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No Time-Dependent Effects of
Psychosocial Stress on Fear
Contextualization and Generalization:
A Randomized-Controlled Study
With Healthy Participants

Milou S. C. Sep1,2 , Rosalie Gorter1, Vanessa A. van Ast3,
Marian Jo€els2,4, and Elbert Geuze1,5

Abstract

The formation of context-dependent fear memories (fear contextualization) can aid the recognition of danger in new, similar,

situations. Overgeneralization of fear is often seen as hallmark of anxiety and trauma-related disorders. In this randomized-

controlled study, we investigated whether exposure to a psychosocial stressor influences retention of fear contextualization

and generalization in a time-dependent manner. The Trier Social Stress Test was used to induce psychosocial stress. Healthy

male participants (n¼ 117) were randomly divided into three experimental groups that were subjected to the acquisition

phase of the Fear Generalization Task: (1) without stress, (2) immediately after acute stress, or (3) 2 h after acute stress. In

this task, a male with neutral facial expression (conditioned stimuli) was depicted in two different contexts that modulated

the conditioned stimuli–unconditioned stimuli (¼shock) association (threat, safe). Salivary alpha-amylase and cortisol levels

were measured throughout the experiment. After a 24-h delay, context-dependency of fear memory was investigated with

an unannounced memory test consisting of the threat and safe contexts alternated with a novel context (the generalization

context). Multilevel analyses revealed that participants showed increased fear-potentiated startle responses to the condi-

tioned stimuli in the threat compared to the safe context, at the end of the acquisition phase, indicating adequate fear

contextualization. Directly after acquisition, there were no time-dependent effects of psychosocial stress on fear contex-

tualization. Context-dependency of fear memories was retained 24 h later, as fear-potentiated startle responding was

modulated by context (threat> safe or novel). At that time, the context-dependency of fear memories was also not

influenced by the early or late effects of the endogenous stress response during acquisition. These results with experimental

stress deviate in some aspects from those earlier obtained with exogenous hydrocortisone administration, suggesting a

distinct role for stress mediators other than cortisol.
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Introduction

Fear can aid threat detection in the environment. It is

well-known, from years of research on classical

Pavlovian fear conditioning, that both animals and

humans quickly learn to associate negative experiences

(or unconditioned stimuli; US) with their preceding sig-

nals (or conditioned stimuli; CS).1–3 However, the actual

threat emanating from a danger signal is often deter-

mined by the environment (or context) in which it

occurs (c.f. a lion in the zoo vs. a lion in the wild).
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In other words, the contextual information can change
the predictive value of a CS for the US, by acting as a so-
called occasion setter.4–7 Therefore, simple learning of
CS–US associations alone is likely insufficient for adap-
tive responding to continuously changing environments.

Through the process of fear contextualization, CS–US
associations can be enriched with implicit contextual
information to form context-dependent fear memo-
ries.5,8,9 A recent review underlined that the interaction
between the hippocampus and amygdala underlies the
consolidation and storage of these memories.10

Recollection of context-dependent fear memories in
novel, potentially dangerous, situations, can inform
behavior through the mechanism of fear generalization
(i.e., the transfer of fear to stimuli with perceptual sim-
ilarities to the original stimulus11,12). The generalization
of fearful information appears to be mediated by the
medial prefrontal cortex.13

While fear generalization is highly adaptive, overgen-
eralization of fear to safe stimuli or environments can
predispose to pathological conditions,5,14–17 like post-
traumatic stress disorder,18 generalized anxiety disor-
der,19 and panic disorder.20 Fear overgeneralization is
often referred to as the hallmark of anxiety and
trauma-related disorders;9,13 it has also been suggested
that the context-dependency of fear (memories and their
extinction) influences the treatability of pathological fear
and anxiety.10,21,22

Currently, it is not fully understood why and how
adaptive fear contextualization changes into overgeneral-
ization in some individuals, but not in others. The iden-
tification of factors that modulate these processes could
help to understand individual differences in vulnerability
to anxiety disorders. A potentially interesting modulator
is the (acute) stress response, as it is the main physiolog-
ical reaction to threatening events, and known to influ-
ence learning and memory processes.23–26 Upon
confrontation with a stressor the autonomic nervous
system (ANS) is activated, leading to catecholamines
release. Shortly thereafter, the hypothalamic–
pituitary–adrenal (HPA)-axis becomes active, resulting
in enhanced corticosteroid levels for 1 to 2 h.
Corticosteroids can bind to receptors in limbic brain
areas and induce non-genomic (immediate) and genomic
effects, the latter with a delay of >1 h.23,27,28 Due to their
distinct effects on in brain, the rapid ANS and rapid non-
genomic corticosteroid effects are considered the imme-
diate effects of stress (generally within 30min post-
stressor), while the genomic corticosteroid effects are con-
sidered the delayed effects of stress (>1 h post-stress-
or).29,30 Interestingly, we have shown that acute stress
and glucocorticoid exposure can influence the context-
dependency of neutral and emotional memories, in a
time-dependent manner.25,31 Thus, it was found that the
contextualization of information is reduced directly after

a peak in cortisol—as in the case of fear memories—while

the opposite is seen >1 h after the cortisol peak.
With respect to fear contextualization and context-

dependent fear expression, most clinical and pre-

clinical studies have focused on the immediate effects

of stress, leaving the delayed effects largely unexplored.

