , such that the language
of timed words (i.e. the set of all accepted timed words) that
satisfyϕ is the language of timedwords produced by theTBA
(Alur et al. 1996; Maler et al. 2006; Ničković and Piterman
2010; Brihaye et al. 2017).

Definition 11 Given a WTS T = (S, Sinit, Act, −→, t, Γ ,
L), and a TBA A = (Q, Qinit,CL, Inv, E,FS, Γ ) with CL
clocks. Then, their product WTS:

T̃ = T � A = (Q̃, Q̃init,�, t̃, F̃, Γ , L̃),

is defined as follows:

– Q̃ = S × Q is the set of states;
– Q̃init = Sinit × Qinit is the set of initial states;
– � is the set of transitions where (q̃, q̃ ′) ∈ � iff:

• q̃ = (s, q) ∈ Q̃ and q̃ ′ = (s′, q ′) ∈ Q̃,
• (s, ·, s′) ∈−→, and
• there exist g, γ,RS such that (q, g,RS, γ, q ′) ∈ E

where γ = L(q ′);

– t̃(q, q ′) = t(s, s′) if (q, q ′) ∈�, is a map that assigns a
positive weight to each transition;

– F̃ = {(s, q) ∈ Q̃ : q ∈ FS} is a set of accepting states;
and

– L̃(s, q) = L(s) is a labeling function.

3 Problem formulation

3.1 Systemmodel

Consider a team of N robots with labels [N ]:={1, . . . , N }
operating in a bounded workspace W ⊆ R

n . The robots are
governed by the following kinematics and dynamics model:

ẋi = vi , (1a)

v̇i = fi (xi , vi ) + Gi ui + δi , (1b)

where xi , vi ∈ R
n stands for the position/orientation and the

linear/angular velocity of the robot i ∈ [N ], respectively;
fi : R

n × R
n → R

n is a known and continuously differ-
entiable vector fields with fi (0, 0) = 0 and Gi ∈ R

n×n ;
ui ∈ R

n stands for the control input vector; and δi ∈ R
n

models the external disturbances and uncertainties. Consider
also velocity constraints, input constraints aswell as bounded
disturbances:

vi ∈ Vi :={vi ∈ R
n : ‖vi‖2 ≤ ṽi },

ui ∈ Ui :={ui ∈ R
n : ‖ui‖2 ≤ ũi },

δi ∈ Δi :={δi ∈ R
n : ‖δi‖2 ≤ δ̃i },

where the constants ṽi , ũi , δ̃i > 0 are a priori given. The
sets Vi , Ui and Δi are assumed to be connected sets with the
origin as an interior point. Define the corresponding nominal
kinematics/dynamics by:

ẋ i = vi , (2a)

v̇i = fi (xi , vi ) + Gi ui , (2b)

which are the real kinematics/dynamics for the case of δi = 0.

Assumption 1 The linear systems η̇i = Aiηi + Bi ui , where
ηi :=[x�

i , v�
i ]� ∈ R

2n , that are the outcome of the Jacobian
linearization of the nominal dynamics (2a)–(2b) around the
equilibrium states (xi , vi ) = (0, 0) are stabilizable.

Assumption 2 There exist strictly positive constants Gi such
that:

λmin

[
Gi + G�

i

2

]

≥ Gi > 0, ∀i ∈ V. (3)

Remark 1 Assumption 1 is required for the NMPC nominal
stability to be guaranteed (Chen and Allgöwer 1998). Note
also that in real-time robotic systems, thematricesGi usually
represents the mass matrix of the robots which are always
positive-definite. Thus, Assumption 2 is satisfied.

In the givenworkspace, there exist Z ∈ N disjoint Regions
of Interest (RoI) labeled by [Z ]:={1, . . . , Z}.We assume that
the RoI are modeled by balls, i.e., Rz :=M(yz, pz), Z ∈ N,
where yz and pz > 0 stand for the center and radius of RoI
Rz , respectively. Define also the union of RoI by

R:=
⋃

z∈[Z ]
Rz .

Due to the fact that we are interested in imposing safety
constraints, at each time t ≥ 0, the robot i is occupying a ball
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M(xi (t), ri ) that covers its volume, where xi (t) and ri > 0
are its center and radius, respectively. Moreover, in order to
be able to impose transient constraints among the robots, we
assume that each robot i ∈ [N ] has communication capabil-
ities within a limited sensing range di > 0 such that:

di > max
i, j∈[N ],i �= j

{ri + r j }, (4)

The latter implies that each agent has sufficiently large sens-
ing radius so as tomeasure the agent with the biggest volume,
due to the fact that the agents’ radii are not the same. Define
the set of robots j that are within the sensing range of agent
i at time t as:

Gi (t):={ j ∈ [N ]\{i} : ‖xi (t) − x j (t)‖2 < di }. (5)

3.2 Objectives

The goal of this paper is to design decentralized feedback
control laws that steers the robots with dynamics as in (1a)–
(1b) betweenRoI so that they obey individual high-level tasks
given in MITL under transient constraints between them.
Define the labeling functions:

Li : R → 2Γi , (6)

whichmap eachRoIwith a subset of atomic propositions that
hold true there. Note that some of the RoI may be assigned
with labels that indicate unsafe regions, i.e., the robot is
required to avoid visiting them (safety specifications).

