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ABSTRACT: Green synthesis methods offer a cost-effective and
environmentally friendly approach to producing nanoparticles
(NPs), particularly metal-based oxides. This study explores the
green synthesis of copper oxide nanoparticles using Aloe vera (Aloe
barbadensis Miller) leaf extract. The characterization revealed a
unique sago-shaped morphology revealed by field-emission
scanning electron microscopy and X-ray diffraction analysis.
Distinctive metal−oxygen bonds at 521 and 601 cm−1 were
confirmed by Fourier-transform infrared (FT-IR) spectroscopy.
Furthermore, UV−visible spectroscopy revealed absorbance at 248
nm, suggesting electron transitions across energy bands and varying
surface conduction electrons. The band gap value indicated the
presence of quantum confinement effects, which were probably
caused by the distinctive morphology and surface structure of the biogenic NPs. Additionally, molecular docking studies were carried
out against key proteins of Salmonella typhi and Listeria monocytogenes, namely, listeriolysin O (PDB ID: 4CDB), internalin (InlA)
(PDB ID: 1O6T), Salmonella effector protein (SopB) (PDB ID: 4DID), and YfdX (PDB ID: 6A07) using AutoDock 4.2. The results
revealed binding energies against S. typhi and L. monocytogenes proteins, indicating potential interactions establishing the foundation
for further in-depth understanding of the molecular basis underlying the observed antibacterial effects in vitro against S. typhi,
Klebsiella pneumoniae, Pseudomonas aeruginosa, and L. monocytogenes. Antibacterial activity evaluation yielded impressive results, with
CuO NPs displaying significant activity against S. typhi and L. monocytogenes, exhibiting zones of inhibition values of 13 ± 0.02 and
15 ± 0.04 mm, respectively. Moreover, the CuO NPs demonstrated remarkable photocatalytic efficacy, resulting in the degradation
of 77% of the methylene blue dye when exposed to UV irradiation. This study highlighted the potential of green-synthesized CuO
NPs derived from A. vera with their unique morphology, interesting spectroscopic properties, and promising antibacterial and
photocatalytic activities.

1. INTRODUCTION
Nanotechnology is a vast field encompassing the physical,
chemical, and environmental sciences. Scientific exertions
toward the fabrication and exploration of metal oxide-based
nanoparticles (NPs) have expanded due to their diverse
applications in biomedicine, farming, food, cosmetics, paints,
photocatalysis, and textiles.1 The NPs based on metal oxides
exhibit distinctive sizes and outstanding physicochemical
properties.2−4 Many techniques are used to fabricate metal
oxide-based NPs, some of them being hydrothermal,5

coprecipitation,6 sonication,7 and sol−gel,8 which are costly
and extensive, involve hazardous chemicals, and release toxic
byproducts. In addition, the NPs fabricated by the chemical
process are loaded with toxic substances on their surface and
are considered unsuitable for biological and therapeutic
applications. Therefore, alternate strategies for the fabrication

of NPs have emerged, including green synthesis, which is
assisted by the various phytoconstituents such as flavonoids
that act as reducing and capping agents.9 Biological strategies
involving plant extracts or organisms like bacteria, algae, and
fungi are being considered as environment-friendly.10 Plant
extract-based synthesis of NPs is more suitable than the other
biological approaches as it does not require cell cultures.11

Furthermore, the synthesis involves safe handling and easy
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availability associated with plants and the abundance of
metabolite content, which aids the process of reduction.12

