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Editorial on the Research Topic

Cellular and Molecular Mechanisms ofMycobacterium tuberculosis Virulence

INTRODUCTION

Mycobacterium tuberculosis (Mtb) is the bacterial pathogen that causes the majority of human
tuberculosis (TB), the leading infectious disease in the world (Glaziou et al., 2018). Mtb invades
the human host by aerosol and establishes infection in the lung by using virulence factors to
combat host immunity. Over the past several decades, significant progress has been made in our
understanding of Mtb pathogenesis. However, the mechanisms of Mtb virulence remain largely
unknown. Moreover, the emergence of multidrug-resistant Mtb strains and co-infection of Mtb
with HIV have posed new challenges in TB control. There is an urgent need to enhance our
understanding of Mtb pathogenesis and to develop effective countermeasures against TB. This
Frontiers Research Topic reports recent new findings that cover diverse aspects of cellular and
molecular mechanisms ofMtb virulence.

A New Role of the Well-Known Virulence Factor ESAT-6 in

Regulating Macrophage Differentiation
ESAT-6 (6-kDa early secreted antigenic target), a well-documentedMtb virulence factor, is essential
for Mtb pathogenesis, including phagosomal rupture, mycobacterial cytosolic translocation and
cell-to-cell spreading (Hsu et al., 2003; Stanley et al., 2003; Abdallah et al., 2007; van der Wel
et al., 2007; Houben et al., 2012; Manzanillo et al., 2012; Simeone et al., 2012, 2015; Zhang et al.,
2016). ESAT-6 appears to function as an important modulator of host inflammatory responses by
manipulating several intracellular signaling pathways in macrophages, T cells, and epithelial cells
(Tsao et al., 1999; Giacomini et al., 2001; Junqueira-Kipnis et al., 2006; Pathak et al., 2007; Koo
et al., 2008; Kurenuma et al., 2009; Mishra et al., 2010; Samten et al., 2011; Wong and Jacobs, 2011;
Wu et al., 2019). Here, Refai et al. report a new role of ESAT-6 in macrophage differentiation and
polarization. They found that during early infection, ESAT-6 induced differentiation of M0 and
M2 macrophages toward the pro-inflammatory M1 phenotype to promote granuloma formation.
Subsequently, ESAT-6 drove the phenotype switch fromM1 to anti-inflammatoryM2macrophages
to maintain the infection during the later persistent phases.
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New Mycobacterial Factors Important for

Virulence
RD4
A number of regions of difference (RD) among mycobacterial
species have been identified by comparative genomic studies
(Mahairas et al., 1996; Behr et al., 1999; Gordon et al., 1999;
Brodin et al., 2002; Lewis et al., 2003). RD1, which is present
in the Mtb complex and in a related species Mycobacterium
marinum, but absent from the Mycobacterium bovis Bacille
Calmette–Guérin (BCG) genome, encodes an ESX-1 type VII
secretion system that has been extensively investigated as a
major virulence factor (Simeone et al., 2009; Tiwari et al., 2019).
However, other regions of difference between mycobacterial
pathogens and attenuated BCG strain have been characterized to
a lesser extent. Ru et al. investigated the potential role of RD4 in
virulence. RD4 is larger in M. marinum than in Mtb, but absent
in M. bovis, including BCG, suggesting a gradual decay of RD4
in mycobacterial genomes in the order of M. marinum, Mtb,
and M. bovis. The knock-in strains of BCG and M. marinum
containing the entire or partial RD4 regions exhibited alterations
of wild-type virulence in both mouse and zebrafish models of
infection. Thus, RD4 appears to be a new locus contributing to
the mycobacterial virulence.