Definition 12 A trajectory xi (t) of robot i ∈ [N ] is associ-
ated with a timed run r t

i = (ri (0), τi (0)) (ri (1), τi (1))(ri (2),
τi (2)) . . ., where ri (l) ∈ R, ∀l ∈ N, is a sequence of RoI that
the robot crosses, if the following hold:

1. τi (0) = 0, i.e., the robot starts the motion at time t = 0;
2. M(xi (τi (0)), ri ) � ri (0), i.e., initially, the volume of the

robot is entirely within the RoI ri (0) ∈ R;
3. M(xi (τi (l)), ri ) � ri (l), ∀l ∈ N, i.e., the robot changes

discrete state as soon as its entire volume is strictly con-
tained in the corresponding RoI;

4. τi (l + 1):=τi (l) + ti (ri (l), ri (l + 1)), ∀l ∈ N, where:

ti : R × R → Q+, (7)

are functions that model the duration that the robot needs
to be driven between regions ri (l) and ri (l + 1).

Definition 13 A trajectory xi (t) satisfies an MITL formula
ϕi over the set of atomic propositions Γi , formally written
as xi (t) |� ϕi , ∀t ≥ 0, if and only if there exists a timed
run r t

i to which the trajectory xi (t) is associated, according
to Definition 12, which satisfies ϕi .

Remark 2 We assume that the volume of each robot is cov-
ered by a ball. We further assume that the obstacles can be
modeled by RoI that are also balls. Even if the volume of
an agent and/or an obstacle is not a ball, it can be over-
approximated by a ball.

3.3 Problem statement

The problem considered in this paper is stated as follows:

Problem 1 Consider N robots governed by dynamics (1a)–
(1b), covered by the balls M(xi (t), ri ), operating in the
workspace W ⊆ R

n with sensing communication capabili-
ties captured by the sets Gi as defined in (5). The workspace
contains the RoI Rz , z ∈ [Z ] modeled also by balls. Given
task specification formulas ϕi for each robot i ∈ [N ]
expressed in MITL over the set of atomic propositions Γi

and labeling functions Li as in (6); then, design decentral-
ized feedback control laws ui = κi (xi , vi ) ∈ Ui , such that
the robot trajectories in the workspace fulfill the MITL speci-
fications ϕi , i.e., xi (t) |� ϕi , ∀t ≥ 0, according to Definition
12, while collision avoidance constraints are imposed among
the robots, i.e.:

‖xi − x j‖2 > ri + r j , ∀i ∈ [N ], j ∈ [N ]\{i}.

Remark 3 Note that Problem 1 constitutes a general prob-
lem due to the fact that the dynamics (1a)–(1b) arise in
most robotic applications and transient constraints among
the robots are taken into consideration.

4 Problem solution

In this section, a systematic framework for solving Problem
1 is provided as follows:

1. In Sects. 4.1–4.2, decentralized feedback control laws
that guarantee the transition between RoI in the given
environments are provided. The laws consist of two com-
ponents: an online control law which is the outcome of
a DFHOCP solved at each timed step (Sect. 4.1); and an
offline law which guarantees that the trajectories of the
real system remain in a hyper-tube (Sect. 4.2).

2. Then, by using the outcome of Sect. 4.1, we abstract the
dynamics (1a)–(1b) into a WTS for each robot, exploit-
ing the fact that the timed runs in the WTS project onto
associated trajectories according to Definition 12 (Sect.
4.3)

3. By invoking ideas from our previous work (Nikou et al.
2016), a controller synthesis procedure that provides a
sequence of control laws that serve as solution to Problem
1 is consulted (Sect. 4.4)
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4. Lastly, the computational complexity of the proposed
framework is discussed in Sect. 4.5.

4.1 Decentralized feedback control design—part I

Consider the robot i with dynamics (1a)–(1b) occupying a
RoI Ri,s ∈ R at time ti,s ≥ 0. The decentralized feedback
control should guarantee that the robot is navigated towards
a desired RoI Ri,d ∈ R, Ri,d �= Ri,s without intersection
with any other RoI or other agents j ∈ [N ], j �= i . Denote
by xi,d ∈ Ri,d the center of the RoI Ri,s . Define the error
vector:

ei :=xi − xi,d ∈ R
n, i ∈ [N ],

as well as the uncertain error kinematics/dynamics by:

ėi = vi , (8a)

v̇i = fi (ei + xi,d , vi ) + Gi ui + δi , (8b)

The corresponding uncertain nominal error kinematics/
dynamics are given by:

ėi = vi , (9a)

v̇i = fi (ei + xi,d , vi ) + Gi ui . (9b)

Consider the feedback control law:

ui :=ui (ei , vi ) + κi (ei , vi , ei , vi ), (10)

which consists of a nominal control action ui (ei , vi ) ∈ Ui

and a state feedback laws κi (ei , vi , ei , vi ). The control action
ui (ei , vi ) is the outcome of aDFHOCP solved on-line at each
sampling time step; the state-feedback law will be tuned off-
line according to a procedure thatwill be presented thereafter.
Define the sets that capture the state constraints of each robot
as:

Ei :=
{

ei (t) ∈ R
n : ‖ei (t) + xi,d − e j (t) − x j,d‖2 >

ri + r j + δ̃i
min{αi,1,αi,2} , ∀ j ∈ Gi (t),

M(ei (t) + xi,d , ri ) ∩ {R\{Ri,s,Ri,d}} = ∅
}
.

The first constraint captures the fact that the robots should not
collide with each other; the latter one, captures the fact that
each robot needs to be navigated from RoI Ri,s to RoIRi,d

without intersecting with any other RoI of the workspace due
to the fact that we are interested in imposing safety specifi-
cations.

Assumption 3 It is assumed that:

ri + δ̃i
min{αi,1,αi,2} < pz, ∀z ∈ [Z ], i ∈ [N ]. (11)

More specifically, (11) states that the radius of the ball that
covers every robot plus the radius of the disturbance tube is
smaller than the radius of any of the RoI of theworkspace. As
it will be shown later, this assumption is required in order to
compute the time that a robot needs to be navigated between
the RoI in the workspace.