Iron oxide (Fe2O3) NPs prepared by the seed extract of
Psoralea corylifolia13 possessed excellent anticancer activity, and
the flower extract of Avicennia marina14 has been tested for dye
degradation. Kappaphycus alvarezii15 plant extract has been
tested for photocatalytic and antibacterial activities. Further-
more, TiO2 NPs synthesized by Kniphofia foliosa root extract
have been tested for their antibacterial activity and the leaf
extract of Trigonella foenum-graecum.16 CuO NPs have found
miscellaneous applications including gas detection,17 cataly-
sis,18 and solar energy conversion.19 They have also been
shown to possess antioxidant properties and have also been
explored for their antimicrobial properties.20 Chemical
composition, crystal morphology, and surface area to volume
ratio are some of the factors that influence their overall activity.
CuO NPs have been fabricated using Annona muricata L
extract and tested for their anticancer activity against AMJ-13
and MCF-7 breast cancer cell lines and breast epithelial cell
line (HBL-100). The findings suggested reduced cell
proliferation of the breast cancer cell lines. Furthermore,
enhanced production of lactate dehydrogenase was observed,
which might have been caused by cell membrane damage.21 In
another study, CuO NPs fabricated from Averrhoa carambola
leaf extract were tested for their antibacterial activity against
Bacillus megaterium, Staphylococcus aureus, Escherichia coli,
Salmonella typhi, and Pseudomonas aeruginosa. High zones of
inhibitions (26 and 24 nm) were obtained against S. typhi and
E. coli, respectively.22 An environment-friendly and simple
method for the synthesis of nearly monodisperse CuO
nanospheres (NSPs) using the leaf extracts of Phyllanthus
reticulatus and Conyza bonariensis as novel green reducing
agents has been reported.23 The method was not only novel
and cost-effective, but also found to be convenient for large-
scale commercial production and health-related applications of
CuO NPs.24 Although the antimicrobial activity of CuO NPs is
known, a deeper understanding of the mechanistic insight is
still needed, which can be done computationally through
molecular docking studies needing further exploration. It is
very important to comprehend the protein−metal binding and
the complex formed during the interaction between nanoma-
terials and the biomolecules, and that has led to the utility of
molecular docking which predicts the cooperation affinity of
the protein−metal complex and also the hindrances and
limitations where the binding is not feasible. Molecular
docking studies have also been undertaken with Fe2O3 and
Fe3O4 NPs with the spike protein binding domain (S1-RBD)
of SARS-CoV-2. Hydrophobic interactions of Fe3O4 were also
formed with Leu455, Ser494, and Phe497. The energy
minimization was done through the Ligand Preparation
Protocol of Accelry’s Discovery Studio 4.1.25 In another
study, molecular docking of NiO NPs with genetic molecules
was studied to explore their toxicity.26 Other than the
medicinal properties, metal oxide-based NPs have also been
explored for their photocatalytic activity. CuO NPs exhibit a
large surface area, good redox potential, excellent electro-
chemical activity, superthermal conductivity, and good stability
required for a good photocatalyst.27 CuO NPs prepared by the
leaf extract of A. muricata28 possessed outstanding photo-
catalytic activity, whereas those fabricated from the leaf extract
of Psidium guajava29 have also been tested for dye degradation.
Similarly, CuO NPs synthesized from the leaf extract of
Amaranthus dubius30 have been tested for photocatalytic and

sensor activities. In a very recent study, the fruit extract of
Abelmoschus esculentus was used to fabricate CuO NPs, which
were later on tested for their cytotoxic and photocatalytic
activity.31

The present investigation reports the green fabrication of
CuO NPs from Aloe barbadensis plant belonging to the
Xanthorrheaceae family. Traditionally, the Aloe vera plant has
been used widely for medicinal purposes and shows a variety of
medicinal activities such as antioxidant, antibacterial, dental
plaque removal, blood sugar control, and treatment of canker
sores.32 Approximately 80 chemical constituents have been
isolated from the exudate, by liquid chromatography, with
anthraquinone C-glycosides, anthrones, chromones, phenyl
pyrones, and naphthalene derivatives being the most abundant
phenolic compounds and particularly polyphenols Aloe-
emodin, anthranol, aloin A and B (barbaloin), isobarbaloin,
and emodin, etc., which may act as stabilizing and reducing
agents.33,34 Molecular docking studies of CuO NPs have been
reported with multiple antibiotic resistance regulators (mmrR),
a part of the multidrug-resistance group protein through
AutoDock Vina. A docking score of −2.1 kcal/mol was
obtained and the NPs interacted with the Asn126, Val142, and
Leu123 amino acid residues.35 In another study, CuO NPs
were docked against PhoQ, which acts as a membrane-
associated protein kinase that undergoes autophosphorylation
and a component of Salmonella typhimurium’s signaling system
causing endocytosis. A binding score of −2.1 kcal/mol was
obtained against the selected protein.36 The molecular docking
studies were performed with four antibacterial target proteins,
namely, listeriolysin O, internalin (InlA), SopB, and YfdX. The
photocatalytic activity was also performed on Methylene Blue
(MB) dye, which has several applications such as in the paper,
dyeing, textile, pharmaceutical, printing, paint, medicine, and
food industries.37 In the textile industry, the most commonly
used dye is MB. Textile industries generally discharge a huge
amount of MB dye solution in natural water sources, becoming
a health threat to humans and aquatic life due to its toxic,
carcinogenic, and nonbiodegradable nature, which causes
serious diseases such as respiratory distress, abdominal
disorders, blindness, and digestive and mental disorders.38

Table 1 represents a comparison between the previous
literature and the current study in terms of the novelty of
the work, which also includes important parameters like the
reaction time, pH, and temperature.

