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Although anatomically distant from the central nervous system (CNS), gut-derived signals
can dynamically regulate both peripheral immune cells and CNS-resident glial cells to
modulate disease. Recent discoveries of specific microbial taxa and microbial derived
metabolites that modulate neuroinflammation and neurodegeneration have provided
mechanistic insight into how the gut may modulate the CNS. Furthermore, the
participation of the gut in regulation of peripheral and CNS immune activity introduces a
potential therapeutic target. This review addresses emerging literature on how the
microbiome can affect glia and circulating lymphocytes in preclinical models of human
CNS disease. Critically, this review also discusses how the host may in turn influence the
microbiome, and how this may impact CNS homeostasis and disease, potentially through
the production of IgA.
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INTRODUCTION

Complex diseases of the central nervous system (CNS) are caused by a combination of genetic and
environmental factors. Human studies and animal models have demonstrated that commensal
microbes residing in a host can influence CNS disease (Figure 1), adding additional complexity to
unraveling the etiology of these diseases. While cheaper and more efficient sequencing technologies
has facilitated the human microbiome project (24), we are only at the beginning of identifying
disease vs. health-promoting microbes, the environmental and genetic factors that promote such
communities, and the functional output of these communities.

Two main factors may modify microbiota. First, the microbiota is highly context-dependent and
modulated by geographic location and diet (25). Strong evidence suggests diet-based alterations
in the microbiome come from extreme diet changes (26) or adoption of new cultural dietary habits
(27, 28). There is increasing appreciation for the role of diet-microbiome interactions in CNS
diseases (29). Second, internal factors such as host genetics, age, and sex are also important
determinants for selecting the gut microbiota (30).

Herein we review emerging literature linking host-microbiome interactions to lymphocytes and
glial cells in the context of CNS diseases. We describe two key host factors, intestinal IgA and ageing,
that have a profound impact on shaping the microbiome. We also provide examples for how these
factors impact lymphocytes and glial cells in the context of CNS disease. In summary, we provide a
working model for how interactions between host factors (IgA and ageing) contribute towards
org September 2021 | Volume 12 | Article 7421731
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shaping the microbiome which in turn can influence lymphocyte
and glial cell behavior in the context of CNS disease (Figure 2).
INFLUENCE OF THE MICROBIOTA ON
LYMPHOCYTES IN CNS DISEASE

Correlative data in MS and mouse models demonstrate a
bidirectional interaction between the gut and the CNS (15, 16,
31–33); identifying specific contributions of the gut microbiome to
CNS disease is imperative for understanding disease pathogenesis.
While aberrantly activated lymphocytes are a hallmark of multiple
sclerosis (MS), this is less studied in Alzheimer’s and Parkinson’s
disease (AD, PD). Thus, this section will focus on the impact of
microbiota on lymphocyte function in MS.

T Lymphocytes
Although alterations in the microbiome have been reported in
MS case-control studies (34), testing causal associations between
these alterations and disease risk requires animal models. Germ-
free (GF) mice lack commensal microbiota and thus present a
“blank slate” for exploring the impact of commensal microbes on
disease. GF mice fail to develop experimental autoimmune
encephalomyelitis (EAE) (35), but when gnotobiotically
recolonized or monocolonized with segmented filamentous
bacteria (SFB), EAE is rescued. SFB enhances TH17 cell
Frontiers in Immunology | www.frontiersin.org 2
induction (36), T cells that are critical in causing pathology in
EAE. Regulatory T cells (Tregs) are similarly sensitive to the gut
microbiome. Their polarization from naïve T cells can be
potentiated by Bacteroides fragilis polysaccharide in EAE (17,
35). Interestingly, following transplantation of human MS stool
samples into mice (fecal microbiome transplant; FMT), several
bacterial species were linked to alterations in TH1 and Treg
differentiation, and consequently EAE phenotype (37, 38).