In mice, glucocorticoid injections into the hippocampus

immediately after fear conditioning (i.e., fear consolida-
tion), increased later fear generalization.32 In humans, it

was found that stressed participants are unable to use

situational cues (occasion setters) in a fear conditioning

task (10-min post-stress),33 pointing toward reduced fear

contextualization. In agreement, two recent studies in
humans showed that the immediate effects of acute

stress impair contextual fear conditioning (up to

30-min post-stress) in men and women.34,35 A previous

study with exogenous hydrocortisone administration

immediately before acquisition reported impairing

effects on context-dependent fear expression in women
but enhancing effects on contextualization in men.8

These sex differences could originate from the interac-

tion between stress and sex hormones in fear acquisition

and generalization processes.36 For example, brain areas

involved in the fear neurocircuitry (including amygdala,
ventromedial prefrontal cortex, hippocampus), express

sex-specific steroid receptors,37 which allows sex hor-

mones, like estrogens, to modulate responsiveness of

the circuitry in fear learning and extinction process-

es.38,39 Noteworthy, it has also been shown that the

immediate effects of stress and cortisol prior to extinc-
tion learning reduce the context-dependency of extinc-

tion memories.40 Mostly based on findings about the

immediate effects of stress, it has been hypothesized

that stress promotes the overgeneralization of fear, via

its effects on pattern separation in the hippocampus.41,42

Interestingly, the delayed effects of exogenous hydrocor-

tisone were found to enhance hippocampal-dependent

fear memories in another paradigm (i.e., trace-

conditioning).43

The aim of the current project was to investigate the
immediate and particularly the currently unknown

delayed effects of the endogenous stress response on

(i) fear contextualization during acquisition and (ii) sub-

sequent context-dependency or generalization of fear

memories during retention. In this project, the immedi-
ate effects were investigated 30min post-stressor offset

and the delayed effects 160min post-stressor offset.30

Based on the earlier findings, we hypothesized that con-

textualization of fear is suppressed immediately after

stress exposure and enhanced >2.5 h later. Only male
participants were included because sex-differences in

fear-related processes36,38,39 and acute stress-reactivity44

are substantial and previous studies with exogenous

hydrocortisone were conducted in males.
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Methods

Participants

One hundred seventeen healthy male participants were
included in this study (age: M (SD)¼ 24.9 (6.7),

range¼ 18.1–49.3, also see Online Appendix A.1).
Sample size was based on a priori power calculations

with G*power (a¼ .05, power¼ .80),45 using previously
reported effect sizes of the delayed (d¼ .621) and imme-
diate (d¼ .561) of cortisol on the context-dependency of

emotional memories.31 All participants gave written
informed consent and had (1) normal or corrected-

to-normal vision, (2) normal uncorrected hearing, (3) a
body mass index between 18.5 and 30, and (4) were

fluent in the Dutch language. Participants did not (1)
use medication known to influence central nervous

system or endocrine systems, (2) have speech impair-
ments, (3) have a (history of) psychiatric, neurological,
somatic, or endocrine diseases, (4) were not color blind.

Additional acute exclusion criteria were checked upon
arrival at the institute. If participants had (1) an acute

illness, fever, or a severe cold, (2) insufficient sleep
during the previous night, (3) smoked within the last

2 h, (4) drank anything other than water or ate within
the last 2 h, (5) ingested coffee or any caffeine-containing
drink within the last 4 h, (6) used alcohol within the last

24 h, (7) had physical exercise within the last 12 h, or
(8) used any recreational drugs within the last three days;

appointments were rescheduled. Inclusion/exclusion
criteria were checked via a screening questionnaire.

Stress and Control Manipulations and Measures

of Stress (Re)Activity

The Trier Social Stress Test (TSST)46 was used as stress
manipulation (15min) and the placebo version of the
TSST was used as control manipulation.47 During

the TSST46 participants—after a 3-min preparation
period—had to perform a free speech simulating a job

interview (5min), followed by a mental arithmetic task
(3min), in front of a nonresponsive jury while being

video- and audio-taped. Participants received verbal
instructions �2min before the preparation period; and
in-between the speech and arithmetic task, there was a

�2-min delay for saliva and questionnaire collection.
Altogether, this added up to a 15-min procedure. The

placebo-TSST47 mimics the physical (e.g., standing,
speaking) and cognitive load of the TSST, without the

uncontrollable social evaluation threat of the TSST.
During the placebo-TSST, the participant was alone in

a room, while performing a speech and arithmetic task.
Timing of the several task elements was exactly the same
as the TSST. Salivary alpha-amylase (sAA) and cortisol

are frequently used measures of sympathetic nervous

system (SNS) and HPA activity, respectively.48,49

SalivettesVR (Sarstedt, Nümbrecht, Germany) were used
to collect saliva samples at 14 timepoints during the
experimental protocol to measure stress (re)activity
(Figure 3; also see Online Appendix A.2). Samples
were collected at T-210, T-165, T-160, T-145, T-130,
T-100, T-70, T-40, T-30, T-35, T-30, T0, and T30 relative
to fear acquisition onset; and at T-30 and T0 with
respect to fear generalization onset.