2. EXPERIMENTAL DETAILS
2.1. Materials and Methods. The cultivated A.

barbadensis Miller was obtained from the garden of the
University of Lucknow, Hasan Ganj, Lucknow, India
(26.8633° N, 80.9360° E). Copper nitrate trihydrate [Cu-
(NO3)2·3H2O], sodium hydroxide (NaOH), MB, and distilled
water were purchased from Thermo Fisher Scientific, Delhi,
India. For structural morphology determination, field-emission
scanning electron microscopy studies were performed on a
Zeiss Gemini SEM microscope operating at an accelerating
voltage of 3 kV. EDX analysis was supported by a Bruker
energy-dispersive X-ray spectrometer (EDX). The FT-IR
spectrum was recorded on a Bruker Tensor 37 spectrometer
between the range of 400−4000 cm−1 through the KBr pellet
method. The X-ray diffraction (XRD) spectrum was recorded
on a Rigaku Ultima IV instrument for phase purity and
crystallinity, and the UV−visible spectrum was recorded on a
Hitachi U3900 spectrometer. The bacterial strains used in the
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study were obtained from the Department of Industrial
Microbiology, Sam Higginbottom University of Agriculture,
Technology and Science, Prayagraj, India. Molecular docking
was done using AutoDock 4.2, which is a freely available tool
for docking analysis, on an Acer desktop with 8 GB of RAM
and an Intel Core i5-4590 processor running at 3.30 GHz. The
3D structures of the target proteins, namely, listeriolysin O
(PDB ID: 4CDB), internalin (InlA) (PDB ID: 1O6T), SopB
(PDB ID: 4DID), and YfdX (PDB ID: 6A07) for docking were
obtained from the Protein Data Bank (www.rcsb.org). The
crystal structures of PgdA and O-acetyltransferase A (OatA)
were not available on the PDB database, and their
corresponding structures were modeled on the SWISS-
MODEL web server.
2.2. Preparation of the A. vera Plant Extract. A. vera

plant leaves (40 g) were washed with tap water, followed by
distilled water to remove the dirt and other impurities, and
dried well. The leaves were sliced into very tiny parts, ground,
and then boiled for 60 min at 50−70 °C with 200 mL of
distilled water in a 500 mL round bottle flask using Soxhlet
apparatus, a standard method to extract the phytochemicals
from the plants. These phytochemicals consist of polyphenols
and can be subdivided into flavonoids and nonflavonoid
groups. These polyphenols act as a stabilizing and reducing
agent for the synthesis of nanomaterials.47 After the mixture
was allowed to reach room temperature, the resultant mixture
was filtered with the help of a strainer to eradicate any solid
content and finally filtered via Whatman filter paper (grade 1).
The filtrate was stored at 4 °C in a refrigerator for the synthesis
of CuO NPs.
2.3. Synthesis of CuO NPs. 100 mL of 0.1 M Cu(NO3)2·

3H2O solution was prepared in distilled water in a 500 mL
beaker, and 20 mL of A. vera plant extract was slowly mixed
with continuous stirring at 70−80 °C on a magnetic stirrer.
This was followed by the dropwise addition of freshly prepared
0.2 mmol NaOH into the reaction solution to maintain a pH of
10 (Figure 1a). After 4 h of vigorous stirring, the mixture was
collected upon settling down. The collected precipitate of CuO
NPs was washed 4−5 times with distilled water followed by
ethanol, dried on a watch glass transferred to a crucible, and
calcined in a muffle furnace at 420 °C for 3 h before further
use. The material was heated in the muffle furnace to obtain
uniform CuO NPs.45 It has been reported earlier that the
overall surface area of the NPs decreases with the increasing
calcination temperature, and the photocatalytic degradation is
affected by thermal treatment. Usually, the surface area at the
calcination temperature of 400 and 500 °C is higher as
compared to that at 300 and 500 °C.46 The NPs were obtained
in 91% yield. The proposed reaction mechanism is depicted in
(Figure 1b).
2.4. Molecular Docking. Different computational ap-

proaches have been employed to study the interaction between
the NPs and the biological targets. Density functional theory,
molecular docking, kinetic mean-field model, and molecular
dynamics simulations were explored to comprehend how the
NPs behave within a biological system.47 Molecular docking
has emerged as an efficient tool to explore potential drug
candidates. The tool can also be used to predict potential side
effects or toxicities. In molecular docking, the 3D structures of
ligand and target molecules are visualized first in their most
preferred binding orientations, and then the binding energy
released upon formation of a stable complex is assessed. In theT
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present study, molecular docking was done on AutoDock 4.2,
which is a freely available tool for docking analysis.
2.4.1. Formation of Protein. The 3D structures of the target

proteins, namely, listeriolysin O (PDB ID: 4CDB), internalin
(InlA) (PDB ID: 1O6T), SopB (PDB ID: 4DID), and YfdX
(PDB ID: 6A07) for docking were taken from PDB. The
crystal structures of PgdA and OatA were not available on the
PDB database, so their corresponding structures were
modeled. Modeling of proteins PgdA and OatA was carried
out on the SWISS-MODEL web server. The Swiss model, a
widely used and effective tool for predicting protein structure,
is based on the homology principle.48 The query protein’s
amino acid sequence is given as input, and after a thorough
search for the template structure based on similarity scores, the
structure of the query protein is predicted. The amino acid
sequences of the respective proteins, namely, PgdA and OatA,

were obtained from the National Centre for Biotechnology
Information (NCBI) platform and utilized as input for
modeling. The proteins were prepared before docking, and
the Hetatm was removed from the protein structure; also, the
proteins were checked for the missing atoms and repaired. The
proteins were further prepared by adding hydrogen and
charges, and the prepared proteins were then saved in the
.pdbqt format. Lamarckian genetic algorithms were used for
docking calculations. AutoDock 4.2 does not come with
parameters for copper ions by default, and therefore, the
appropriate parameters for copper were taken from literature49

and used for the grid preparation and docking. The grid
parameters were set as 126 × 126 × 126.
2.4.2. Ligand Preparation. The CuO NPs were sketched on

