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Abstract

Background and objective

In the present study, we compared the effect of diabetic pregnancy on the rectus abdominis

muscle (RAM) in humans and rats. We hypothesized that our animal model could provide

valuable information about alterations in the RAM of women with Gestational Diabetes

(GDM).

Method

Newborns female rats (n = 10/group) were administered streptozotocin (100 mg/kg body

weight) subcutaneously and were mated on reaching adulthood, to develop the mild hyper-

glycemic pregnant (MHP) rat model. At the end of pregnancy, the mothers were sacrificed,

and the RAM tissue was collected. Pregnant women without GDM (non-GDM group; n = 10)

and those diagnosed with GDM (GDM group; n = 8) and undergoing treatment were

recruited, and RAM samples were obtained at C-section. The RAM architecture and the dis-

tribution of the fast and slow fibers and collagen were studied by immunohistochemistry.

Results

No statistically significant differences in the maternal and fetal characters were observed

between the groups in both rats and women. However, significant changes in RAM

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231096 April 3, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vesentini G, Barbosa AMP, Damasceno

DC, Marini G, Piculo F, Matheus SMM, et al. (2020)

Alterations in the structural characteristics of

rectus abdominis muscles caused by diabetes and

pregnancy: A comparative study of the rat model

and women. PLoS ONE 15(4): e0231096. https://

doi.org/10.1371/journal.pone.0231096

Editor: Lingjun Li, National University Singapore

Yong Loo Lin School of Medicine, SINGAPORE

Received: September 24, 2019

Accepted: March 16, 2020

Published: April 3, 2020

Copyright: © 2020 Vesentini et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data is available at

http://hdl.handle.net/11449/190666.

Funding: The financial support provided by the

Brazilian Public Health System (SUS) supported

the treatment of all pregnant women. The authors

gratefully acknowledge funding by São Paulo

Research Foundation (FAPESP) (Grant No: #2016/

09710-9 and #2016/01743-5). GV received a

FAPESP scholarship (Grant No: #2014/26852-6).

http://orcid.org/0000-0002-7116-1667
https://doi.org/10.1371/journal.pone.0231096
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231096&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231096&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231096&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231096&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231096&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231096&domain=pdf&date_stamp=2020-04-03
https://doi.org/10.1371/journal.pone.0231096
https://doi.org/10.1371/journal.pone.0231096
http://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/11449/190666


architecture were observed. Diabetes in pregnancy increased the abundance of slow fibers

and decreased fast fiber number and area in both rats and women. A decrease in collagen

distribution was observed in GDM women; however, a similar change was not observed in

the MHP rats.

Conclusion

Our results indicated that pregnancy- associated diabetes- induced similar structural adap-

tations in the RAM of women and rats with slight alterations in fiber type number and area.

These findings suggest that the MHP rat model can be used for studying the effects of preg-

nancy-associated diabetes on the fiber structure of RAM.

Introduction

Diabetes mellitus (DM) is a global health concern. Women who develop gestational diabetes

(GDM) are more susceptible to develop type 2 diabetes later in life [1]. Pregnancy causes an

insulin resistance state. When an increase in insulin secretion cannot meet the needs of the

pregnancy-induced insulin resistance status, it results in the development of GDM [2]. DM is

defined as a group of metabolic diseases associated with a hyperglycemic state due to metabolic

or genetic malfunction in insulin release [3]. DM has also been associated with diabetic myop-

athy, a deficiency of healthy muscle maintenance [4]. Diabetic myopathy is a universal compli-

cation of diabetes and is related to the loss of muscle mass and strength (i.e., sarcopenia and

dynapenia) [4–6].

The skeletal muscle is a heterogeneous tissue composed of different fiber types, all of which

are characterized by myosin heavy chain isoforms [7]. The mammalian skeletal muscle is com-

posed of two major fiber types—slow and fast- which differ in their size, metabolism, and con-

tractile properties [8]. Another component of skeletal muscle is the extracellular matrix

(ECM), which plays major roles in muscle fiber force transmission, maintenance, and repair

[9]. The skeletal muscle is known to play a critical role in locomotion and glucose homeostasis

[10].