B Lymphocytes
B cells produce antibodies, present antigen to T cells, and secrete
cytokines. When antigen binds to a B cell receptor, these antigen-
specific B cells are activated and undergo somatic hypermutation
and affinity maturation in germinal centers (GC) (39), generating
high-affinity antigen-specific receptors. GC B cells can also class-
switch to generate different antibody isotypes with specialized
effector functions (IgA, IgE, IgG). Mature B cells can also
differentiate into memory B cells or antibody-secreting cells
(ASCs) (40). ASCs comprise both proliferative plasmablasts
(PBs) and terminally differentiated plasma cells (PCs) (39, 41).
Alterations in microbial abundance have been correlated with
changes in regulatory B cell (Breg) induction (18, 42). Antibiotic
treatment enhanced frequencies of IL-10-producing Bregs at
baseline and in EAE (42). In addition, a role for gut-derived
commensal-reactive IgA+ ASCs in attenuating EAE and possibly
also MS has been shown (18, 19), described below.
FIGURE 1 | Highlighted evidence for the relationship of microbiota affects in CNS-specific human diseases and animal models. Complex diseases of the CNS are
often difficult to query in humans due to scarcity of tissue samples. However, combining evidence from patients, healthy controls (A–C) (1–14), as well as animal
models (D–F) (15–23) can provide some suggestive evidence on how the microbiota may impact disease. Figure made using (BioRender.com).
September 2021 | Volume 12 | Article 742173
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INFLUENCE OF THE MICROBIOTA ON
GLIAL CELLS IN CNS DISEASE

Glial cells have been intensively studied in each MS, AD, and PD,
and a role for the microbiome in modulating glial cell phenotype
and function in these diseases is emerging.

Microglia
Microglia are CNS-resident macrophages serving key homeostatic
and immune functions in the developing and adult CNS (1).
Maternal microbiota can influence microglial maturation and
function during both fetal development and in adulthood, as
demonstrated in GF and antibiotic-treated mice (20, 21). Given
the lack of evidence for a CNS microbiome, presumably
microbiota-derived metabolites, such as short-chain fatty acids
(SCFAs), directly or indirectly influence microglial phenotype
(43). Microglia in GF mice are not fully mature, and interestingly,
colonization with altered Schaedler’s flora failed to rescue microglial
defects whereas SCFA supplementation reversed the abnormal
phenotype (21), indicating that the presence of SCFA-producing
bacteria or a diverse microbiota are necessary for maturation.

In models of MS, antibiotic treatment prior to lysolecithin
(LPC)-induced demyelination decreases microglia activation,
indicated by the reduction in intralesional P2ry12loClec7a+

inflammatory cells as opposed to P2ry12+Clec7a- homeostatic
microglia. Microglial activation was also attenuated in GF mice
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given the demyelinating toxin cuprizone (44). Surprisingly,
supplementing aged mice with probiotic VSL#3 enhanced
serum and fecal SCFAs, but had limited effect post-LPC
administration (44). Indoxyl-3-sulfate (I3S), a product of
microbial tryptophan metabolism, activates aryl hydrocarbon
receptor (AHR) on microglia, augmenting TGFa production to
limit astrocytic inflammation in EAE (45). Feeding whole milk
promotes AHR ligand and SCFA production and ameliorates
EAE in marmosets, although the effect is not attributed solely to
microglia, but overall modulation of inflammation (46).

In a-synuclein-overexpressing (ASO) mice that model PD, the
presence of a gut microbiota promotes the aggregation of a-
synuclein in the caudoputamen and substantia nigra, resulting in
microglial activation and motor dysfunction (47). GF ASO mice
show significantly decreased levels of aggregated a-synuclein and
are protected from development of motor deficits. Re-colonization
of GF mice with SPF microbiota reversed this rescue effect.
Surprisingly, despite SCFAs being generally thought to be anti-
inflammatory, this study inculpates SCFAs in promoting
aggregated a-synuclein. SCFA supplementation to GF or
antibiotic-treated ASO mice increased microglial activation and
is sufficient to promote motor impairment. In addition, abundance
of several SCFA-producing enzymes is increased in humanized
mice that have received an FMT from Parkinson’s disease donors.

Like other neurodegenerative diseases, an unhealthy
microbiome is increasingly appreciated as a risk factor for AD.
FIGURE 2 | Putative connection between the gut microbiome and CNS neuroinflammation and neurodegeneration. The gut microbiome is shaped by internal (e.g.,
genetics and other host factors such as mucosal IgA and age) and external factors (e.g., environmental exposures, infections, diet, etc.). Recent literature has suggested
that IgA plays a key role in determining the microbes that reside in the gut, but that IgA levels can also be influenced by colonizing microbiota. The gut microbiome is
important for programming of peripheral lymphocytes but can also impact the phenotype and function of CNS resident glial cells (via metabolites such as SCFAs. The
activation (or modulation) of lymphocytes and glial cells can lead to neuroinflammation or neurodegenerative disorders in the CNS. Figure made using (BioRender.com).
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Similar to PD, circulating levels of the SCFAs acetate and valerate
were positively correlated with Ab load in the brains of AD patients
(48). Mice treated with probiotic bacteria exhibited ameliorated
AD-like cognitive decline and decreased Ab aggregation (49). GF
5x Familial Alzheimer’s disease (5xFAD) mice show a decreased
Ab load in the hippocampus compared to conventional 5xFAD
mice, attributed to the uptake of Ab debris by microglia. A greater
number of Iba1+ cells were found in the hippocampus closely
associated with Ab plaques in GF 5xFAD mice, and a higher
percentage of these plaque-associated Iba1+ cells were positive for
methoxy-X-O4, an indicator of Ab uptake (50).