Fear Contextualization and Generalization

Fear contextualization during acquisition and the ten-
dency to generalize context-dependent fear memories
to non-threatening contexts were assessed using the
Fear Generalization Task (FGT; Figures 1 and 2)
(freely modeled after Mühlberger et al.50 and pro-
grammed in Presentation Version 18.1; Neurobehavioral
Systems, Inc, RRID:SCR_002521). The FGT is discussed
in brief below (also see Online Appendix A.3).

Stimuli. The unconditioned stimulus was an electric pulse
(200 ms, 100–400V), generated by constant current stim-
ulator (DS7A, Digitimer Ltd., Letchworth Garden City,
UK). US intensity was calibrated using a previously
described shock workup procedure, in which each
participant selected a “highly uncomfortable, but not
painful” intensity (M: 27.98, SD: 22.93; range:
3–99.9mA).51–53 The CS consisted of an image of a
Caucasian male in a suit, with a neutral facial expression
(CUE). This CUE image, with high similarity to our
participants (Caucasian, male), was selected because
early perception might be different for ingroup/outgroup
faces54 and fear responses can be stronger toward male
(compared to female) cues.55 Three images of different
office rooms were counterbalanced across participants to
serve as threat (CTXþ), safe (CTX�), and new
(G-CTX) context (Figure 1). A startle probe (40ms
burst of white noise of 104 dB delivered via headphones)
was used to evoke (fear-potentiated) startle responses
(FPS). In total, 91 startle probes (different types: see
Task Performance section) and 10 US were delivered
during the FGT.

Task Phases. The FGT consists of an acquisition and a
surprise test phase, separated by a 24-h delay (Figure 1;
Online Appendix A.3.2). To reduce initial startle reactiv-
ity, both phases began with nine noise-alone habituation
trials (NAh-probe; Figure 2(a)). The acquisition phase
consisted of 24 trials (four-trial blocks). Half of the trials
commenced with the presentation of the CTXþ (i.e.,
threat trials), the other half with the presentation of
the CTX� (i.e., safe trials). The CUE appeared random-
ly after 6 to 9 s as partial overlay of the CTX. In 10 of the
12 threat trials, the US was presented 0.5 s before the
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CUE off-set (i.e., 83% reinforcement; NB: third and sev-

enth threat trials were unreinforced). The timing of a

single acquisition trial is depicted in Figure 2(b). The

surprise test phase, 24 h later, contained six unreinforced

threat trials (CTXþ), six safe trials (CTX�), and six new

trials (G-CTX) in semi-random order in six-trial blocks.

The timing of a single surprise test trial is depicted in

Figure 2(c), importantly no US was delivered in this task

phase. During both phases, one startle probe per block

was presented during the inter-trial interval (ITI-probe).

Task Performance. FPS eyeblink responses to the NAh,

CTX, CUE, and ITI startle probes were used to measure

FGT performance (see Online Appendix A.3.3 for pre-

processing details). In this task, the NAh and ITI probes

represent initial and baseline startle responsiveness, the

CUE probes reflect fear for a stimulus in the environ-

ment (i.e., cue in context) and the CTX probes symbolize

fear for the environment itself (i.e., context). FPS

responses to the environments (CTX probes) and ambig-

uous stimulus–environment combinations (CUE probes

in G-CTX trials) serve as a marker for fear

generalization.

Experimental Design and Procedure

This study was part of a larger project that also investi-

gated the time-dependent effects of psychological stress

on the contextualization of neutral and emotional mem-

ories (and for which participants perform another

behavioral task). Details about this project and task

have been published elsewhere25 (also see Online

Appendix A.4). In this randomized-controlled, single-

blind study design, participants were randomly allocated

to one of the three experimental groups using an a priori

generated list from the random sequence generator of

www.random.org. Each experimental group was sub-

jected to two interventions (TSST or placebo-TSST) in

a different sequence (Figure 3): (i) delayed-stress group

(n¼ 35): TSST1-placeboTSST2; (ii) immediate-stress

group (n¼ 42): placeboTSST1-TSST2; and (iii) no-

stress group (n¼ 40): placeboTSST1-placeboTSST2.

Note the first and second interventions ended, respec-

tively, 160 and 30min before fear acquisition. Prior

and during study participation, all participants were

blind to the study aims and experimental groups. This

study was approved by the Medical Ethics Committee of

the University Medical Center Utrecht and conducted in

accordance with the ICH Guidelines for “Good Clinical

Practice” and the Declaration of Helsinki.56

Statistical Analysis

Additional information can be found in Online

Appendix A.5, and data and code are available via

Open Science Framework (https://osf.io/xbt5k/).