Although significant improvements have been made over the past decade in the care and

management of GDM with respect to adverse pregnancy outcomes [11, 12], there are only a

few studies on the impact of GDM on urinary disorders such as urinary incontinence (UI).

Data from a previous study suggested that up to 49% of women with GDM have a substantial

risk of developing UI [13]. The consequences of UI persist not only during pregnancy but up

to 2 years post-partum and have a negative impact on the quality of life [14, 15]. Previously,

our research group conducted studies on the urethral tissue obtained from a pregnant Strepto-

zotocin (STZ) rat model [16–21]. The hyperglycemia status in these rats is manifested by STZ-

induced necrosis of the pancreatic β-cells [22]. However, the individual animals, dose, route of

administration, and life period of induction are key factors contribuiting to the intensity of the

induced hyperglycemia [16]. A higher or lower hyperglycemic level caused an impairment of

the urethral tissue [17, 18, 20]. We also investigated the changes in rectus abdominis muscle

(RAM) in the same animal model and discovered that both the RAM and urethral muscles are

subjected to similar morphological changes during diabetic myopathy [21].

The RAM is a typical glycolytic muscle with a predominance of fast fibers [21]. The increase

in its abdominal content during pregnancy represents a chronic physiological stimulus in the

muscle fibers of the abdominal wall [23]. During pregnancy, there is an increase in the
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abundance of slow fibers in the RAM, enabling it to be stretched [21, 23]. This stretching is

hypothesized to be a result of an overload of hypertrophy, contributing to muscle tone and

endurance [23]. There is growing scientific and clinical attention on the role of the abdominal

muscles in the normal functioning of the pelvic floor muscle in women [24]. Changes in the

structure of these muscles may jeopardize their support and continence [25].

Although previous studies have demonstrated the relationship between UI and GDM [13–

15], the pathophysiology of GDM leading to the development of UI is poorly understood.

Investigation of the human urethra or pelvic floor muscles have many ethical constraints, and

the studies on human UI predominantly rely on indirect assessments via clinical examination

or imaging techniques [26–28]. However, there are several unanswered questions regarding

the pathogenesis of urinary disorders. Rodent models can be used as representative animal

models to determine the possible events leading to the high prevalence of UI in women with

GDM. The structure and histology of the abdominal wall muscles of rats are well characterized

and are similar to those in humans, making them appropriate tissue models for studying the

physiological changes in the muscle [29].

The purpose of this study is to compare the effects of diabetes and pregnancy in human and

rodent RAM using histological and immunohistochemical techniques to elucidate the suitabil-

ity of the rat model for studying the pathophysiology of human GDM-induced UI. This study

provides a foundation for the use of the rat model for studying diabetic myopathy in humans

as a reliable tool for future studies on GDM and the development of new therapeutic

approaches.

Materials and methods

Ethics statement

All animal experiments were approved by the Institutional Animal Care and Use Committee,

Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), and complied with

the applicable regulations and recommendations of the Brazilian authorities (protocol 1003–

2013).

For human study, signed informed consent was obtained from all study participants before

the start of the study. Participants were recruited at the University Hospital (Perinatal Diabetes

Research Center), UNESP, Brazil, between March 2015 and December 2018. The study was

registered in the Brazilian National Research Registry platform (Plataforma Brasil) and

approved by the National Committee for Ethics in Research (CONEP) (CAAE:

26142614.0.0000.5411 and CAAE: 82225617.0.0000.5411) and adhered to the guidelines of the

Declaration of Helsinki on Human Experimentation.