Consider a sequence of sampling times {tk}, k ∈ N, with a
constant sampling period 0 < h < T , where T stands for the
finite prediction horizon. It holds that tk+1 = tk +h, ∀k ∈ N.
It should be noted that both tk and T are multiples of h. At
every discrete sampling time tk a DFHOCP is solved by each
robot i ∈ [N ] as follows:

min
ui (·)

{
‖ξ i (tk + T )‖2Pi

+
∫ tk+T

tk

[
‖ξ i (s)‖2Qi

+ ‖ui (s)‖2Ri

]
ds

}

(12a)

subject to:

ξ̇ i (s) = fi (ei (s), vi (s), ui (s)), (12b)

ξ i (s) ∈ E i × V i , ui (s) ∈ U i , ∀s ∈ [tk, tk + T ], (12c)

ξ i (tk + T ) ∈ Fi . (12d)

In the aforementioned optimal control problem we defined:

ξ i :=[ei , vi ]� ∈ R
2n,

fi (ξ i , ui ):=
[

vi

fi (ei + xi,d , vi ) + ui

]
.

The matrices Qi , Pi ∈ R
2n and Ri ∈ R

n are positive definite
weighting matrices. The sets Fi stand for the terminal sets
that are used to enforce the stability of the nominal system
(see Chen and Allgöwer 1998 for more details).

Hereafter, the sets E i , V i and U i are explained. In order
to guarantee that while the DFHOCP (12a)–(12d) is solved
for the nominal dynamics (9a)–(9b), the real states ei , vi

and control inputs ui satisfy the corresponding state and
input constraints Ei , Vi and Ui , respectively, the latter sets
are appropriately modified as:

E i :=Ei 	 Ωi,1,

V i :=Vi 	 Ωi,2,

U i :=Ui 	 [−ki ◦ Ω i
]
,

with Ω i :=Ωi,1 ⊕ Ωi,2, Ωi,1, Ωi,2 as given in (16a), (16b),
respectively, and ki to be defined later. This constitutes a
standard constraints set modification technique adopted in
tube-based NMPC frameworks (for more details see Yu et al.
2013). The advantage of the tube-based framework compared
to other robust NMPC approaches is that the constraint tight-
ening is performed offline and it does not depend on the
length of the horizon. Algorithm 1 depicts the procedure
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Algorithm 1 Implementation of feedback control laws ui (t),
i ∈ [N ]
Step 0 : At time t0:=0, set ei (0) = ei (0), vi (0) = vi (0).
Step 1 : At time tk and current state (ei (tk), vi (tk), ei (tk), vi (tk)),
solve the DFHOCP (12a)–(12d) to obtain the nominal control action
ui (tk) and the actual control action

ui (tk) = ui (tk) + κi (ei (tk), ei (tk), vi (tk), vi (ti )).

Step 2 : Apply the control ui (tk) to the system (8a)–(8b), during
sampling interval [tk , tk+1), where tk+1 = tk + h.
Step 3 : Measure the state (ei (tk+1), vi (tk+1)) at the next time
instant tk+1 of the system (8a)–(8b) and compute the successor state
(ei (tk+1), vi (tk+1)) of the nominal system (9a)–(9b) under the nom-
inal control action ui (tk).
Step 4 : Set

(ei (tk), ei (tk), vi (tk), vi (tk)) ← (ei (tk+1),

ei (tk+1), vi (tk+1), vi (tk+1)),

tk ← tk+1;
Go to Step 1.

of how the control law is calculated and applied to a real
robot. This is a procedure of implementing the continuous-
time tube-based NMPC in a real-time system that has been
introduced in Yu et al. (2013).

4.2 Decentralized feedback control design—part II

For each agent i ∈ [N ] define by:

ei :=ei − ei ,

vi :=vi − vi ,

the deviation between the real states ei , vi of the uncertain
system (8a)–(8b) and the states of the nominal system (9a)–
(9b) with ei (0) = vi (0) = 0. It will be proven that the states
ei , vi remain invariant in certain compact sets. The dynamics
of the states ei and vi are written as:

ėi = ėi − ėi

= vi − vi

= vi , (13a)

v̇i = v̇i − v̇i

= fi (ei + xi,d , vi ) − fi (ei + xi,d , vi )

+ Gi ui − Gi ui + δi

= g(ei , ei , vi , vi ) + Gi (ui − ui ) + δi , (13b)

where the functions gi are defined by:

gi (ei , ei , vi , vi ):= fi (ei + xi,d , vi ) − fi (ei + xi,d , vi ),

and they are upper bounded by:

‖gi (ei , ei , vi , vi )‖2 ≤ ‖ fi (ei + xi,d , vi ) − fi (ei + xi,d , vi )‖2
= ‖ fi (ei + xi,d , vi ) − fi (ei + xi,d , vi )

+ fi (ei + xi,d , vi ) − fi (ei + xi,d , vi )‖2
≤ ‖ fi (ei + xi,d , vi ) − fi (ei + xi,d , vi )‖2

+ ‖ fi (ei + xi,d , vi ) − fi (ei + xi,d , vi )‖2
≤ Lv,i‖vi − vi‖2 + Le,i‖ei + xi,d − ei − xi,d‖2
= Lv,i‖vi − vi‖2 + Le,i‖ei − ei‖2
= Lv,i‖vi‖2 + Le,i‖ei‖2
≤ Li (‖ei‖2 + ‖vi‖2) .

The constants Le,i , Lv,i stand for the Lipschitz constants of
functions fi with respect to the variable ei and vi , respec-
tively, and

Li :=max{Le,i , Lv,i }, i ∈ [N ].