2 x 12 trials

FGT Acquisition FGT Surprise Test

3 x 6 trials

24 h

CTX+

CTX-

G-CTX

CTX+ 
unreinforced

CTX-

Figure 1. The Fear Generalization Task. Twelve threat (CTXþ) and 12 safe (CTX�) trials were shown in the acquisition phase of the
FGT task on day 1. Twenty-four hours later, participants were surprised with the unannounced test phase of the FGT. In this phase, they
viewed six unreinforced threat trials (CTXþ unreinforced), six safe trials (CTX�), and six new trials (G-CTX). FGT: Fear Generalization
Task.
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The effects of the control and stress manipulation

were checked with linear mixed models (LMMs) fitted

to the sAA and cortisol data, to investigate hormone

levels over the course of the experiment. Visual inspec-

tion of residual plots did not reveal any obvious

deviations from normality of the residuals and homosce-

dasticity, after log-transformation of the sAA and corti-

sol values. Group, time, and their interaction were

entered as fixed effects with the intercept, and intercepts

for participants were entered as random effects in both

LMMs. Endocrine levels of experimental groups were

compared at each timepoint using Tukey adjusted post

hoc pairwise comparisons.
Multiple imputations were used to deal with missing

FPS responses (in total 10.4% of the trials, which is

common for FPS measures57). For all FPS analyses,

LMM assumptions were checked and satisfied within

each imputed data set, after log-transformation of FPS

responses. LMM analyses were also performed within
each imputed dataset. For the NAh trials, preceding
both task phase, LMMs with Group and Trialnumber
as fixed effects and random intercepts for all participants
were fitted to ln(FPS). For analysis of the habituation
phase, Estimated Marginal Means (EMMs) were calcu-
lated for the three experimental groups if the analyses
revealed significant (main or interaction) effects of
Group on NAh-probes. The influence of experimental
group on mean ln(FPS) responses to ITI probes during
the acquisition and test phase was analyzed using linear
models with Group as fixed effect. To analyze fear con-
textualization during acquisition and generalization
during retention, LMMs were fitted to ln(FPS) responses
to CUE- and CTX-probes during (1) the acquisition and
(2) surprise test phase. In these models Group,
Trialnumber and Trialtype (Threat, Safe, or New) and
their interactions were entered as fixed effects with the
intercept, the random effects contained intercepts for all
participants. If this overall analysis revealed a significant
(main or interaction) effects of factor “Trialnumber,”
together with a significant (main or interaction) effect
of Group or Trialtype, mean ln(FPS) levels during the
early, mid, and late task-epochs of the acquisition and
surprise test phase were calculated. Subsequently,
LMMs with fixed effects Group and Trialtype and
random intercepts for all participants were fitted to
these means. To follow-up significant (main or interac-
tion) effects of Group within a specific task-epoch, the
mean FPS of each experimental group within that epoch
was estimated by the EMMs.

Results

Manipulation Check: Stress (Re)Activity

LMMs fitted to salivary ln(sAA) showed a significant
group� time interaction (v2(26)¼ 215.550, p< .001) and
a main effect of time (v2(13)¼ 415.682, p< .001; Online
Table B.1.1). The TSST reliably increased sAA levels
during the intervention, indicated by Tukey adjusted
post hoc pairwise comparisons of the experimental
groups at each timepoint (Figure 3(a), Online Table
B.1.2). At T2, individuals who performed the TSST
(delayed-stress group) had higher ln(sAA) levels than par-
ticipants who performed the placebo treatment in the
immediate-stress group (t(171.513)¼2.554, p¼ .031,
d¼ .390) (but not the control group). The second (place-
bo-)TSST (¼TSST2) had similar effects. The participants
who performed the TSST at this timepoint (immediate-
stress group) had higher ln(sAA) levels than the individuals
who performed the placebo-TSST (delayed-stress group
(T10: t(171.513)¼�2.912, p¼ .011, d¼�0.445) and no-
stress group (T9: t(172.356)¼3.670, p¼ .001, d¼ .0.559;
T10: t(171.513)¼3.528, p¼ .002, d¼ .539). The sAA

(a) Single Noise Alone Habituation Trial

(b) Single Acquisition Trial

CTX 15s

ITI: 8-10s 

6/9s 
CS 5s

0.5s 

CUE-
probe

CTX-
probe

3s 

ITI-
probe

0.5s 

US

(c) Single Surprise Test Trial

CTX 15s

ITI: 8-10s 

6/9s 
CS 5s

CUE-
probe

CTX-
probe

3s 

ITI-
probe

1s 

ITI: 9/11/13s 

NAh-
probe

Single Acquisition Trial

CTX 15s

ITI: 8-10

6/9s 
CS 5s

0.5s

CUE-
prop op beeeebe

CTX-
propp be

3s

ITI-
proppp be

0.5s 

US

Single Surprise Test Trial

CTX 15s

6/9s 
CS 5s

CUE-
propp be

CTX-
prop be

ITI-
proppp be

ITI: 9/11/13s

pp

Figure 2. Timing of individual trials in the FGT. During the
pre-acquisition and pre-test NAh trials, nine NAh-probes were
delivered with 9, 11, or 13 s ITI (a). During an acquisition (b) and
surprise test (c) phase trial, contexts were shown for 15 s. After
6 or 9 s after context onset, a cue was presented for 5 s.
The CTX-probe was delivered 3 s before cue onset and the
CUE-probe was delivered 1 s before cue offset. ITI was 8 to 10 s.
During the acquisition threat trials (CTXþ), an US was presented
0.5 s before cue-offset. NAh: noise-alone habituation; ITI: inter-
trial interval; CS: conditioned stimuli.