Avogadro, and the file was saved in the .pdb format and

Figure 1. (a) Schematic representation of the synthesis of CuO NPs and (b) proposed reaction mechanism of the formation of CuO NPs.
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converted to the .pdbqt format by the online conversion tool
Open Babel.
2.4.3. Homology Modeling. The crystal structure of PgdA

and OatA in the PDB database was unavailable. So, their
structures were obtained through homology modeling. The
modeling was brought out on the SWISS-MODEL web server.
The amino acid arrangements of the respective proteins were
utilized for homology modeling. The amino acid arrangements
of the proteins, namely, PgdA and OatA, were obtained from
the NCBI with accession numbers WDE52696 (PgdA) and
CAF1694382 (OatA) and were utilized as input for modeling
on the SWISS-MODEL web server. The amino acid arrange-
ment of the query proteins was utilized for the search of the
template protein by the SWISS-MODEL server. Based on the
similarity score with the suitable template structure, parameters
such as global model quality estimation (GMQE) and
qualitative model energy analysis (QMEAN) were considered
for the modeling. The acceptable range for GMQE is between
0 and 1, while the QMEAN below 4 is considerable.50 The
SWISS-MODEL predicts the most suitable structure of the
query protein considering the parameters of similarity, GMQE,
and QMEAN. The Ramachandran plot was also obtained for
the assessment of the modeled protein structures.
2.5. Antimicrobial Activity Assessment. Antibacterial

activity assessment was done by the agar well diffusion method
as follows.
2.5.1. Methodology. Nutrient agar (NA) (2.8 g in distilled

water) and potato dextrose agar (3.9 g in distilled water) plates
were swabbed with 8 h broth culture of each organism.51 A
sterile cork drill is used to drill three holes (10 mm diameter,
approximately 2 cm apart) in each plate. Solutions of each
compound (sample, antibiotic streptomycin, and blank) were
set up in distilled water with a concentration of 1 mg/mL. An
overnight broth culture of the tested bacteria was streaked

onto a NA plate, and a 5 mm width well was made and
occupied. 100 μL of working solution (1 mg/mL) was added
and left for 1 h. The plates were then incubated at 37 ± 1 °C
for 24−48 h. High-impact wells were measured with the help
of a Himedia zone ruler. Experiments were executed in
triplicate and interpreted accordingly.
2.6. Photocatalytic Activity Assessment. The photo-

catalytic activity of the synthesized CuO NPs was measured
under UV light. The photocatalytic reaction was monitored in
a Pyrex flask reactor. 40 mg of CuO NPs was added to 100 mL
of MB dye aqueous solution (10 ppm), and the suspension was
magnetically stirred for 20 min to create equipoise on the dye
surface in the dark. The stabilized suspension was then
illuminated with a 6A UV lamp (Philips, India). UV rays were
passed perpendicularly on the surface of the reaction mixture
with a maximum intensity of 365 nm. The distance between
the reaction mixture and the UV lamp was 14 cm. After a
certain time (20 min interval), an aliquot of the solution was
analyzed with a UV−vis spectrophotometer to examine the
absorption behavior of the eluted dye solution. While taking
the portion out for analysis, the UV−visible lamp was stopped.
In general, dye degradation reactions follow pseudo-first-order
kinetics. The degradation efficiency according to the
absorbance value can be obtained from eq 1.

= ×C C CDegradation efficiency / 100t0 0 (1)

So, C0 = initial concentration of the dye and Ct is the dye
concentration after time (t).

3. RESULTS AND DISCUSSION
3.1. FT-IR Analysis. The FT-IR analysis was carried out

between 400 and 4000 cm−1 to identify the functional groups
present in the synthesized CuO NPs. The FT-IR spectra of

Figure 2. (a) FT-IR spectrum of the synthesized CuO NPs, (b) XRD spectrum of the synthesized CuO NPs, (c) UV−vis spectrum of the
synthesized CuO NPs, and (d) Tauc’s plot of the synthesized CuO NPs.
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CuO NPs are presented in Figure 2a, showing characteristic
peaks at 528, 598, 835, 1021, 1384, 1614, and 3450 cm−1,
respectively.52,53 A weak peak was observed at 3450 cm−1,
which can be ascribed to H−O−H bending and −OH
stretching vibrations that can be due to the presence of
atmospheric water during analysis.26 A sharp peak at 1614

cm−1 corresponded to C�O stretching. The peak at 1384
cm−1 was correlated to the sp3 C−H bending or acyl C−O (or
phenol C−O) stretching.54 The peaks at 1021 and 835 cm−1

were allocated to C−O and C−H bending. The characteristic
peaks at 527 and 598 cm−1, respectively, indicated the
formation of Cu−O stretching vibrations, confirming the
formation of CuO NPs.55 From the FT-IR analysis, the
formation of CuO NPs indicated that the phytochemicals
present in the aqueous extract were responsible for reducing
and stabilizing the metal ions.56