Lemma 2 The state feedback laws designed by:

κi (ei , ei , vi , vi ):= − ki (ei − ei ) − ki (vi − vi ), i ∈ [N ],
(14)

where ki , ρi > 0 are chosen such that the following hold:

ki >
1

Gi
[1 + (1 + 2ρi )Li ] , ρi >

Li

2
, (15)

renders the sets:

Ωi,1:=
{
ei ∈ R

n : ‖ei‖2 ≤ δ̃i
min{αi,1,αi,2}

}
, (16a)

Ωi,2:=
{
vi ∈ R

n : ‖vi‖2 ≤ 2 δ̃i
min{αi,1,αi,2}

}
, (16b)

RCI sets for the error dynamics (13a), (13b), according to
Definition 3, where the constants αi,1, αi,2 > 0 are defined
by:

αi,1:=1 − Li

2ρi
, αi,2:=ki Gi − 1 − (1 + 2ρi )Li . (17)

Proof A backstepping control methodology will be used
(Krstic et al. 1995). The state vi in (13b) can be seen as vir-
tual input to be designed such that the candidate Lyapunov
function:

L1(ei ):=1

2
‖ei‖22,

for the dynamical system (13a) is always decreasing. The
time derivative of L1 along the trajectories of system (13a)
is given by:

L̇1(ei ) = e�i ėi = e�i vi .
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Thus, by designing vi ≡ −ei , it yields that

L̇1(ei ) = −‖ei‖22.

Define the backstepping auxiliary errors ζi,1, ζi,2 ∈ R
n by:

ζi,1:=ei ,

ζi,2:=vi + ei .

Then, the auxiliary error dynamics are written as:

ζ̇i,1 = ėi = vi = ζi,2 − ei = −ζi,1 + ζi,2 (18a)

ζ̇i,2 = −ζi,1 + ζi,2 + gi (·) + Gi (ui − ui ) + δi , (18b)

with:

‖gi (·)‖2 ≤ Li (‖ei‖2 + ‖vi‖2)
= Li (‖ζi,1‖2 + ‖ζi,1 − ζi,2‖2)
≤ 2Li ‖ζi,1‖2 + Li‖ζi,2‖2, (18c)

and ζi,1(0) = ζi,2(0) = 0. Define the stack vector
ζi :=[ζ�

i,1, ζ
�
i,2]� ∈ R

2n and consider the candidate Lyapunov

function L(ζi ) = 1
2‖ζi‖22 with L(0) = 0. The time derivative

ofL along the trajectories of system (13a)–(13b) is given by:

L̇(ζi ) = ζ�
i ζ̇i

= ζ�
i,1ζ̇i,1 + ζ�

i,2ζ̇i,2

= −‖ζi,1‖22 + ‖ζi,2‖2 + ζ�
i,2 gi (·)

+ ζ�
i,2 Gi (ui − ui ) + ζ�

i,2 δi

≤ −‖ζi,1‖22 + ‖ζi,2‖2 + ‖ζi,2‖2 ‖gi (·)‖2
+ ζ�

i,2 Gi (ui − ui ) + ζ�
i,2 δi

By using (18c), the latter becomes:

L̇(ζi ) = −‖ζi,1‖22 + (Li + 1)‖ζi,2‖22 + 2Li‖ζi,1‖2‖ζi,2‖2
+ ζ�

i,2 Gi (ui − ui ) + ζ�
i,2δi .

By using Lemma 1 we have:

‖ζi,1‖2‖ζi,2‖2 ≤ ‖ζi,1‖22
4ρi

+ ρi‖ζi,2‖2

⇒ 2Li‖ζi,1‖2‖ζi,2‖2 ≤ Li‖ζi,1‖22
2ρi

+ 2ρi Li‖ζi,2‖2.

with ρi satisfying (15). Then, it holds that:

L̇(ζi ) ≤ −
(
1 − Li

2ρi

)
‖ζi,1‖22 + [1 + (1 + 2ρi )Li ] ‖ζi,2‖22

+ ζ�
i,2 Gi (ui − ui ) + ‖ζi,2‖̃δi .

By designing ui − ui = −kiζi,2 = −ki ei − kivi = −ki (e −
ei )− ki (vi −vi ) which is the same with (14) and compatible
with (10) we get:

L̇(ζi ) ≤ −
(
1 − Li

2ρi

)
‖ζi,1‖22 + [1 + (1 + 2ρi )Li ] ‖ζi,2‖22

− ki ζ�
i,2 Gi ζi,2 + ‖ζi,2‖̃δi .

Writing thematrices Gi as Gi = Gi +G�
i

2 + Gi −G�
i

2 and taking
into account that:

y�
(

Gi − G�
i

2

)

y = 0, ∀y ∈ R
n,

y� Py ≥ λmin(P)‖y‖22, ∀y ∈ R
n, P ∈ R

n×n, P > 0,

we obtain:

L̇(ζi ) ≤
−

(
1 − Li

2ρi

)
‖ζi,1‖22 + [1 + (1 + 2ρi )Li ] ‖ζi,2‖22

− kiλmin

(
Gi + G�

i

2

)

‖ζi,2‖22 + ‖ζi,2‖̃δi .