Sep et al. 5



levels did not differ between experimental groups at other

timepoints (Figure 3(a), Online Table B.1.2).
LMMs fitted to salivary ln(cortisol) revealed a signif-

icant group� time interaction (v2(26)¼473.831,

p< .001), and main effects of time (v2(13)¼372.543,

p< .001) and group (v2(13)¼20.325, p< .001; Online

Table B.1.3). The TSST led to an increase in cortisol

levels after the intervention, indicated by Tukey adjusted

post hoc pairwise comparisons of the experimental

groups at each timepoint (Figure 3(b), Online Table

B.1.4). Cortisol levels in the delayed-stress group were

significantly higher for 1 h immediately after the TSST1

(T3-T6) than after the placebo-TSST1 in the immediate

and no-stress groups (all p< .001; Online Table B.1.4).

Exposure to the TSST2 also elevated cortisol levels (in

the immediate-stress group), compared to exposure to

the placebo-TSST2 (in the delayed-stress and no-stress

groups (T10-T12, all p< .05; Online Table B.1.4).

Fear Acquisition

Noise Alone Trials. FPS responses to the pre-acquisition
NAh trials are depicted in Figure 4(a). LMMs fitted to
these ln(FPS) revealed a main effect of Trialnumber
(Dm¼ 3.673, rm¼ 3.232, df1¼ 8, df2¼ 1353.484,
p< .001) and no interaction effects (Online Table
B.2.1). The FPS responses to ITI probes are shown in
Figure 4(b) and (c). LMM fitted to the mean ln(FPS) to
ITI-probes revealed no main effect of group
(Dm¼ 2.687, rm¼ .043, df1¼ 2, df2¼ 111383.053,
p¼ .068).

Contextualization of Cued Fear. FPS responses to CUE-
probes during acquisition are depicted in Figure 4(b).
LMMs fitted to ln(FPS) revealed a significant
Trialnumber�Trialtype (Threat vs. Safe) interaction
(Dm¼ 5.353, rm¼ .135, df1¼ 11, df2¼ 76891.243,
p< .001), as well as a main effect of Trialnumber
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Figure 3. The experimental timeline with salivary alpha-amylase and cortisol levels. Mean salivary alpha-amylase (a) and cortisol (b) are
shown per experimental group, error bars represent 95% confidence intervals. Natural logarithms were used to transform the endocrine
data. Samples T1–T12 were collected at day 1 and samples T13 and T14 were collected at day 2. Eight minutes before T2 (i.e., 173min
before encoding), participants were exposed to the (placebo-)TSST1, at T8 (i.e., 40min before encoding) participants performed the
(placebo-)TSST2. Significant Tukey adjusted post hoc pairwise comparisons between experimental groups (p< .05) are indicated.
FGT: Fear Generalization Task; TSST: Trier Social Stress Test; CI: confidence interval.
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(Dm¼ 28.621, rm¼ .133, df1¼ 11, df2¼ 78745.138,
p< .001) and Trialtype (Dm¼ 20.509, rm¼ .120,
df1¼ 1, df2¼ 8040.907, p< .001). To decompose this
two-way interaction, mean ln(FPS) in the early, mid,
and late epochs were analyzed separately. In the early
(Trial1–4) and mid (Trial5–8) epochs, there were no sig-
nificant effects. In the late epoch (Trial9–12), there was a
significant effect of Trialtype (Dm¼ 4.455, rm¼ .356,
df1¼ 1, df2¼ 1339.001, p¼ .035), indicating successful
contextualization of cued fear (Threat: pooled-EMM
(95% confidence interval (CI))¼ 4.050 (3.416–4.685);

Safe: pooled-EMM (95% CI)¼ 3.828 (3.190–4.466).
The contextualization of cued fear was not influenced
by experimental group (Dm¼ 2.008, rm¼ .003, df1¼ 2,
df2¼ 26224040.478, p¼ .134). Statistics for all analyses
are shown in Online Table B.2.1, all pooled-EMMs
(95% CI) are shown in Online Table B.2.3.