Animal model

Female and male Wistar (12–13 weeks-old and 250–300 g) rats were obtained from the Multi-

disciplinary Center for Biological Investigation (Campinas, SP, Brazil). Animals were housed

in a facility with constant temperature (22±2˚C) and humidity (55±5%) on a controlled 12 h

light–12 h dark cycle with food and water ad libitum. After one week of acclimatization, the

dams were mated. The female offspring, on the first day of life, were randomly assigned to two

groups (n = 10/group) the mild hyperglycemic pregnant (MHP) group, which received STZ

(SIGMA Chemical Company, St. Louis, MO, USA), diluted in 0.1 M citrate buffer (pH 4.5) at

a dose of 100 mg/kg by subcutaneous injection [30], or the non-mild hyperglycemic pregnant

(non-MHP) group, which received the same dose of citrate buffer. When these rats reached

adulthood (around 12–13 weeks- old), they were housed with adult male rats overnight. The

first day of gestation (GD0) was determined by examining the vaginal smear, and the rats were
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housed in individual cages after that. An oral glucose tolerance test (OGTT) was performed on

the 17th day of pregnancy to assess the development of altered glucose metabolism [31]. Blood

glucose concentrations were measured using a One-Touch Ultra glucometer (LifeScan, John-

son and Johnson1, Milpitas, CA, USA), and the values were expressed as mg/dL. At the end

of pregnancy (GD21), the dams were euthanized by sodium thiopental injection (Thiopen-

tax1, Brazil 80 mg/kg dose). The lower third of RAM was exposed, dissected, and removed.

The edges were reduced, and the sample was wrapped in talc, frozen in liquid nitrogen, and

kept at -80˚C. About 500 mg non-random samples of RAM were obtained from a total of 10

rats in each group. The morphometric and immunohistochemical data from the maternal and

fetal samples were published previously by Vesentini et al. [21].

Participant selection

Pregnant women were screened for GDM between 24–28 weeks of gestation and were diag-

nosed according to the ADA criteria using a 75 g-OGTT test [32, 33]. Women with known

type 1 or type 2 DM, preterm delivery (<37 weeks of gestation), multiple pregnancies, or

known fetal anomaly were excluded. All women with GDM underwent the same treatment in

the Perinatal Diabetes Research Center (PDRC). This treatment protocol included adequate

nutrition based on recommendations from a nutritionist, motivation to exercise regularly, and

insulin administration. Participants with singleton pregnancies who were screened for GDM

and met the inclusion criteria were invited at 34 weeks of pregnancy. Around 500 mg of non-

random sampling of RAM was obtained from a total of 18 pregnant women who underwent

C-section and were categorized into the non-GDM group (n = 10) or GDM group (n = 8) (Fig

1). RAM biopsies were obtained at the time of C-section within 10 min of delivery. The sample

was stripped off from visible adipose and connective tissues, wrapped in talc, snap-frozen in

liquid nitrogen, and stored below -80˚C.

Histological examination, immunohistochemical staining, and

morphometric analysis

Both the rat and human muscle samples were processed similarly. Muscle samples were cut

into 10-μm-thick cross-sections using a cryostat (Leica CM 1800). The cross-sections were

fixed on a microscope glass slides in cold acetone for 10 minutes and were stained using hema-

toxylin and eosin (H&E) and picrosirius red, or were processed for immunohistochemical

analyses. The slides were examined by light microscopy and photographed (DMR, Leica1

coupled with a CCD-IRIS/RGB digital camera, Sony1). The micrographs published by

Vesentini et al. [21] previously were re-analyzed, and the morphometric area of the fiber types

and collagen and fiber numbers were determined.

Picrosirius red staining was performed to determine the tissue area of collagen (red-

stained). For quantitative morphometric analysis, ten sections were stained forcollagen area

and imaged under 20× magnification. The images were analyzed using ImageJ (National Insti-

tutes of Health, USA).

For immunohistochemistry of fast and slow-type skeletal muscle fibers, the sections were

incubated with antibodies directed against WB-myosin heavy chain, fast (WB-MHCf) Novo-

castra (rats, 1:120; human, 1:160) and WB-MHC slow (WB-MHCs) Novocastra (rats, 1:180;

human, 1:120). The fiber type area and number were quantitatively determined, as described

previously [21].
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Statistical analysis

Categorical data were described by percentages and assessed by chi-square tests. Continuous

data were described by their means ± standard deviations (SD) and compared by t-tests (clini-

cal characteristics of participants, rats fetal weight, fiber area), ANOVA (rat maternal weight at

day 0 and 21), or Poisson test (fiber type number). The OGTT results were calculated using

the total area under the curve (AUC) [34] and compared by t-tests. Statistical significance was

set as a p-value < 0.05. All analyses were performed using SAS for Windows, v.9.3 (Statistical

Analysis System Institute Inc., USA).