By using Assumption 2 and (17), the latter becomes:

L̇(ζi ) ≤ −αi,1‖ζi,1‖22 − αi,2‖ζi,2‖22 + ‖ζi,2‖̃δi

≤ −min{αi,1, αi,2}
(
‖ζi,1‖22 + ‖ζi,2‖22

)
+ ‖ζi,2‖̃δi

= −min{αi,1, αi,2}‖ζi‖22 + ‖ζi,2‖̃δi

= ‖ζi‖2
[−min{αi,1, αi,2}‖ζi‖2 + δ̃i

]

Thus, L̇(ζi ) < 0 when ‖ζi‖2 >
δ̃i

min{αi,1,αi,2} . Taking the
latter into account and the fact that ζi (0) = 0 we have that
‖ζi (t)‖2 ≤ δ̃i

min{αi,1,αi,2} , ∀t ≥ 0. Moreover, the following
inequalities hold:

‖ei‖2 = ‖ζi,1‖2 ≤ ‖ζi‖2
⇒ ‖ei‖2 ≤ δ̃i

min{αi,1, αi,2} , ∀t ≥ 0,

and:

∣∣‖ei‖2 − ‖vi‖2
∣∣ ≤ ‖ei + vi‖2 ≤ ‖ζi,2‖2 = ‖ζi‖2

⇒ ‖vi‖2 ≤ 2 δ̃i

min{αi,1, αi,2} , ∀t ≥ 0,

which leads to the conclusion of the proof. ��
The aforementioned result states that real trajectories

ei (t), vi (t) will belong to a hyper-tubed which is centered
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Fig. 2 The hyper-tube centered
along the trajectory ei (t)
(depicted by blue line) with

radius δ̃i
min{αi,1, αi,2} . Under the

proposed control law, the real
trajectory ei (t) (depicted with
red line) lies inside the
hyper-tube for all times, i.e.,

‖ei (t)‖ ≤ δ̃i
min{αi,1, αi,2} ,∀t ∈ R≥0 (Color figure online)

˜δi

min{αi,1,αi,2}

˜δi

min{αi,1,αi,2}

• •
•

ei(t)
ei(t)

along the nominal trajectories ei (t), vi (t). The tubes’ radii

are δ̃i
min{αi,1,αi,2} and

2̃δi
min{αi,1,αi,2} , respectively, as it is depicted

in Fig. 2.

Remark 4 It should be noted that the volume of the hyper-
tubes depends on the upper bound of the disturbances δi , the
Lipschitz constants Li and the constants Gi . By tuning the
gains ki and ρi as in (15), (17) appropriately, the volume of
the tubes can be adjusted. However, these gains cannot be set
arbitrarily high due to the fact that the robots have limited
actuation resources which are captured by the upper bound of
the control input. The higher the upper bound of the control
input is, the smaller the volume of the tube can be set.

By using (10), the closed-loop system is written as:

ėi = vi , (19a)

v̇i = fi (ei + xi,d , vi ) + ui (ei , vi ) − ki (ei − ei )

− ki (vi − vi ) + δi . (19b)

Due to the fact that Problem 1 imposes transient con-
straints between the agents (collision avoidance) and the
agents have communication capabilities within the sensing
range di as given in (4)–(5), we adopt here the decentralized
procedure depicted in Algorithm 2 and explained hereafter.
Assume that each agent knows its labeling number in the set
[N ]. After each sampling time tk , ∀k ≥ 0 that agent i solves
its own DFHOCP and obtains the estimated open-loop tra-
jectory ξ i (s), s ∈ [tk, tk + T ], it transmits it to all agents
j ∈ Gi (tk), j �= i , i.e., to agents that are within its sens-
ing radius at time tk . Then, agents’ j ∈ Gi (tk), j �= i hard
constraints E j are updated by incorporating the predicted
trajectory of agent i , i.e., ξ i (s), s ∈ [tk, tk + T ]. Among all
agents j ∈ Gi (tk), the one with higher priority, i.e., smaller
labeling number in the set [N ], solves its own DFHOCP
(for example, agent 2 has higher priority than agents 3, 4,
. . . ). This sequential procedure is continued until all agents
i ∈ [N ] solve their own DFHOCP, and then the sampling
time is updated.

In other words, each time an agent solves its own indi-
vidual optimization problem, it knows the (open-loop) state

predictions that have been generated by the solution of the
optimization problem of all agents within its sensing range
at that time, for the next T time units. These pieces of infor-
mation are required, as each agent’s trajectory is constrained
not by constant values, but by the trajectories of its asso-
ciated agents through time: at each solution time tk and
within the next T time units, an agent’s predicted config-
uration at time s ∈ [tk, tk + T ] needs to be constrained by
the predicted configuration of its neighboring and perceiv-
able agents (agents within its sensing range) at the same time
instant s, so that collisions are avoided. We assume that the
above pieces of information are always available, accurate
and can be exchanged without delay.Wewill show thereafter
that by adopting the aforementioned sequential communi-
cation procedure, and given that at t = 0 the DFHOCP
(12a)–(12d) of all agents are feasible, the agents are navigated
to the desired RoI, while all distance and input constraints
imposed by Problem 1 are satisfied.

Remark 5 It should be noted that the constraint sets E i , i ∈
[N ] in (12c) depend on the estimated open-loop trajectories
ei (s) and e j (s) for all i ∈ [N ], j ∈ G(tk), with s ∈ [tk, tk +
T ]. Moreover, they are updated when each robot has received
the transmitted trajectories by its neighbors.

Remark 6 Byconsidering a real-time scenariowhere the state
vector ξ is comprised of 12 real numbers encoded by 4 bytes
the overall downstream bandwidth required by each robot is:

BWd = 12 × 32 [bits] × |Gi (tk)| × T

h
× f [sec−1].

Given a conservative sampling time f = 100 Hz and a

horizon of
T

h
= 100 time steps, the wireless protocol

IEEE 802.11n-2009 (a standard for present-day devices) can
accommodate up to

|Gi (tk)| = 600 [Mbit · sec−1]
12 × 32[bit] × 104[sec−1] ≈ 16 · 102 robots,
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within the range of one robot. We deem this number to
be large enough for practical applications of the proposed
approach.