3.2. XRD Spectrum of the Synthesized CuO NPs. The
XRD spectrum is shown in Figure 2b. The peaks at 32.57,
35.59, 38.84, 48.88, 53.56, 58.40, 61.65, 66.22, and 68.10° were
allocated to the planes, viz., (1 1 0), (−1 1 1), (1 1 1), (−2 0
2), (1 1 2), (2 0 2), (−1 1 3), (0 2 2), and (2 2 0),
respectively.57 All the peak points established the monoclinic
phase of CuO NPs following the JCPDS card no. (48-1548),
which were in agreement with the previous literature.58,59 The
pointed and fine diffraction patterns of the peaks established
the fine crystalline nature of the NPs. The mean crystallite size
(D) of the CuO NPs was calculated using the Debye−Scherrer
eq 2.60

=D
K
cos (2)

where K = 0.94 is the Scherrer constant. λ = incident X-ray
wavelength of 1.542 Å. β = full width at half-maximum (fwhm)
of the diffraction peak. θ = diffraction angle.
The calculated average crystallite size (D) was approximately

15.8 nm, as shown in Table 2. No apparent impurity was
obtained in the XRD pattern, suggesting high purity of the
NPs.
3.3. Optical Properties. The UV−vis spectrum of the

CuO NPs was recorded between 200 and 800 nm, as shown in
Figure 2c. The absorption spectrum showed maximum
absorbance (λmax) at 248 nm, which was attributed to the
interband transition of electrons and the fluctuation of surface
conduction electrons, which can get excited from one energy
level to another upon the incidence of electromagnetic
radiation on the surface of the NPs.61,62 The optical bandgap
was calculated from the Tauc’s plot using eq 363

· =h Ah E( )n
g

/2
(3)

Equation 3 can also be transformed into the Kubelka−Munk
function form:
The band gap was measured by plotting (αhν)2 versus the

energy of incident photons (E = hν), as shown in Figure 2d.
The energy gap (Eg) of 3.77 eV was obtained for the CuO
NPs, which indicated quantum confinement for the NPs due to
their changed morphologies, surface structure, and particle
size.64 The band gap of the CuO NPs can be attributed to their
better absorption in the UV region, which may also influence
their catalytic activity. The blue-shift behavior of the peak
position in comparison with that of the bulk CuO could be
attributed to the enhancement of the quantum confinement
effect due to the change in size upon formulation. The optical
band gap for CuO NPs was much higher than that for bulk
CuO (1.85 eV). It has been observed that the UV−vis
spectrum of CuO NPs gets shifted to a lower wavelength
(blueshift) and higher intensity with a rise in band gap value.65

3.4. Morphological Features of the Synthesized CuO
NPs. The surface morphology and surface composition of the

Table 2. XRD Data and Calculation of the Average Size of
Synthesized CuO NPs

s.
no. K λ (Å)

peak position, 2θ
(deg)

fwhm,
β (deg) D (nm)

1 0.94 1.54178 32.57 0.34836 24.8
2 0.94 1.54178 35.59 0.45468 19.2
3 0.94 1.54178 38.83 0.58891 14.9
4 0.94 1.54178 48.88 0.55477 16.4
5 0.94 1.54178 53.56 0.60537 15.4
6 0.94 1.54178 58.4 0.64037 14.8
7 0.94 1.54178 61.65 0.64624 14.9
8 0.94 1.54178 66.22 1.1365 8.7
9 0.94 1.54178 68.1 0.7167 13.9

average crystalline size 15.8 nm

Figure 3. (a−d) SEM micrographs of the synthesized CuO NPs at
different resolutions. (e) EDX spectrum of the synthesized CuO NPs.

Table 3. Zeta Potential of CuO NPs and the Average Value
of Zeta Potential at 25 °C

s. no. temperature (°C) zeta potential (mV)

1 25 −31.2
2 25 −33.8
3 25 −33.5
4 25 −32.8
mean value 25 −32.8
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NPs can be studied by electron microscopy. The morphology
and chemical composition of the CuO NPs were determined
through FESEM and EDX analysis. The FESEM images of the
NPs revealed their sago-shaped structure (Figure 3a−d). The
EDX spectrum showed a very consistent copper-rich
nanostructure, as shown in Figure 3e. The weight percentage
of Cu and O obtained by EDX analysis confirmed the presence

of Cu and O. The results were found to be consistent with the
literature.66

3.5. Zeta Potential. The zeta potential can be considered
to be a measure of the valence of the NPs. When NPs are
dispersed in water, they tend to stick together due to van der
Waals forces. However, if they acquire a charge after
dispersing, aggregation can be prevented if the electrostatic
repulsion overcomes the van der Waals force.67 The zeta

Figure 4. Zeta potential of the CuO NPs.