Results

Table 1 displays the socio-demographic and clinical characteristics of the study participants.

No statistically significant differences were observed between the groups regarding any of the

variables. Table 2 shows the maternal and fetal weight of the rats in the two groups. The

absence of any significant differences highlights the homogeneity of the samples in both the

pregnant women and rats. The GDM and MHP groups, presented higher AUC with elevated

glucose levels compared to control groups (non-GDM = 12303.3 ± 2547.6 mg/dL X minutes;

Fig 1. Flowchart of participant recruitment strategy.

https://doi.org/10.1371/journal.pone.0231096.g001
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GDM = 18428.6 ± 1963.2 mg/dL X minutes, p<0.0001; non-MHP = 9662.5 ± 1339.2 mg/dL X

minutes; MHP = 20142 ± 5194.6 mg/dL X minutes, p = 0.001) (Fig 2).

Immunohistochemical analysis of the markers of fast and slow type skeletal muscle fibers

during pregnancy in the non-GDM and non-MHP groups showed an increased abundance of

fast fibers in the RAM (Fig 3). Despite the higher number of fast fibers (non-

GDM = 66.98 ± 10.75%; GDM = 57.93 ± 8.22, p = 0.0012; non-MHP = 87.71 ± 6.24%;

MHP = 77.58 ± 6.63, p<0.0001), a significant increase in the number of slow fibers (non-

GDM = 33.02 ± 15.32%; GDM = 42.07 ± 9.65, p<0.0001; non-MHP = 12.29 ± 16.69%;

MHP = 77.58 ± 6.63, p<0.0001) was observed both in the GDM and MHP groups compared

to that in the respective controls. The GDM and MHP groups showed a decrease in the area of

fast fibers (non-GDM = 4544.82 ± 825.54 μm2; GDM = 2895.8 ± 459.2 μm2, p<0.0001; non-

MHP = 3363.29 ± 773.51 μm2, MHP = 2878.35 ± 640.3 μm2, p<0.0001). The distribution of

the slow fiber area presented different patterns in the two groups. While in the GDM group

(human) there was a decrease in the slow fiber area (non-GDM = 2820.89 ± 509.23; μm2;

Table 1. Socio-demographic and clinical characteristics of the study participants.

non-GDM (n = 10) Mean (SD) GDM (n = 8) Mean (SD) p-value

Age (years) 29.80 (5.03) 34.50 (6.07) 0.10

HbA1c 5.31 (0.66) 5.36 (0.34) 0.08

Parity (%)

Nulliparous 20% 50% 0.09

Multiparous 80% 50%

Prepregnancy BMI (kg/m2) 33.63 (7.55) 29.91 (5.25) 0.30

BMI at the end of gestation (kg/m2) 38.22 (6.26) 34.08 (4.30) 0.14

Weight gain during pregnancy (kg) 12.11 (7.96) 10.46 (6.01) 0.52

Ethnicity

White (%) 6 (60%) 5 (62.5%) 0.40

Educational level

Primary 4 (40%) 3 (37.5%) 0.32

High school 4 (40%) 4 (50%)

University degree 2 (20%) 1 (12.5%)

Hypertension

Yes 5 (50%) 1 (12.5%) 0.22

Newborn weight (g) 3408 (269.92) 3555 (335.4) 0.45

Data presented as number (%) or mean ± standard deviation. Abbreviations: SD, standard deviation; BMI, body

mass index. �p<0.05 shows a significant difference compared to the control group.

https://doi.org/10.1371/journal.pone.0231096.t001

Table 2. Maternal and fetal weights in the animal study groups.