The following theorem guarantees the navigation of the
agents between RoI and thereafter we will propose algo-
rithms computing the corresponding transition times.

Theorem 1 Suppose that Assumptions 1–3 hold. Suppose
that the robots start at time ti,s ≥ 0 from the RoIRi,s and they
need to be navigated to RoI Ri,d for every i ∈ [N ]. Suppose
also that at time ti,s the DFHOCP (12a)–(12d) sequentially
solved by all the robots i ∈ [N ], is feasible. Then, the pro-
posed decentralized feedback control law (10), (14), renders
the closed-loop system (19a)–(19b) of each robot i ∈ [N ]
Input to State Stable with respect to δi (t) ∈ Δi .

Proof The proof of the theorem consists of two parts:

Feasibility Analysis: It can be shown that recursive fea-
sibility is established and it implies subsequent feasibility.
The proof of this part is similar to the feasibility proof of
(Filotheou et al. (2018), Theorem 2, Sec. 4, p. 12).

Convergence Analysis: Recall that:

ei = xi − xi,d , ei = ei − ei , vi = vi − vi .

Then, we get:

‖xi (t) − xi,d‖2 ≤ ‖ei (t)‖2 + ‖ei (t)‖2,
‖vi (t)‖2 ≤ ‖vi (t)‖2 + ‖vi (t)‖2,

which, by using the fact that:

‖ei‖2 ≤ ‖ξ i‖2, ‖vi‖2 ≤ ‖ξ i‖2,

as well as the bounds from (16a), (16b), become:

‖xi (t) − xi,d‖2 ≤ ‖ξ i (t)‖2 + δ̃i
min{α1,α2} , (20a)

‖vi (t)‖2 ≤ ‖ξ i (t)‖2 + 2̃δi
min{α1,α2} , ∀t ≥ 0. (20b)

Since only the nominal system dynamics (9a)–(9b) are
used for the online computation of the control action ui (s) ∈
U i , s ∈ [tk, tk + T ] through the DFHOCP (12a)–(12d), by
invoking nominal NMPC stability results found on Chen and
Allgöwer (1998), it can be shown that there exist class KL
functions β i , such that:

‖ξ i (t)‖ ≤ β i (‖ξ i (ti,s)‖2, t), ∀t ∈ R≥0. (21)

By combining (20a)–(20b) with (21) we get:

‖xi (t) − xi,d‖2 ≤ β i (‖ξ i (ti,s)‖2, t) + δ̃i
min{α1,α2} , (22a)

‖vi (t)‖2 ≤ β i (‖ξ i (ti,s)‖2, t) + 2̃δi
min{α1,α2} . (22b)

for every t ∈ R≥0. The latter inequalities leads to the con-
clusion of the proof. ��

4.3 Discrete system abstraction

Theorem 1 implies that for each robot i ∈ [N ]with kinemat-
ics/dynamics as in (1a), (1b), starting from the RoI Ri,s at
time ti,s , is driven by the controller (10) towards a desired
RoI Ri,d , while all state, input and transient constraints are
satisfied. Hereafter, we provide an algorithm for construct-
ing the WTS of each agent. By observing (22a) and taking
into account Assumption 3, it holds that there exists a time
instant ti,d such that the volume of robot i will be included
strictly within the RoIRi,d . Furthermore, due to the fact that
we have knowledge of the nominal dynamics and the MITL
tasks ϕi are independent for each robot, for the computa-
tion of the time ti,d an offline computer simulation of the
DFHOCP (12a)–(12d) with state constraints as:

Ẽi :=
{

ei (t) ∈ R
n : M(ei (t) + xi,d , ri )

∩ {R\{Ri,s,Ri,d}}
}

	 Ωi,1, (23)

is conducted. In particular, (23) captures constraints regard-
ing the navigation of robot i from RoI Ri,s to RoI Ri,d

without intersecting with any other RoI of the workspace.
It should be noted that if any collision is about to occur in
real-time when the robots are executing the on-line control
actions, the transition time between the RoI will be differ-
ent. In order to overcome the aforementioned issue, we will
provide thereafter an algorithm that monitors the collision
offline and updates the transition times appropriately. Then,
the process of computing ti,d is described inAlgorithm3.The
abstraction that captures the dynamics of each robot into a
WTS is given through the following definition.

Definition 14 The motion of robot i in the workspace W is
modeled by the WTS

Ti = (Si , Sinit
i ,Acti,−→, ti , Γi , Li ),

where:

– Si = R =
⋃

z∈[Z ] Rz is the set of states of the robot

that contains all the RoI of the workspace W;
– Sinit

i ⊆ Si is a set of initial states defined by the robot’ s
initial position xi (0) in the workspace;

– Acti is the set of actions containing the union of all
feedback controllers (10) which can navigate the robot
i between RoI;
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Fig. 3 A graphic illustration of the proposed framework

Algorithm 2 Computation of ti,d :=ti (Ri,s,Ri,d)

1: Input: ti,s , xi (tk), k ∈ N;
2: Output: ti,d ;
3: tk ← ti,s ;
4: flag ← 1;
5: while flag = 1; do
6: solve DFHOCP (12a)–(12d) with Ẽi as in (23);
7: measure xi (tk);

8: if

∥∥∥∥
(
‖xi (tk)‖ + ri + δ̃i

min{α1,α2}
)

− xi,d

∥∥∥∥
2

< pd then

9: flag ← 0; {robot i is whithin RoI Ri,d}
10: break;
11: Go to “line 15"
12: end if
13: tk ← tk + h;
14: end while
15: ti,d ← tk ;

– −→i⊆ Si × Acti × Si is the transition relation. We say
that (Ri,s, ui ,Ri,d) ∈−→i , with Ri,s , Ri,d ∈ R with
Ri,s �= Ri,d if there exist feedback control law ui ∈ Acti
as in (10) which can drive the robot from the regionRi,s

to the regionRi,d without intersectingwith any other RoI
of the workspace;

– ti is the time weight as given in (7) and it is computed by
Algorithm 2;

– Li is the labeling function as given in (6);
– and Γi is the set of atomic propositions imposed by Prob-
lem 1.