Contextual Fear Expression During Acquisition. Figure 4(c)
shows FPS responses to CTX-probes during acquisition.
LMMs fitted to ln(FPS) showed a main effect of
Trialnumber (Dm¼ 50.493, rm¼ .113, df1¼ 5,
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Figure 4. Fear contextualization. FPS responses to the pre-acquisition NAh-probes (a), CUE-probes (b), and CTX-probes (c) from the
acquisition phase of the FGT, per experimental group. Response to the ITI-probes is depicted in (b) and (c). Error bars represent 95%
confidence intervals. At the end of the acquisition phase, FPS responses to CTXþ trials were higher than responses to the CTX� trials.
NAh: noise-alone habituation; ITI: inter-trial interval; CI: confidence interval; FPS: fear-potentiated startle.
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df2¼ 47360.576, p< .001) and Trialtype (Dm¼ 7.310,
rm¼ .134, df1¼ 1, df2¼ 6582.796, p¼ .007), there were
no interaction effects. Ln(FPS) responses were higher in
the threat context (pooled-EMM (95% CI)¼ 3.885
(3.231–4.540) than for the safe context (pooled-EMM
(95% CI)¼ 3.775 (3.120–4.430). In the follow-up analy-
ses, there were no significant main or interaction effects
of group or Trialtype on the early (Trial1–2), mid
(Trial3–4), or late (Trial5–6) task-epoch. Contextual
fear expression during acquisition was not influenced
by experimental group (Dm¼ 2.402, rm¼ .005, df1¼ 2,

df2¼ 8324193.439, p¼ .091). Statistics for all analyses

are shown in Online Table B.2.1, all pooled-EMMs

(95% CI) are shown in Online Table B.2.3.

Fear Memory

Noise Alone Trials. The FPS responses to the pre-memory

test NAh trials are depicted in Figure 5(a). LMMs fitted

to these ln(FPS) revealed no significant effects (Online

Table B.2.2). FPS responses to ITI-probes are shown in

Figure 5(b) and (c). The LMM fitted to the mean
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Figure 5. Context-dependent fear memory. FPS responses to the pre-test NAh-probes (a), CUE-probes (b), and CTX-probes (c) from
the surprise test phase of the FGT, per experimental group. Response to the ITI-probes is depicted in (b) and (c). Error bars represent 95%
confidence intervals. FPS responses were the highest in CTXþ trials. NAh: noise-alone habituation; ITI: inter-trial interval; CI: confidence
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ln(FPS) to ITI-probes showed a marginal significant
effect of group (Dm¼ 2.849, rm¼ .007, df1¼ 2,
df2¼ 3647519.031, p¼ .058). Follow-up inspection of
the pooled-EMMs suggest that the ln(FPS) responses
to ITI probes in the delayed-stress group (pooled-
EMM (95% CI)¼ 3.582 (2.751–4.414) were lower than
in the immediate-stress (pooled-EMM (95% CI)¼ 3.982
(3.187–4.777) and no-stress group (pooled-EMM (95%
CI)¼ 3.992 (3.187–4.798).

Context-Dependency of Cued Fear Memories. FPS responses
to CUE-probes during the test phase are shown in
Figure 5(b). LMMs fitted to ln(FPS) showed a main
effect of Trialnumber (Dm¼ 81.029, rm¼ .110, df1¼ 5,
df2¼ 49364.528, p< .001) and Trialtype (Threat, Safe,
New) (Dm¼ 27.175, rm¼ .120, df1¼ 2, df2¼
16718.773, p< .001). Follow-up analyses showed main
effects of Trialtype in the early (Trial1–2) (Dm¼ 5.075,
rm¼ .321, df1¼ 2, df2¼ 3239.173, p¼ .006), mid
(Trial3–4) (Dm¼ 6.787, rm¼ .269, df1¼ 2, df2¼
4262.980, p¼ .001), and late (Trial5–6) (Dm¼ 4.141,
rm¼ .318, df1¼ 2, df2¼ 3278.485, p¼ .016) task-
epochs. Pooled-EMMs indicate that ln(FPS) responses
were the highest to CUE-probes in the threat context in
the early, mid, and late epochs, pointing toward context-
dependent fear memories (Online Table B.2.3).
However, the context dependency of fear memories
was not influenced by experimental group (Dm¼ .473,
rm¼ .002, df1¼ 2, df2¼ 67494641.497, p¼ .623).
Statistics for all analyses are shown in Online Table
B.2.2, all pooled-EMMs (95% CI) are shown in Online
Table B.2.3.

Contextual Fear Expression During Memory Test. Figure 5(c)
shows FPS responses to CTX-probes during the test
phase. LMMs fitted to ln(FPS) showed a main effect
of Trialnumber (Dm¼ 43.240, rm¼ .118, df1¼ 2,
df2¼ 17094.434, p< .001) and no interaction effects.
Contextual fear expression during the memory test was
not influenced by experimental group (Dm¼ .888,
rm¼ .004, df1¼ 2, df2¼ 10882635.914, p¼ .412).
Statistics for all analyses are shown in Online
Table B.2.2.

Discussion

In the current randomized-controlled study, we investi-
gated the time-dependent effect of the endogenous stress
response on fear contextualization and subsequent
context-dependency of fear memories in healthy males.

Stress Induction

Independent of the order in which participants
performed the control and stress manipulation tests,

the TSST consistently increased sAA and cortisol
levels, while the placebo-TSST did not. The analyses
confirm that participants in the immediate-stress group
had higher cortisol levels during fear acquisition than
participants in the delayed and no-stress groups.