non-MHP (n = 10) Mean (SD) MHP (n = 10) Mean (SD) p-value

Maternal weight on day 0 (g) 257.33 (18.49) 254.53 (22.57) 0.99

Maternal weight on day 21 (g) 374.61 (30.58) 349.39 (38.03) 0.05

Fetal weight (g) 5.46 (0.58) 5.48 (0.61) 0.77

HbA1c 3.3 (0.82) 3.74 (1.92) 0.65

Data presented as mean ± standard deviation. Abbreviations: SD, standard deviation. �p<0.05 shows a significant

difference compared to the control group.

https://doi.org/10.1371/journal.pone.0231096.t002
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GDM = 1908.3 ± 294.3<m2, p<0.0001), an increase (non-MHP = 1273.63 ± 233.9 μm2;

MHP = 1324.85 ± 286.46 μm2, p = 0.0178) was observed in the MHP (rat) group.

The collagen area in the GDM group was significantly reduced compared to that in the

non-GDM group (non-GDM = 25194.2 ± 7579.1 μm2; GDM = 15208.3 ± 4181.2 μm2,

p<0.0001). On the other hand, there were no differences in the collagen area between the rat

groups (non-MHP = 35150.7 ± 4010.3 μm2; MHP = 34701.1 ± 6078.7 μm2, p = 0.5376) (Fig 4).

Table 3 summarizes the morphological changes of the RAM in the rats and human diabetic

groups.

Discussion

Increased risk of adverse pregnancy outcomes such as the increased risk of developing meta-

bolic syndrome or diabetes, traumatic delivery complications, macrosomia, stillbirths, and

congenital anomalies are associated with GDM [35–37]. The consequences of GDM for

Fig 2. A: Oral Glucose Tolerance Test (OGTT) performed at 24–28 weeks for pregnant women and on the 17th day of pregnancy for rats. B: The area under the curve of

each group is expressed as the mean ± standard deviation. �p<0.05 shows a significant difference compared to the control group (t-test).

https://doi.org/10.1371/journal.pone.0231096.g002
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maternal and neonatal studies have been recognized for a long time [38], and as a result, treat-

ment of GDM is primarily aimed at reducing the risk of adverse perinatal outcomes [12, 39].

The association between urinary disorders and GDM is not well understood. Urinary disor-

ders have been a neglected aspect of GDM and are not addressed in the guidelines for the care

of Gestational Diabetes [11, 40, 41]. This lack of consideration might be due to the lack of

robust evidence supporting the association between GDM and urinary disorders. Few studies

have pointed out the influence of GDM on skeletal muscle morphology. Given the ethical con-

straints associated with the use of a large amount of tissue for a comprehensive analysis of

RAM in women, research involving animal models is critical to our understanding of the role

of GDM in the development of urinary disorders. Therefore, the present study aimed to com-

pare histological changes caused by diabetes and pregnancy in the RAM of humans and rats.

The characteristics of muscle overload in rats (i.e., weight gain and fetal weight) and women

(i.e., weight gain and baby weight) did not show any statistical differences, suggesting that the

changes observed are related only to the hyperglycemic status. Previous studies showed that

diabetes could cause skeletal muscle fibers to become atrophic, leading to a loss of muscle mass

[42, 43].

Our findings revealed that among patterns of pregnant diabetic myopathy in rats and

women, diabetes during pregnancy significantly impacted the structural characteristics of the

RAM tissue. Despite this, the number of dominant fast fiber number in RAM samples was

similar in women and rats, regardless of diabetes and pregnancy. Our results showed that dia-

betes during pregnancy modify the RAM fiber type number and decrease the fast fiber area.

Moreover, in rats, no change in the collagen area was observed between the MHP and non-

MHP groups. Together these findings demonstrate that RAM exposed to a diabetic environ-

ment is characterized by a decrease in the number and area of the fast fiber and an increase in

the number of slow fibers. Although MHP and GDM showed similar changes in the fast fiber

number, fast fiber area, and slow fiber number, the collagen area in GDM showed a decrease.

Taken together, our results demonstrate that RAM is vulnerable to histological architecture

changes due to GDM in humans. The alterations in the muscle fiber pattern of RAM could

influence its functionality both in GDM or MHP rats.