The aforementioned WTS of each robot allows us to work
directly at the discrete level and design a sequence of
feedback controllers as in (10) that solve Problem 1. By con-
struction, each timed run produced by the WTS Ti , where
the notion of timed run is given in Definition 8, is associated
with the trajectory xi (t) of the system (1a)–(1b), as given
in Definition 12. Hence, if a timed run of Ti of each robot
i ∈ [N ] satisfying the given MITL formula ϕi is found, a
desired timed word of the original system, and hence a tra-
jectory xi (t) that is a solution to Problem 1 is found.

4.4 Control synthesis

Figure 3 depicts a framework under which a sequence of
feedback control laws ui (xi , vi ) of each robot that guarantees
the satisfaction of the MITL formula ϕi can be computed.
First, a TBAAi that accepts all the timed runs satisfying the
specification formula ϕi is constructed. Second, a product
between the WTS Ti given in Definition 14 and the TBAAi

is computed which gives the productWTS T̃i . By performing
graph search to the productWTS T̃i , a timed run that satisfies
theMITL formulaϕ can be found. Formore details regarding
the control synthesis procedure we refer to our previous work
(Nikou et al. 2016, 2018).

In view of Algorithm 3, (23) and the offline plan compu-
tation, it is possible that while each agent is executing online
its individual actions and transits between RoI, there might
be a cluster of agents that avoid collision between each other.
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In such a scenario, the online feedback control law avoids the
possible collisions, but the navigation time between the RoI
will have been different that the one computed by Algorithm
3. In order to resolve this, we propose an offline collision
detection algorithm (seeAlgorithm 4)which detects the clus-
ter of agent that will avoid potential collision when the plan
of each agent is executed and updates the transition times
between RoI of each agent appropriately.

More specifically, the input toAlgorithm4 is the transition
times of each agent and the output is the updated realistic
transition times denoted by treali,d aswell as the formula bounds
relaxation. The function computePlanAgent(i) computes the
sequence of RoI that agent i needs to follow in order to satisfy
the formula. The function executePlanAgent(i) executes a
simulated plan for each agent. Then, by using a monitoring
function

collisionClusterMonitoring,

the cluster of the agents that are colliding can be detected.
Then, we need to update the transition times of each of the
colliding agents by a term which models the time dura-
tion of the maneuvering that the corresponding agent is
performing in order to avoid the collision. This time is
denoted in Algorithm 4 by T i

maneuver. By finding the max-
imum of the aforementioned times, the time bounds of
the MITL formula of each agent are relaxed. The function
relaxBounds(ϕi ,maxi ) updates each formula time interval
of the form [a, b], a > b ≥ 0, to [a, b + maxi ].

Proposition 1 The solution that it is obtained from the con-
troller synthesis procedure provides a sequence of feedback
control laws ui (xi , vi ) as in (10) that guarantees the satis-
faction of the formula ϕ of the robot governed by dynamics
as in (1a)–(1b), thus, providing a solution to Problem 1.

4.5 Complexity analysis

The proposed framework consists of the computational com-
plexity of the following steps:

– C1: the computational complexity of the offline construc-
tion of WTS T̃i and graph search. In particular, the graph
search is performed over the product WTS T̃i which
has |Si | · |Qi | number of states, i.e., the multiplication
between the states of the WTS (number of RoI of the
workspace) and the number of states of the TBA. The
complexity of the Dijskstra algorithm that is used for the

graph search is:O
(
|Si | · |Qi |+ |edges| log (|Si | · |Qi |

))
,

where |edges| is the number of edges of the productWTS
T̃i .

Algorithm 3 Offline collision detection and formula bounds
relaxation
1: Input: ti,s , ϕi , i ∈ [N ];
2: Output: treali,d , ϕi , i ∈ [N ];
3: maxi ← 0;
4: for i ∈ [N ] do
5: cumputePlanAgent(i); {Execute the simulated plan of each

agent}
6: executePlanAgent(i);
7: end for
8: for i ∈ collisionClusterMonitoring do
9: T i

maneuver ← computeManueverTime;
10: if T i

maneuver > maxi then
11: maxi ← T i

maneuver
12: end if
13: treali,d ← ti,s + T i

maneuver
14: end for
15: for i ∈ [N ] do
16: ϕi ← relaxBounds(ϕi ,maxi );
17: end for

– C2: Algorithm 2 is an offline computer simulation and
the computational complexity is the same with the com-
plexity of a nominal NMPC algorithm;

– C3:Algorithm 3 is an offline computer simulation of col-
lision detection which scales with the number of agents;

– C4: the DFHOCP (12a)–(12d) is the only online com-
mutation of the proposed framework and has the same
complexitywith the nominalNMPCalgorithm (quadratic
programming optimization technique).

By taking into account that C1 is standard in timed veri-
fication, and the fact that C2, C4 have the same complexity
with nominal NMPC, and C3 is a computer simulation that
scales with the number of agents, the proposed approach is
scalable with the number of agents.