Figure 5. (a) Modeled structure of PgdA, (b) Ramachandran plot for the structural assessment of the modeled PgdA, (c) modeled structure of
OatA, (d) Ramachandran plot for the structural assessment of the modeled OatA; CuO NPs docked with target proteins, (e) internalin (InlA)
(1O6T), (f) listeriolysin O (PDB ID: 4CDB), (g) PgdA, (h) OatA; docked CuO NPs with the target proteins, (i) SopB, and (j) YfdX.
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potential of the synthesized NPs was found to be −32.8 mV
(Table 3 and Figure 4).
3.6. Molecular Docking Studies. The modeled structure

of PgdA showed the highest sequence identity of 44.67% with
Streptococcus pneumoniae peptidoglycan deacetylase (PDB ID:
2C1G), and it served as the template for the modeling of

PgdA. The protein OatA modeled structure showed the
highest sequence identity of 49.31% with the structure of S.
aureus peptidoglycan OatA C-terminal catalytic domain (PDB
ID: 6VJP), and it is served as a template for the modeling of
OatA. For both modeled proteins, the sequence identity was
more than 40%, making them suitable for further consid-
eration.68 The GMQE and QMEAN values for PgdA were 0.32
and −1.57, while for OatA, they were 0.18 and −0.37, which
further suggested the reliability of the modeled structures. The
Ramachandran plot (Figure 5) obtained for modeled PgdA
and OatA have the Ramachandran favored region 95.38% for
PgdA and 95.77% for OatA modeled proteins. The interactions
of CuO NPs with the residues of the target proteins are shown
in Figures 6 and 7. The docking score of CuO NP’s interaction
with target proteins is presented in Tables 4 and 5, along with
the interacting residues.
The docking analysis suggested that the CuO NPs interacted

with target proteins of both Listeria monocytogenes and S. typhi.
L. monocytogenes showed the best docking score against
internalin (InlA) with a binding energy of −2.53 kcal/mol,
while S. typhi targets SopB (PDB ID: 4DID) showed the best
docking score of −2.04 kcal/mol. It is very important to
comprehend the protein−metal binding and the complex
formed during the interaction between nanomaterials and the
biomolecules and that has led to the utility of molecular
docking, which predicts the cooperation affinity of the
protein−metal complex and also the hindrances and
limitations where the binding is not feasible.69 For the
biomedical applications of nanomaterials, the applications of
molecular docking are numerous yet under-explored.
3.7. Antibacterial Activity of the Synthesized CuO

NPs. The antibacterial activity assessment of CuO NPs was
done by comparing the growth of inhibition zones to the
standard antibiotic streptomycin. DMSO was taken as a
negative control, which did not show any effect on the bacterial
pathogens. The efficiency of the CuO NPs in the treatment of
the bacterial strains was noteworthy (p < 0.0001), and the
width of the developed inhibitory zones broadened with the
rise in the concentration of the CuO NPs, as depicted in Table
6. The minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC) were also
calculated. MIC depicted the lowest concentration of the
compound restricting bacterial growth (Table 7). CuO NPs

Figure 6. Interaction of the synthesized CuO NPs with (a) internalin
(InlA) (1O6T), (b) listeriolysin O, (c) PgdA, (d) OatA, (e) SopB,
and (f) YfdX.

Figure 7. Interacting residues of target proteins with (a) internalin
(InlA), (b) listeriolysin O, (c) PgdA, (d) OatA, (e) SopB, and (f)
YfdX.

Table 4. Docking Score of CuO NPs with the Target Protein
of L. monocytogenes

s.
no.

target protein
with PDB ID

docking score
(kcal/mol) interacting residues

1 internalin (InlA)
(1O6T)

−2.53 LEU119, PRO115, ASN116

2 listeriolysin O
(4CDB)

−2.07 LYS103, TYR212, ILE407

3 PgdA −2.02 THR296, LYS296, VAL440,
PHE439, LEU227

4 OatA −2.02 ARG568, GLY569

Table 5. Docking Score of CuO NPs with the Target Protein
of S. typhi

s.
no.

target protein with
PDB ID

docking score
(kcal/mol) interacting residues

1 SopB (4DID) −2.04 TYR62, THR56, GLU64
2 YfdX (6A07) −2.01 LEU145, ASP85, HIS86,

VAL74
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exhibited appreciable activity against the tested bacterial
strains. The highest zone of inhibition (15 ± 0.04 mm) was
observed against L. monocytogenes, followed by S. typhi (13 ±
0.02 mm). A previous study reported the antimicrobial activity
of CuO NPs fabricated via A. citrus extract. The activity was
evaluated against Clostridium perfringens, Campylobacter coli, E.
coli, L. monocytogenes, S. pneumoniae, P. aeruginosa, and
Moraxella catarrhalis, of which S. aureus and E. coli had a
significant zone of inhibition as compared to the positive
control (tetracycline). The effective antibacterial activity of the
green synthesized CuO NPs may be ascribed to the overall
negative zeta potential/charge, and it has been suggested that

values greater and positive than +30 mV and negative than
−30 mV impart stability against amalgamation.70 The
electrostatic interface, adsorption, and subsequent penetration
of the bacterial surface by the CuO NPs might have boosted
the antibacterial activity. The antibacterial activity of the NPs
may also be ascribed to the release of Cu(II) ions, which may
get adhered to the bacterial cell wall due to the electrostatic
force of attraction. The morphology of the nanostructure may
also play a role in its overall assessment. The novel sago-shaped
NPs possessed a high surface area to volume ratio that might
have improved their interface with the bacterial cells, thereby
obstructing their growth. Smaller NPs (less than 30 nm) are