Skeletal muscle atrophy is a complex molecular process that is not entirely understood.

Reduced muscle fiber number and/or size is associated with a decrease in muscle function and

can be caused by age [44], disuse [45] and illness [46]. Strong evidence suggests that diabetes is

associated with muscular changes such as reduced muscle strength [47], power [48], mass [49],

quality [48], and endurance and fiber type switch [6, 50] termed as diabetic myopathy [6, 51].

Our findings show that in the hyperglycemic environment, skeletal muscle in both rats and

women decrease the number and area of fast fibers and an increase in the number of slow

fibers. Diabetes is characterized by a fast-to-slow fiber type shift with preferential atrophy of

fast glycolytic muscle fibers. The reason for the increase in the number of slow fibers in diabe-

tes is currently unknown. Studies suggest that slow fibers have a stronger influence on muscle

insulin action and glucose handling capacity [52]. This might be related to a compensatory

response of skeletal muscle due to hyperglycemia to regulate metabolic homeostasis. Slow fiber

type has a higher turnover of protein synthesis and degradation, an oxidative profile with

larger mitochondrial content, higher myoglobin, increased insulin sensitivity, and a higher

Fig 3. Micrographs showing slow and fast fibers in a transverse RAM section. Non-GDM (slow 1, fast 2), GDM (slow 3, fast 4), non-MHP

(slow 5, fast 6), and MHP (slow 7, fast 8). (A) The abundance of each fiber type is expressed as percentages, and (B) the area of each fiber type is

expressed as mean ± SD. Differences in the abundance of each fiber type between the groups were determined using Poisson distribution.

Differences in the fiber area between the groups were determined using the Student’s t-test. �p<0.05 shows a significant difference compared to

the control group. Abbreviations: GDM, Gestational Diabetes, MHP, mild hyperglycemic pregnant.

https://doi.org/10.1371/journal.pone.0231096.g003
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Fig 4. Transverse RAM sections stained with picrosirius red showing striated muscle (yellow) and collagen (red). (1) Non-GDM, (2) GDM, (3)

non-MHP, and (4) MHP. Differences in the collagen area between the groups were evaluated using the Student’s t-test. �p<0.05 shows a significant

difference compared to the control group. Abbreviations: GDM, Gestational Diabetes, MHP, mild hyperglycemic pregnant; RAM, rectus abdominis

muscle.

https://doi.org/10.1371/journal.pone.0231096.g004
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GLUT4 expression compared to fast fiber [52, 53]. Similar changes are seen in cancer cachexia

[54], aging-related sarcopenia [55], and Huntington’s Disease [56]. The differences in the slow

fiber area between the MHP (rat) and GDM (human) groups may be due to the relatively

short pregnancy time and the higher number of fetuses in the rats and high weight gain in the

humans.

Collagen is the major structural component of the skeletal muscle ECM [9]. ECM is highly

adaptavite and, therefore, capable of remodeling in response to physiological stimuli or disease

[9]. Studies have shown that during late-pregnancy in rats, there are marked alterations in

ECM components in the pelvic floor muscles [57], RAM [21], and vagina [58]. These passive

mechanical structures undergo significant maternal adaptations during pregnancy in prepara-

tion for parturition and birth [59]. Previous studies show that diabetes is characterized by an

increase in muscle collagen [60, 61]. According to Kang [62], the inflammatory response asso-

ciated with insulin resistance has extensive effects on increased collagen deposition and ECM

remodeling. Although we hypothesized that pregnancy-associated with diabetes would result

in fibrosis, in our results, the distribution of muscle collagen in rats and humans showed dif-

ferent trends—in rats, there was no change in the collagen area while in humans, a significant

decrease in collagen was observed. It is not known whether the decrease in collagen observed

in our studies was due to a decrease in synthesis, an increase in collagen degradation or the

excessive muscle stretching caused by pregnancy. Although pregnancy and diabetes are

known to cause muscle fibrosis independent of each other, we speculate that they occur

together in a muscle during pregnancy causing substantial muscle strain altering the various

factors associated with collagen synthesis. However, further studies are necessary to under-

stand the effect of diabetes and pregnancy on the distribution of collagen in the muscle fibers.