5 Experimental setup and results

In this section the efficacy of the proposed framework via a
real-time experiment employing N = 3Nexus 10011mobile
robots is validated. The experiment was conducted at Smart
Mobility Lab (SML) (see Fig. 1 and Smart Mobility Lab
(SML) (n.d.)). By controlling the speed of each wheel, the
Nexus Robot 10011 is able to move forward, backward, left,
and right. The robot can also rotate clockwise and counter-
clockwise. In other word, it has three degrees of freedoms,
i.emoving forward/backward,moving left/right and rotation.
By combining the three degree of freedom, the Nexus Robot
is able tomove towards anydirection. SMLprovides amotion
capture system (MoCap) with 12 cameras spread across the
lab. The MoCap provides the robot state vector, including
pose, orientation as well as linear and angular velocities at
frequencyof 100Hz.The software implementation of the pro-
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posed control strategy was conducted in C++ under Robot
Operating System (ROS) (Quigley et al. 2009).Moreover, the
optimization algorithms described in this chapter are imple-
mented by employing the NLopt Optimization library found
in Johnson (2009).

The state of each robot is xi = [xi,1, xi,2, xi,3]� where
xi,1, xi,2 indicate the position of the robot and xi,3 its ori-
entation. The workspace that the robots can operate in as
well as a panoramic view of it is depicted in Figs. 1 and 4,
respectively. The workspace is captured by the set:

W:={w ∈ R
2 : |wk | ≤ 2.5, k ∈ {1, 2}},

and it contains 5 RoI which are divided as follows:

– the RoI Rz , z ∈ {1, 2, 3, 4} depicted with blue color in
Fig. 4 which stand for the RoI that the robots are required
to visit. The RoIRz , z ∈ {1, 2, 3, 4} map into the atomic
propositions that model missions for each robot;

– the RoIR5 depicted with red color in Fig. 4 stands for an
unsafe region that the robots should avoid collision with.
It holds that Li (R5) = {obs} for every i ∈ [N ].

The control input constraints of each robot are set to:

Ui = {ui ∈ R
3 : |ui,k | ≤ 0.15, k ∈ {1, 2, 3}}, i ∈ [N ],

where ui,1, ui,2 stand for the linear velocities and ui,3 stands
for the angular velocity. The ball that covers the volume of
each robot has radius ri = 0.4m for every i ∈ [N ]. The
sensing radius of each robot is di = 2m. The robots 1, 2 and
3 are initially place in the ROIR1,R2 andR3, respectively.
The set of atomic propositions of each robot is given by:

Π1 = {obs,mission11,mission13},
Π2 = {obs,mission22,mission24},
Π3 = {obs,mission33,mission32},

with the corresponding labeling functions:

L1(R1) = {mission11}, L1(R2) = ∅,

L1(R3) = {mission13},L1(R4) = ∅,

L2(R1) = ∅, L2(R2) = {mission22},
L2(R3) = ∅,L2(R4) = {mission24},
L3(R1) = ∅, L3(R2) = {mission32},
L3(R3) = {mission33}, L3(R4) = ∅.

The desired MITL tasks are set to:

ϕ1 = �[0,120]{¬obs} ∧ ♦[10,25]{mission13}
∧ ♦[30,45]{mission11},

R4

R3

R5

R2

R1

Fig. 4 A panoramic view of the workspace with the 5 RoI (Color figure
online)

ϕ2 = �[0,120]{¬obs} ∧ ♦[25,45]{mission22}
∧ ♦[50,80]{mission24},

ϕ3 = �[0,120]{¬obs} ∧ ♦[30,45]{mission33}
∧ ♦[60,75]{mission32},

respectively. The prediction horizon is chosen T = 2.0 sec.
The tube of each robot is given by the set:

Ωi =
{
ei : ‖ei‖ ≤ δ̃i

ki

}
.

The NMPC gains are set to:

Qi = Pi = Ri = 0.5I3, i ∈ [N ].

By using Algorithm 3 and Algorithm 4, the total transition
times of the navigation of the robots between the RoI of the
workspace are computed as follows:

t1(R1,R3) = t1(R3,R1) = 18,

t2(R2,R4) = t2(R4,R2) = 20,

t3(R2,R3) = t3(R3,R2) = 16.

By using the proposed framework, we find a sequence of runs
of each agent that fulfills the given MITL task. The sequence
of runs maps into a sequence of feedback control laws that
the robot execute online and fulfill the given tasks. By online
executing the proposed plan, the trajectories of the robots in
the workspace are depicted in Figs. 5, 6 and 7.
Video: A video demonstrating the experiment of this sec-
tion can be found in the following link: https://www.youtube.
com/watch?v=9ZNVlEjKZ9g.
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Fig. 5 The trajectory of robot 1 in the workspace
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Fig. 6 The trajectory of robot 2 in the workspace

6 Conclusions and future work

In this paper, a scalable framework for time-constrained plan-
ning of multi-robot systems has been proposed. Considering
N robots operating in a bounded workspace which contains
RoI, assignedwith tasks given inMITL, a framework for effi-
ciently designing decentralized feedback control laws that
guarantee the satisfaction of the corresponding tasks has
been provided. The controllers are the outcome of DFHOCP
solved by each robot at each sampling time and form the
actions of the WTS. By proposing high-level controller syn-
thesis algorithms, a sequence of feedback laws for each robot
can be designed. The approach is scalable since the local
products are computed offline and only the DFHOCP of each
robot is computed online which has complexity similar with
the nominal NMPC framework. Future research directions
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y
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Trajectory of robot 3
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Fig. 7 The trajectory of robot 3 in the workspace

will be devoted towards incorporating event-triggered strate-
gies between he robots in order to save valuable actuation
and sensing resources.
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