Table 6. Zone of Inhibition (mm) of the CuO NPs

s. no. compound zone of inhibition (mm)

L. monocytogenes K. pneumoniae S. typhi P. aeruginosa

1 CuO NPs 15 ± 0.04 10 ± 0.04 13 ± 0.02 10 ± 0.08
2 streptomycin 15 ± 0.02 22 ± 0.02 17 ± 0.08 26 ± 0.04

Table 7. MIC and MBC Values of the CuO NPs

s. no. compound organisms MIC (μg)

L. monocytogenes K. pneumoniae S. typhi P. aeruginosa

1 CuO NPs 256 ± 0.02 512 ± 0.04 256 ± 0.06 256 ± 0.02
2 streptomycin 64 ± 0.06 16 ± 0.02 8 ± 0.02 128 ± 0.08
s. no. compound organisms MBC (μg)

L. monocytogenes K. pneumoniae S. typhi P. aeruginosa

1 CuO NPs 512 ± 0.02 >512 512 ± 0.02 512 ± 0.02
2 streptomycin 128 ± 0.02 32 ± 0.02 8 ± 0.02 256 ± 0.02

Figure 8. (a) UV−vis spectrum of MB in the presence of the synthesized CuO under UV light irradiation, (b) histogram for the extent of
discoloration of MB dye as a function of time, (c) first-order rate kinetics of photodegradation reaction, and (d) color change observed after
photocatalysis.
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more likely to penetrate the bacterial cell wall due to the
improved surface area/volume ratio.71 Another mechanism
explaining bactericidal activity is the formation of reactive
oxygen species (ROS) by the interface with CuO NPs leading
to the inhibition of respiratory enzymes and, consequently, the
death of the bacterial cell.72

3.8. Photocatalytic Activity. The photocatalytic activity
of CuO NPs was tested against MB dye under UV light
irradiation by measuring the change in the absorption. Figure
8a depicts a time-dependent UV−vis absorption spectrum
showing an MB dye reaction-mediated color change under UV
light irradiation. A decrease in the absorption peak at 664 nm
confirmed the MB dye chromogenic reaction. A significant
(≈77%) degradation was observed in 200 min confirming that
the CuO NPs may act as an effective photocatalyst. Figure 8b
depicts the extent of discoloration of the MB dye. The dye
degradation by the sago-shaped CuO NPs may be explained by

the charge transfer of the valence band to the electron carrier,
which reduces the risk of electron−hole pair recombination.73
The kinetics of MB dye degradation followed the

Langmuir−Hinshelwood model. The rate eq 4 for Lang-
muir−Hinshelwood mode is described as

=
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Ç
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K tln
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0
app

(4)

Among them, C0 and Ct signify the dye concentration at time
“0” and “t”, respectively, and “Kapp” signifies the deceptive
pseudo-first-order constant value. Figure 8c reveals a typical
first-order kinetics plot of MB dye discoloration reaction, a plot
ln(C0/C) versus time that gives a straight-line slope, which is
equal to the first-order rate constant Kapp (0.01135 min−1) and
regression coefficient R2 (0.98315), and the result matched
well with the earlier reported work.74 The initial and final
colors of the chosen dyes are presented in Figure 8d.
3.8.1. Role of Scavengers on Dye Degradation. To study

the qualitative effect, DMSO and carbonate ions were used as
scavengers for chemically active species. To carry out the
experiment, the concentration of CuO NPs taken was 0.4 g/L
and the concentration of DMSO or carbonate ion taken was
0.3 g/L in 100 mL of dye solution. The reaction mixture was
irradiated with UV−visible radiation for 60 min. It was
observed that in the absence of a scavenger (DMSO or
carbonate ion), percentage degradation of dye was 33.7% but
when DMSO or carbonate ion was added to the dye solution,
the percentage degradation of dye decreased to 15.6 and
19.5%, respectively (Figure 9). From the experimental results,
it was concluded that the concentration of active radicals that
are responsible for the degradation decreased in the presence
of scavengers. The scavenging mechanism is shown by eqs 5
and 675

+ +• •OH (CH ) SO CH CH SO H3 2 3 3 2 (5)

+ +•OH CO OH CO3
2

3 (6)

3.8.2. Effect of Material Dose. The concentration of the
CuO NPs may affect the percentage of degradation of the dye.
In Figure 10a,b, it can be observed that the percentage
degradation of dye increased with the increase in the

Figure 9. Degradation percentage of MB dye with CuO NPs in the
presence of a scavenger.