The RAM of rats during pregnancy undergo adaptations that change muscle architecture to

facilitate fetal delivery [23]. However, diabetes affects the abdominal muscle substantially. Pre-

vious studies found that GDM causes alterations of important mediators of insulin resistance

and inflammation [63, 64] in tissues of the abdominal wall obtained during C-section.

Whether these alterations persist after delivery is unknown. These relationships deserve fur-

ther attention as they may represent implications on the effectiveness of interventions on treat-

ment and prevention of GDM consequences.

An ideal animal model for GDM research has not been established yet. Our results showing

differences and similarities between GDM in humans and the MHP rats suggest that the MHP

rats could be used as a preliminary prototype model for future research in the field of diabetic

myopathy and the development of new therapeutical approaches. Accurate histopathological

diagnosis and identification of the underlying mechanisms leading to skeletal muscle changes

caused by GDM would result in a better understanding of the disease and development of new

personalized patient management strategies.

Table 3. Morphological changes in the RAM of pregnant rats and women with diabetes.

MHP (rats) (Vesentini et al., 2018) GDM (women)

Collagen area Ns #

Fiber type area # FAST # FAST

" SLOW # SLOW

Fiber type number # FAST # FAST

" SLOW " SLOW

Abbreviations: ns, not significant

https://doi.org/10.1371/journal.pone.0231096.t003
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One limitation of this study is the use of a quadrupedal animal model that differs from

humans with respect to the effect of gravity on the biomechanics of RAM and the size and

number of fetuses. However, our animal model provides the opportunity to test hypotheses

more rigorously in a controlled environment. Rodents are attractive animal models because it

is possible to work with large numbers of rodents in a cost-effective manner. Moreover, the

pregnancy period in rodents is only 21 to 23 days [65]. In addition, the morphology and archi-

tecture of the abdominal wall of rats are similar to that of humans [29]. In this study, we pres-

ent an animal model that is comparable with the glycemic levels of GDM in women and may,

therefore, be applicable for future research on the molecular mechanism of GDM pathogenesis

and for developing novel therapeutic approaches for GDM and UI.

Conclusion

The present study is the first to show that RAM fast fiber predominance is preserved in GDM

women and MHP rats. Furthermore, our results demonstrate that RAM slow fiber and colla-

gen are decreased in GDM. However, no changes in collagen patterns were detected in RAM

samples of MHP rats. The comparison of skeletal muscle fibers between GDM women and

MHP rats revealed that both underwent similar profound architectural changes, suggesting

that they might have a comparable functional change in response to diabetes and pregnancy.
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MIG (Universidade Estadual Paulista), Gonçalves MI (Universidade Estadual Paulista), Nunes

SK (Universidade Estadual Paulista), Catinelli BB (Universidade Estadual Paulista), Sarmento

PLOS ONE Changes in rectus abdominis muscles caused by diabetes and pregnancy in rats and women

PLOS ONE | https://doi.org/10.1371/journal.pone.0231096 April 3, 2020 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231096.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231096.s002
https://doi.org/10.1371/journal.pone.0231096


BV (Universidade Estadual Paulista), Pinheiro FA (Universidade Estadual Paulista), Sartorão

CI (Universidade Estadual Paulista), Quiroz SBCV (Universidade Estadual Paulista), Reyes

DRA (Universidade Estadual Paulista), Enriquez EMA (Universidade Estadual Paulista), Oli-

veira RG (Universidade Estadual Paulista), Floriano JF (Universidade Estadual Paulista), Mar-

condes JPC (Universidade Estadual Paulista), Costa SMB (Universidade Estadual Paulista),
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Funding acquisition: Marilza V. C. Rudge.

Investigation: Giovana Vesentini, Gabriela Marini, Sthefanie K. Nunes, Claudia G. Magalhães,

Roberto Costa, Joelcio F. Abbade.

Methodology: Giovana Vesentini.
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