Astrocytes
Astrocytes play diverse roles in the homeostatic brain that include
providing trophic support to other CNS cells, regulation of
synaptic activity, and controlling the blood-brain barrier (51–
54). Astrogliosis is also a feature of MS. Unsurprisingly, astrocytes
play important roles in modulating neuroinflammation, as they
can produce inflammatory cytokines and a host of chemokines
that promote chemotaxis of other immune cells. In EAE, astrocytic
inflammation is shown to be directly attenuated by I3S activation
of AHR (45). Gut microbiota depletion by antibiotic treatment
decreases levels of I3S and worsens EAE disease (55). AHR-
deficient astrocytes increase expression of several pro-
inflammatory chemokines and cytokines. Importantly, IFNb, a
therapeutic used in some MS patients, works to limit CNS
inflammation through this mechanism, as the anti-inflammatory
effect of IFNb is lost in AHR-deficient astrocytes (55).

Oligodendrocytes
Oligodendrocytes were previously thought to be quiescent,
myelin-producing cells. However, increasing evidence shows
that oligodendrocytes actively communicate with and provide
metabolic support to neurons (56). Mature oligodendrocytes
may also participate in remyelination and are active players
during neurodegeneration (57). However, little is known about
interactions between oligodendrocyte lineage cells and the gut
microbiome. While treatment of mice with the probiotic VSL#3
enhanced SCFA concentrations in feces and serum, there was no
effect on remyelination in vivo following LPC-induced
demyelination (44). Conversely, a separate study found that in
ex vivo organotypic cerebellar slice cultures demyelinated by
lysolecithin, the addition of the SCFA member butyrate
enhanced both OPC numbers and mature oligodendrocyte
numbers, indicating a positive effect on remyelination (58). In
summary, the gut microbiota exerts effects not only on
peripheral immune compartments, but also act on glial cells,
with potential impacts on CNS disease processes.
HOST FACTORS THAT INFLUENCE THE
INTESTINAL MICROBIOME – A FOCUS ON
IGA AND AGEING

Many external factors influence the gut microbiome such as diet
and pathogen exposure. In this section, we review host factors
that shape the microbiome, focusing on IgA and ageing.
Frontiers in Immunology | www.frontiersin.org 4
Host Control of the Microbiota Through IgA
Mature B cells primed in Peyer’s patches can differentiate into
IgA-producing PCs and home to the intestinal lamina propria
(41, 59, 60). The IgA produced by GALT PCs is typically dimeric,
joined through the J-chain (41, 61). Secretory IgA is generated
when dimeric IgA binds the polymeric-Ig-receptor (pIgR) on the
basolateral surface of the intestinal epithelium, translocates
through the epithelial cells, and is released into the lumen with
the secretory component of the pIgR.

Inmice, IgA both contributes to host control of microbiota and
is responsive to gut microbiota changes. Mice monocolonized with
Bacteroides thetaiotamicron harbor a reduced IgA repertoire
restricted to a single clone against the capsular polysaccharide of
the bacterium (62). Oral administration of Lactobacillus casei to
mice resulted in an increase in IgA+ cells in the small intestinal
lamina propria (SILP) (63). Exposure of conventional mice to
commensal Proteobacteria also resulted in increased serum IgA
levels and induction of IgA+ PC in the bone marrow (64). In
contrast, some microbial communities can diminish IgA levels in
the lumen due to their ability to degrade the secretory component
(65). Even strain level differences in the microbiome can dictate
IgA levels in the host (66). Conversely, the host IgA response can
dictate the composition of the microbiome. Activation-induced
cytidine deaminase-deficient mice (which fail to produce
competent IgA), exhibit an expansion of SFB in the small
intestine which leads to isolated lymphoid follicle (ILF)
hyperplasia and GC enlargement in secondary lymphoid tissues
(67, 68). Restoration of IgA by heterogenetic parabiosis with wild-
type mice reduced SFB populations, ILF protrusion, and spleen
and lymph node size.