Figure 10. (a,b) Dose-dependent effect of the synthesized CuO NPs on MB dye.
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concentration of CuO NPs from 25 to 40 mg. However, a
further increase in CuO NPs from 40 to 45 mg had a negligible
effect on the degradation of dye. Therefore, 40 mg of CuO
NPs in 100 mL of dye solution was found to be the optimum
amount. This increase in the percentage degradation of dye
may be because the active sites increase with the increase in
CuO NP dosage.
3.8.3. Dye Degradation Mechanism. The valence state and

conduction band edge potential of the prepared nano-
photocatalyst were used to study the photocatalytic process,
and the following eq 7 can be used to predict the EVB of the
prepared process

= +E X E E0.5VB
e

g (7)

X represents the electronegativity of the material atoms, Eg
represents the energy difference, and Ee represents the energy
of free electrons. The ECB of the catalyst was determined by eq
8

=E E ECB VB g (8)

Therefore, the value of the valence band of CuO was calculated
to be +0.70 eV and the conduction band value was −1.03.76
Figure 11a depicts the detailed mechanism of the color change
reaction. As photons with suitable wavelengths are irradiated
on the NPs, they cause excitation and electron−hole (e−/h+)
pair formation. Electrons from the conduction band roam to
the surface of the CuO NPs and are swept away by the
ubiquitous O2, forming the superoxide anion O22−. Upon
protonation, HOO• radicals are produced, which further react
with the electrons to form H2O2. At the same time, h+ in the
valence band moves to the back of the CuO NPs’ surface and
reacts with H2O/OH− and dye molecules to form OH and
OH− (eqs 9−14)

+ + +hCuO CuO(e h )CB VB (9)

+ +• + •e O O H HOOCB 2 2 (10)

+ ++ • +h H O OH HVB 2 (11)

+ +• +HOO e H H OCB 2 2 (12)

Figure 11. (a) Plausible mechanism of dye degradation of synthesized CuO NPs and (b) proposed mechanism of degradation of MB dye.

Table 8. Comparative Assessment of the Dye Degradation by Metal Oxide-Based NPs

catalyst system dye used degradation preparation method
light source
used refs

Fe, Co, Ni, Cu, and
Zn−TiO2

AB92 DE (90%), Fe−TiO2 (80%), Co−TiO2 (12%), Ni−TiO2
(8%), Zn−TiO2 (20%)

sol−gel method UV light 79

CuO and CeO2/CuO MB 33.4 and 70.1% thermal decomposition visible light 81
ZnO NPs rhodamine B 70% green synthesis UV light 82
TiO2 MB 71% green synthesis UV light 83
CuO/ZnO MB 73% green

microwave-assisted
method

UV light 84

CuO and CuO−GO
nanocomposite

MB 75 and 83.20% green synthesis visible light 85

Cu2O- and CuO-NP MB 70 and 63 chemical method sun light 86
Ni−CuO, Zn−CuO,
Fe−CuO

MB 52, 63, 62% sonication method 500 W xenon
lamp

87

CuO MO 45.23% green synthesis UV light 88
Cu2O MB 70% green synthesis UV light 89
G−ZnO composite MB 68.6% ESD technique UV light 90
CuO MB 77% green synthesis UV light present

work
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+ + +• + •H O e H OH OH2 2 CB (13)

+• •( OH, O ) dye degradation products2 (14)

The degradation initiates with the contravention of the C−
S+�C bond from the MB dye functional group, which
facilitates the whole conversion of nitrogen, carbon, and sulfur
hetero atoms into CO2, NO3−, SO42−, and H2O mineralization
ions, as depicted in Figure 11b. The overall reaction can be
summarized in eq 1577

+ +

+ + + +

+

+

C H N S 102OH UV light

16CO 3NO SO 6H 57H O
16 18 3

2 3 4
2

2 (15)

Therefore, the development of highly ROS {O2, OH− or
HOO•} is responsible for the mineralization of MB dyes to
harmless products. If the photogenerated e−/h+ pair cannot
reach the active surface, they recombine, which is the key
reason for the photodegradation efficiency to decrease.
Therefore, the movement of electrons from the valence band
to the conduction band will determine the efficiency of the
photodegradation reaction.78 As the photocatalytic reaction is
fixed on the catalyst surface, the above process and
morphological results justify that the green synthesized CuO
NPs grow uniformly and densely and have high crystallinity,
which is good for photoexcitation of carriers and reduces
recombination chances. MB decay results confirm that CuO is
an effective photocatalyst under UV light irradiation (Table
8).80

4. CONCLUSIONS
The present study reported the green synthesis of CuO NPs
from the plant extract of A. vera. Although the medicinal
properties of the plant and NPs fabricated from the plant
extract are well-documented, there is always scope for
improvement and new features in the existing literature. The
synthesized CuO NPs were found to have a novel sago shape.
They were also obtained in an appreciable yield even at 70−80
°C, and the size was well below 20 nm. Furthermore, docking
studies and homology modeling were also performed to gain
insight into the binding interactions between the NPs and the
selected proteins. The photocatalytic activity was also added to
the utility of the synthesized environment-friendly NPs. A
thorough comparison was also made with previous studies in
terms of reaction conditions and studied applications. In the
future, the docking results can be elaborated through molecular
dynamics simulations to comprehend a deeper understanding
of the interface between the target and the ligand. They should
also be studied for other medicinal applications. Furthermore,
owing to their morphological features and appreciable zeta
potential value, they can also be explored for diverse
applications.
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