Cortisol levels in the delayed group were increased
approximately 2 h prior to acquisition but, at the time
of acquisition, comparable to the no-stress group.
Notably, sAA levels of the experimental groups did
not differ during fear acquisition, although sAA levels
had been elevated approximately 30min or 2 h prior to
learning in the immediate and delayed group, respective-
ly. No differences in hormone levels between the exper-

imental groups were found when the context-
dependency of fear memories was tested. This confirms
that we indeed investigated the time-dependent effects of
psychosocial stress on fear contextualization and the
subsequent context-dependency of these fear memories.

Context-Dependent Expression of Fear

In line with our expectations, participants displayed
context-dependent expression of fear to the CS at the
end of the acquisition phase, indicating adequate fear
contextualization. The FPS response, as expression of
fear, was also increased in the threatening context (com-
pared to the safe context) in absence of the CS, which
suggests that fear (for the US) (partially) generalized to
the threatening environment itself. Adequate fear con-

textualization led to context-dependent fear memories
for the CS in the threat context, measured 24 h later.

No Time-Dependent Effect of Psychosocial Stress on

Fear Contextualization

In contrast to our expectations, we found no immediate
or delayed effects of psychosocial stress on fear expres-
sion, fear contextualization, or subsequent generaliza-
tion of fear memories. The absence of an acute effect
of psychosocial stress on fear contextualization in our
study contrasts with previous studies that described
impairing effects.8,32–34,41 Possibly, we were not able to

demonstrate the fast and immediate effect of acute
stress in the current study, due to the relatively long
delay between the acute stressor and fear acquisition
(Figure 3). In the present study, fear contextualization
was measured between 40 and 70min after acute stress
exposure onset (in the immediate-stress group), which is
later than in earlier published studies8,33–35 and slightly
overlaps with potential delayed effects. This is a limita-
tion of our design (see “No Time-Dependent Effect of

Psychosocial Stress on Fear Contextualization” section)
which was optimized to investigate the delayed effects of
stress, since these (as opposed to immediate actions) are
heavily understudied. In line with this reasoning,
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Antov et al. investigated fear (but not context-
dependency) and found no effects of acute stress
>50min prior to acquisition in healthy males, while
stress 10min before a cued fear condition task enhanced
fear maintenance in their study.58,59 It has been sug-
gested that cued fear learning is enhanced after acute
stress via noradrenergic enhancement of amygdala func-
tioning.60 Our analyses show that sAA levels (an indica-
tor of SNS activity in this study) were not heightened at
the time of encoding in the immediate-stress group. The
absence of immediate effects in our study could imply
that SNS activity, rather than HPA-axis activity, follow-
ing acute stress modulates fear contextualization in pre-
vious studies. This would be in line with the findings of
Antov et al. in a cued-fear conditioning paradigm,58 but
contrasts with earlier studies that identified a direct rela-
tion between context-dependency of emotional informa-
tion and cortisol-responses following hydrocortisone
administration8,31 or psychosocial stress.35 Importantly,
these studies used different tasks to measure context-
dependency of emotional information, including an epi-
sodic memory task31 and fear conditioning tasks with
skin conductance responses (SCR)8,35,58 and FPS
responses8 as outcome measures. Since emotional epi-
sodic memory involves a different neurocircuit than
fear conditioning61 and SCR reflects different dimen-
sions of fear learning than FPS responses,62 it is likely
that these tasks are also differentially affected by stress
or cortisol. In addition, although the cortisol levels of
the immediate-stress group were still increased during
encoding (allowing immediate cortisol effects to occur),
we cannot rule out interference of the delayed effects,
which develop approximately 1 h after acute
stress.23,28,30 Another explanation for the discrepancy
between the effect of hydrocortisone and psychosocial
stress might be that a psychosocial stressor is a learning
event in itself (whereas hydrocortisone administration is
not).63,64 As a consequence, processing of (emotional)
characteristics from this event could interfere with sub-
sequent learning experiences.63,64 Our contradictory
findings can also be modulated by methodological fac-
tors. For example, there could be important sex differ-
ences in the effects of acute stress on fear
contextualization. We only investigated males in our
study, yet are aware of the importance of sex differences.
One study found impairing effects of acute exogenous
hydrocortisone on context-dependent fear expression (as
indicator for fear contextualization) in women, but
enhancing effects in men.8 It has also been shown that
the effect of exogenous cortisol on hippocampal
responses during differential fear conditioning is differ-
ent in men and women. When women are using (oral)
contraceptives, cortisol enhances differential fear condi-
tioning, while it reduces differential conditioning in
men (and free-cycling women).65 The influence of

hippocampal processing in fear contextualization10

could contribute to a different relation between stress
and fear contextualization in men and women. Besides,
the acute effects of stress might differentially affect psy-
chological (self-report) and physiological responses to
fear. For example, one study found impairing effects
of acute stress on self-reported US-expectancy, fear
and valence ratings, but no effects on physiological
measures in a contextual fear conditioning paradigm.34