In humans, modest alterations in fecal microbiota
composition are observed in subjects with selective IgA-
deficiency (SIgAd) (69, 70). Compensatory sIgM in SIgAd
subjects has a distinct bacterial binding pattern: an unclassified
Enterobacteriaceae taxon heavily coated by IgA in healthy
controls and by IgM in selective IgA-deficient subjects, was
significantly more abundant in SIgAd subjects, demonstrating
that IgA coating specifically restricts expansion of this taxon, and
the same effect is not achievable by IgM.

Overall, these data indicate that in both mice and humans, a
bi-directional relationship exists between host IgA and
gut microbiota.

Impact of Ageing on the Microbiome
Growing evidence suggests that the gut microbiota has a critical
impact on the ageing process and is a possible determinant of
healthy ageing (71–73). Cross-sectional studies have examined
alterations in the microbiota composition across the human
lifespan (74, 75), demonstrating that taxonomical composition
of gut microbiota appears to follow stepwise progression through
life. Taxonomic shifts in the microbiota and decrease in
microbial richness and diversity are observed in frail older
individuals and associated with worse health outcomes
compared to younger individuals (76–80). Relative abundance
of Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae
families decrease with age, whereas an enrichment and/or
higher prevalence of health-associated genera such as
September 2021 | Volume 12 | Article 742173
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Akkermansia, Bifidobacterium, and Christensenellaceae, are
maintained in longevity and extreme longevity (81). Indeed,
centenarians tend to exhibit indicators of good health, and
greater gut microbiota complexity (74). The relative abundance
of pathobionts decreases and beneficial commensals, such as
Akkermansia, are retained (82). Studies that stratify between
elderly and centenarian status identify changes in taxa associated
with extreme longevity including Odoribacter, Butyricimonas,
Desulfovibrio, Bilophila, Oscillospira, and Akkermansia genera,
and the Christensenellaceae and Barnesiellaceae families (75, 81).

Similar taxonomic and functional patterns that correlate with
age and frailty in the mouse microbiome have been identified
(83). In aged mice, the ratio of Firmicutes to Bacteroidetes
increased ∼9‐fold compared to young mice, indicating
dysbiosis, although this work was performed in commercially
purchased mice rather than mice derived from the same dam
(84). Introducing aged microbiota to young mice increased
mortality following ischemic stroke, decreased behavioral
outcomes, and increased cytokine levels. Conversely, altering
the microbiota in aged mice to resemble that of young mice
increased stroke survival and improved recovery (84). Changes
in the gut microbiota in aged mice were also associated with
increased gut permeability and elevations of peripheral
inflammation (85, 86). Taken together, except for healthy
centenarians who resist frailty, ageing is associated with an
unhealthy microbiome.
INFLUENCE OF AGEING AND IGA ON CNS
DISEASE VIA THE MICROBIOME

Multiple internal host factors impact the microbiome, including
IgA and ageing. Here we speculate on how these two host factors
may impact brain health and the trajectory of brain disease via
the microbiome.

IgA, the Microbiome, and CNS Disease
Although IgA+ ASCs can home to the dura mater during
homeostasis (87), clonally expanded IgA are absent in steady
state CNS and only appear during inflammation (88–91). During
EAE, a significant reduction in IgA+ ASCs is apparent in the
SILP. Additionally, adoptively transferred gut-derived IgA+

ASCs were found in the CNS were reactive to mouse-derived
gut bacteria and were shown to alleviate neuroinflammation by
producing IL-10 at chronic stages of EAE. Over-abundance of
IgA+ ASCs was able to reduce GM-CSF production by T cells, an
important cytokine that promotes neuroinflammation (18).
Tritrichomonas musculis (T.mu) is a rodent commensal that
promotes IgA production (92). EAE incidence and severity, as
well as spinal cord inflammation and demyelination, are reduced
in T.mu+ mice (18). T.mu+ mice also exhibited elevated serum
and fecal IgA levels and increased frequencies of IgA+ ASCs in
the gut, bone marrow, and brain.