CitE
Bacterial citrate lyase, which is important for both metabolism
and virulence, is composed of three subunits, CitD (γ), CitF (α),
and CitE (β) (Griffiths et al., 2012; Torres et al., 2012). The Mtb
genome encodes 2 paralogous CitE subunits (CitE1 and CitE2),
but their role inMtb virulence has not been explored. Arora et al.
biochemically and functionally characterized the CitE enzymatic
subunits. The purified CitE1 and CitE2 proteins degraded acetyl-
CoA and propionyl-CoA in vitro and the genes encoding both
enzymes were up-regulated when Mtb was exposed to oxidative
stress. Moreover, deletion of the citE genes from the Mtb
genome reduced the resistance to oxidative stress, intracellular
replication in macrophages, and growth in a guinea pig infection
model. This study suggests that CitE may be a potential
target for TB drug development.

A Novel Phylogenetic Clade Associated Hypervirulent

Strain
Rajwani et al. analyzed the phylogenetic relatedness of a
hypervirulent Mtb strain (H112) with a global collection of
Mtb genomes and identified a novel phylogenetic clade that
share single-nucleotide polymorphisms (SNPs) in key virulence-
associated loci, including the mce1 locus and the phoP gene.
This clade includes four hypervirulent strains isolated from
geographically diverse regions. The common SNPs and structural
variations within the clade may be considered as potential genetic
determinants of hypervirulence for future studies.

The Host Factors Affected by M. bovis

Infection
While Mtb is the most common cause of human TB, M.
bovis can cause TB in both humans and cattle, making

it a zoonotic threat to both food safety and public health
(Cosivi et al., 1998; Renwick et al., 2007; Michel et al.,
2010). Moreover, the knowledge obtained in the studies of
M. bovis infection is valuable for understanding of Mtb
infection due to their close relationship. In the comparative
proteomic study done by Li et al., they identified proteins that
were differentially regulated in human macrophages following
infection with M. bovis, including proteins in several pathways
that are similar to Mtb infections, such as the phagosome
maturation pathway and the TNF signaling pathway. In
addition, in a number of proteins and enzymes that are mainly
involved in metabolic pathways, endocytosis and endosome
trafficking events were found to be uniquely affected by M.
bovis infection.

New Insights Into the Drug-Resistant

Mechanisms
Drug resistance is mainly caused by mutations in the Mtb
genome, particularly by single-nucleotide polymorphisms in
genes whose protein products are directly targeted by anti-
TB drugs (Coculescu, 2009; Stucki and Gagneux, 2013).
Hameed et al. provided a comprehensive review on the major
molecular targets that are related to drug resistance mechanisms
ofMtb.

The mutations in the thyA (encoding thymidylate synthase
A) and folC (encoding FolC-dihydrofolate synthase) genes have
been associated with resistance to para-aminosalicylic acid
(PAS; Rengarajan et al., 2004; Zhao et al., 2014; Meumann
et al., 2015), a second-line anti-TB drug. Methionine is
structurally related to anti-folate drugs and is shown to
antagonize PAS. However, the mechanism for methionine-
based antagonism remains undefined. Using both targeted
and untargeted approaches, Howe et al. found that MetM,
a putative amino acid transporter, plays a crucial role
in the synthesis of folate precursors, which antagonizes
PAS activity.

Drug induced reversion of antibiotic resistance has drawn
recent attention as a prospective approach to combat drug
resistance (Baym et al., 2016). FS-1, a new anti-TB drug,
induces antibiotic resistance reversion in Mtb. In the report
done by Ilin et al., FS-1 was used in combination with
standard anti-TB antibiotics on guinea pigs infected with
an XDR-Mtb strain. The genetic changes in Mtb genomes
following infection were analyzed and FS-1 was found to
cause a counter-selection of drug-resistant variants that sped
up the recovery of the infected animals from XDR-TB.
While the drug resistance mutations remained intact in more
sensitive isolates, reversion of drug resistance was associated
with a general increase in genetic heterogeneity of the
Mtb population.

CONCLUSIONS

The articles in this Research Topic present new findings
regarding the cellular and molecular mechanisms of Mtb
virulence, including characterization of new roles for known
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virulence factors, identification of new virulence factors, and
the elucidation of drug-resistance mechanisms and reversion.
This Research Topic, together with many recent publications,
enhances our understanding of the mechanism of Mtb virulence
and pathogenesis.
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