Despite the fact that our design was optimized to
observe potential delayed stress effects, we observed no
effect of stress in this experimental group either. This
differs from previously reported delayed effect of exog-
enous hydrocortisone administration on trace condition-
ing, which, similar to fear contextualization, involves
hippocampal activity.43 It also contrasts with the
enhancing late effect of stress on memory contextualiza-
tion observed in a different paradigm.25,31 Interestingly,
in the latter task the delayed effects of cortisol released
during an endogenous stress response improved the
contextualization of neutral information25 whereas
exogenously administered cortisol improved contextual-
ization of emotional information.31 This suggests that
exposure to stress, which not only releases cortisol but
also many other stress mediators, may preferentially
affect neutral rather than fear-related contextual infor-
mation, which would explain the lack of effects in the
current study. It has been found before that catechol-
amines, including noradrenaline, can affect cognitive
performance in different directions than corticoste-
roids.66,67 More specifically, rodent and human studies
have shown that immediately after stress, monoamines
(and rapid corticosteroid effects via the MR-receptor)
facilitate emotional processing by stimulating the amyg-
dala/striatal circuits, at the cost of hippocampal and pre-
frontal circuits.29,30 Conversely, corticosteroid actions
via the GR-receptor, that develop after >1 h, promote
activity in the hippocampal and prefrontal circuits, and
facilitate (contextual) memory and reward-based deci-
sion making.29,30

Strengths and Limitations

The current study employed a robust design, with a reliable
stress induction and confirmation that participants
acquired the behavioral task. Moreover, the study was
well-powered, which enables us to draw clear
conclusions. Yet, there are also several limitations. As
mentioned earlier, fear contextualization was measured
40 and 70min after acute stress exposure onset, which
may have been too long a delay to study rapid-onset
stress effects alone. Moreover, as this study was part of a
larger project, the participants performed another behav-
ioral task before the acquisition and test phase of the FGT.
Although tasks combinations have been used before,31,43
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we cannot completely rule out interference effects.
Although most demographics of participants in the exper-
imental groups did not differ, recreational drug use was
more prevalent in the no-stress group compared to the
immediate-stress group (Online Appendix A.1). In addi-
tion, we included only males in our dataset, which pre-
cludes our study from making any inferences with
respect to gender, as stress and fear-related processes are
substantially affected by sex.36,65,68 Future studies should
employ a sufficient number of both male and female par-
ticipants to shed more light on how gender influences fear
contextualization. It is important to emphasize that etio-
logical models of anxiety disorders point out that sensitiv-
ity to stressful events varies for the two sexes, and has been
associated with higher prevalence of mood and anxiety
disorders in women.69–71 Because of time-constraints, we
did not include an unambiguously safe CUE (i.e. a specific
CS-image cue), thus slight generalization between the pre-
sent cue in the different contexts may have taken place.
Furthermore, in the current study we used the TSST, a
commonly used and robust method for stress induction.
However, the TSST was not part of the “to-be-
remembered” material, which is the case in real-life situa-
tions. Perhaps our results would have been different if a
mode of stress induction was used which more accurately
reflects experiences in real-life. Finally, since the effect of
stress (and cortisol) levels on hippocampus-dependent
learning follows an inverted-U-shaped curve,72–74 it is
highly likely that similar dose-dependent effects exists
with respect to fear contextualization. It must be noted
that methodological factors can influence cortisol levels.
For example it is known that 10mg hydrocortisone admin-
istration can lead to higher cortisol concentrations than a
psychosocial stress manipulation.26 Moreover, it has been
shown that another stress protocol (the Socially Evaluated
Cold Pressor Test) can lead to lower cortisol levels than the
TSST that was used in the current experiment.75 In addi-
tion, the TSST can result in different cortisol levels in
males, free cycling females and females taking oral contra-
ceptives.65 Future studies on the dose-dependent relation
between stress and fear contextualization might be of par-
ticular relevance with respect to the generalizability of our
finding to conditions of heightened baseline cortisol levels,
like depression or Cushing’s syndrome.76,77

Implications

As arousal facilitates the encoding of salient details from
a stressful experience,60,78 a healthy endogenous stress
response might time-dependently boost the context-
dependent encoding of neutral information, thereby
leading to a comprehensive memory representation of
the event. Interestingly, it has recently been observed
that stress indeed enhances memory for both negative
and neutral material from the context in which the

stressor occurred.79 The balance between salient and

neutral detail encoding might be disturbed by abnormal-

ities in the endogenous stress response; something that

may have remained unnoticed in the healthy individuals

included in the current investigation but could become

apparent when examining a population at risk for psy-

chopathology. Moreover, it is known that early life

stress influences HPA-axis functioning, thereby predis-

posing to stress-related disorders.80 Our findings might

also imply a role for other characteristics than the stress

response (alone) in determining why some people (over)

generalize fear and others do not. This would agree with

a recent meta-analysis in which we showed that the per-

sonality characteristic trait anxiety increases fear gener-

alization in healthy humans.81 Future strategies for

prevention and therapy for anxiety and trauma-related

disorders could benefit from more mechanistic insight

into the factors that influence fear contextualization

and context-dependent fear memories.
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