While the above highlights key findings from animal models,
there is also early evidence suggesting the importance of the
Frontiers in Immunology | www.frontiersin.org 5
microbiota-driven IgA response in human disease. Bacteria
identified by IgA-seq were differentially expressed in MS
patients versus healthy controls (19). Stratified by disease
activity, MS patients in relapse exhibited decreased percentages
of IgA-bound gut bacteria in fecal samples compared to
remitting patients, with corresponding elevation in CSF IgA.
CNS-infiltrating IgA+ B cells show specificity for gut microbial
antigens, indicating the migration of IgA-producing cells from
the gut during relapse. IgA is also elevated in cerebrospinal fluid
of MS patients. Importantly, commensal-specific IgA+ ASCs
have been observed in inflammatory lesions of MS patients
(19). This phenomenon may not be IgA-exclusive, however, as
IgG in MS patient CSF has been found to be reactive against MS-
associated gut bacterial lysate (93). The implications of these
bacteria-reactive IgG in disease have yet to be fully elucidated.

Lastly, while IgA+ ASC have been now described in the
inflamed EAE and MS CNS, it is now appreciated that these
cells play an important role in homeostasis. Specifically,
intestinal commensal specific IgA+ ASC have been detected in
the leptomeninges of healthy mice and humans but are absent in
GF mice (87). These cells likely maintain barrier integrity near
the dural sinuses; however, it is possible they may also contribute
to quiescence within the CNS.

In summary, in addition to its well appreciated role in shaping
the microbiome, IgA-producing ASC likewise play important
roles in the healthy and MS/EAE CNS. The role for these cells in
PD and AD is not yet understood.

Ageing, the Microbiome, and CNS Disease
Ageing is the predominant risk factor for neurodegenerative
diseases (94), yet in spite of the known role ageing has on the
microbiome, the connection between ageing, the microbiome
and CNS disease has barely been explored.

It is well established that microglia are affected during ageing.
Ageing results in decreased number, uneven distribution, lower
motility, and fewer ramifications, as well as impairment in
phagocytosis and injury responses (2, 95–98). Senescent
microglia increase pro-inflammatory cytokine production (3).
An altered microglia morphology and reduced arborization have
been observed in the human brain during ageing and age-related
diseases such as AD (95). This dystrophic morphology is
associated with impaired spatial learning (3).

Age-related changes in the gut microbiome may have a direct
impact on microglial function within the CNS. In fact, reduced
complexity of microbiota, a feature of ageing, leads to defects in
microglia maturation and function (21). Recent work
demonstrated that FMT from aged donor mice into young
recipients impairs spatial learning and memory in young
recipients (4). Conversely, FMT from young donor mice into
aged recipients can rejuvenate age-associated CNS metabolic,
transcriptomic, and behavioral changes (5). Aged into young
FMT induced an altered expression of proteins involved in
synaptic plasticity and neurotransmission in the hippocampus,
an area of the CNS known to be affected by the ageing process. A
strong reduction of bacteria associated with SCFA production
(Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and
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disorders of the CNS (Prevotellaceae and Ruminococcaceae) was
also reported (4). Interestingly, microglia of the hippocampus
acquired an ageing-like phenotype following FMT. Of
therapeutic relevance, this age-associated phenotype can be
reversed by re-introducing live and complex microbiota or
microbial metabolites, such as SCFAs (6).

The gut microbiota similarly affects astrocytes in both ageing
and age-associated neurodegenerative diseases (7). Ageing can
alter the normal function of astrocytes which reduces their
ability to properly maintain a healthy CNS environment (8).
Astrocyte transcriptomes from multiple mouse brain regions
have revealed that ageing upregulates genes that eliminate
synapses and induces a reactive astrocyte gene signature (9).
Therefore, aged astrocytes may promote synapse elimination and
neuronal damage, contributing to ageing-associated cognitive
decline. Morphological changes in astrocytes have also been
documented in the aged CNS (10–12). Aged astrocytes
increase cytokine production, notably CXCL10 (13) that
attracts peripheral immune cells and promotes T cell adhesion
to endothelial cells (14). CXCR3, which is the CXCL10 receptor,
is expressed in microglia, suggesting that astrocytes and
microglia communicate during ageing (22, 45).
Frontiers in Immunology | www.frontiersin.org 6
CONCLUSIONS

Chronic, complex diseases of the CNS develop over years.
Animal studies conducted under controlled conditions in short
periods miss two large confounders in these diseases – time
(ageing) and the microbiota-IgA axis, with age-associated
microbiota alterations further complicating this relationship.
These are important considerations for animal modelling,
given the considerable variability in microbiota composition
and gut luminal IgA levels between vivaria (65). In summary,
we propose that host factors such as age and intestinal IgA are
key determinants in how the microbiome impacts lymphocyte
and glial cell phenotype/function in the context of MS, AD and
PD (Figure 2).
AUTHOR CONTRIBUTIONS

AP, DL, BI, and IN all contributed to the writing of this
manuscript. AP, DL, and JG contributed to the editing of the
text and generation of all figures. All authors contributed to the
article and approved the submitted version.
REFERENCES
1. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting Microglial

Cells Are Highly Dynamic Surveillants of Brain Parenchyma In Vivo.
Sci (New York NY) (2005) 308(5726):1314–8. doi: 10.1126/science.
1110647

2. Zoller T, Attaai A, Potru PS, Russ T, Spittau B. Aged Mouse Cortical
Microglia Display an Activation Profile Suggesting Immunotolerogenic
Functions. Int J Mol Sci (2018) 19(3):706. doi: 10.3390/ijms19030706

3. Niraula A, Sheridan JF, Godbout JP. Microglia Priming With Aging and
Stress. Neuropsychopharmacology (2017) 42(1):318–33. doi: 10.1038/
npp.2016.185

4. D’Amato A, Di Cesare Mannelli L, Lucarini E, Man AL, Le Gall G, Branca JJV,
et al. Faecal Microbiota Transplant From Aged Donor Mice Affects Spatial
Learning and Memory via Modulating Hippocampal Synaptic Plasticity- and
Neurotransmission-Related Proteins in Young Recipients.Microbiome (2020)
8(1):140. doi: 10.1186/s40168-020-00914-w

5. Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM,
Gual-Grau A, et al. Microbiota From Young Mice Counteracts Selective Age-
Associated Behavioral Deficits. Nat Aging (2021) 1(8):666–76. doi: 10.1038/
s43587-021-00093-9

6. Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E,
et al. IL-35-Producing B Cells Are Critical Regulators of Immunity During
Autoimmune and Infectious Diseases. Nature (2014) 507(7492):366–70. doi:
10.1038/nature12979

7. Meldolesi J. Astrocytes: News About Brain Health and Diseases. Biomedicines
(2020) 8(10):394. doi: 10.3390/biomedicines8100394

8. Palmer AL, Ousman SS. Astrocytes and Aging. Front Aging Neurosci (2018)
10:337. doi: 10.3389/fnagi.2018.00337

9. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. The Aging Astrocyte
Transcriptome FromMultiple Regions of the Mouse Brain. Cell Rep (2018) 22
(1):269–85. doi: 10.1016/j.celrep.2017.12.039

10. Jyothi HJ, Vidyadhara DJ, Mahadevan A, Philip M, Parmar SK, Manohari SG,
et al. Aging Causes Morphological Alterations in Astrocytes and Microglia in
Human Substantia Nigra Pars Compacta. Neurobiol Aging (2015) 36
(12):3321–33. doi: 10.1016/j.neurobiolaging.2015.08.024

11. Amenta F, Bronzetti E, Sabbatini M, Vega JA. Astrocyte Changes in Aging
Cerebral Cortex and Hippocampus: A Quantitative Immunohistochemical
Study. Microsc Res Tech (1998) 43(1):29–33. doi: 10.1002/(SICI)1097-0029
(19981001)43:1<29::AID-JEMT5>3.0.CO;2-H
12. Robillard KN, Lee KM, Chiu KB, MacLean AG. Glial Cell Morphological and
Density Changes Through the Lifespan of Rhesus Macaques. Brain Behav
Immun (2016) 55:60–9. doi: 10.1016/j.bbi.2016.01.006

13. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA.
Normal Aging Induces A1-Like Astrocyte Reactivity. Proc Natl Acad Sci USA
(2018) 115(8):E1896–905. doi: 10.1073/pnas.1800165115

14. Sorensen EW, Lian J, Ozga AJ, Miyabe Y, Ji SW, Bromley SK, et al. CXCL10
Stabilizes T Cell-Brain Endothelial Cell Adhesion Leading to the Induction of
Cerebral Malaria. JCI Insight (2018) 3(8):e98911. doi: 10.1172/jci.insight.98911

15. Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al.
Dysbiosis in the Gut Microbiota of Patients With Multiple Sclerosis, With a
Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters.
PloS One (2015) 10(9):e0137429. doi: 10.1371/journal.pone.0137429

16. Johanson DM, Goertz JE, Marin IA, Costello J, Overall CC, Gaultier A.
Experimental Autoimmune Encephalomyelitis Is Associated With Changes of
the Microbiota Composition in the Gastrointestinal Tract. Sci Rep (2020) 10
(1):15183. doi: 10.1038/s41598-020-72197-y
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