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Diabetic retinopathy (DR) is the commonest cause of blindness in the working-age population of the developed world. The
molecular pathophysiology of DR is complex, and a complete spatiotemporal model of the disease is still being elucidated.
Recently, a role for angiopoietin (Ang) proteins in the pathophysiology of DR has been proposed by several research groups,
and several aspects of Ang signalling are being explored as novel therapeutic strategies. Here, we review the role of the Ang
proteins in two important forms of DR, diabetic macular oedema and proliferative diabetic retinopathy. The function of the
Ang proteins in regulating blood vessel permeability and neovascularisation is discussed, and we also evaluate recent preclinical
and clinical studies highlighting the potential benefits of modulating Ang signalling as a treatment for DR.

1. Introduction to Diabetic Retinopathy

Diabetic retinopathy (DR) is the commonest cause of blind-
ness in the working-age population of the developed world
[1]. Around 90 million people are thought to be affected by
DR, and this figure is expected to rise over the coming
decades with the rapidly increasing prevalence of obesity
worldwide and an ageing population with diabetes [1].

Two subgroups of DR account for most diabetic visual
loss, namely, proliferative diabetic retinopathy (pDR) and
diabetic macular oedema (DMO). In pDR, retinal neovascu-
larisation is prominent and the onset of dysregulated angio-
genesis is considered a hallmark feature [2]. In DMO,

retinal vascular hyperpermeability leads to the leakage of
blood plasma components into the retina [3]. In the early
stages of DR, patients are often asymptomatic, but as the dis-
ease severity progresses over time, they frequently report
visual disturbances such as blurred vision and in some cases,
severe loss of vision due to complications including vitreous
haemorrhage or tractional retinal detachment [4].

The molecular pathophysiology of DR is complex, and a
detailed spatiotemporal model of the disease is still being elu-
cidated. In patients with type I and type II diabetes mellitus
(DM), poor glycaemic control leads to hyperglycaemia,
which in turn drives aberrant regulation of at least five key
biochemical pathways. These are the polyol pathway, the
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protein kinase C (PKC) pathway, advanced glycation end
product (AGE) formation, the hexosamine pathway, and
poly (ADP-ribose) polymerase upregulation [5]. Dysregula-
tion of these pathways exacerbates oxidative stress, for exam-
ple, with increased production of reactive oxygen species
(ROS), which in turn leads to mitochondrial dysfunction,
inflammation, and hypoxia. As a result, there is upregulation
of vascular endothelial growth factor (VEGF), which has
been implicated as a key causative factor of retinal neovascu-
larisation and vascular hyperpermeability in pDR and DMO,
respectively [5-8].

Currently, a number of treatments are available to
clinicians for DR, including the optimisation of glycaemic
control with regular injections of insulin, glucocorticoid
therapy, PKC inhibitors, fenofibrate, laser photocoagulation,
and in selected cases, vitreoretinal surgery [9-13]. More
recently, anti-VEGF antibody treatments have become avail-
able, and these have demonstrated significant improvements
in patient outcomes when compared to conventional thera-
peutic options [14].

Despite these advances, visual loss due to DR remains a
major public health issue, and efforts are still underway to
develop novel treatments for DR to address this unmet
medical need. In recent years, a number of preclinical and
clinical programmes have described the use of nonsteroidal
anti-inflammatory drugs (NSAIDs), antibiotics, immuno-
suppressants, oxidative stress inhibitors, and vitriol viscosity
inhibitors for treating DR [15-18]. Furthermore, the angio-
poietin (Ang)/Tie2 signalling axis has emerged as a poten-
tial therapeutic strategy, and a number of clinical trials
have demonstrated the efficacy of a number of pharmaco-
logic and biologic mediators of the Ang/Tie2 pathway [19].

2. The Angiopoietin/Tie2 Signalling Axis

The Ang/Tie2 signalling axis is a key regulator of angiogene-
sis. Whilst the VEGF pathway is thought to be important for
inducing endothelial cell sprouting and primary network for-
mation, the Ang/Tie2 pathway regulates blood vessel remod-
elling and maturation in the later stages of the angiogenic
process [20].

Whilst Angl and Ang4 are known agonists of Tie2 recep-
tor activity, the role of Ang2 has been less certain [21, 22].
Based on more recent data, a consensus has emerged
pointing towards a role for Ang2 as a negative modulator
of Tie2 activity. Ang2 is also thought to act as a partial
agonist/antagonist of Tie2 function by acting as a compet-
itive inhibitor of Angl and Ang4 binding [23-25].

All Ang proteins are secreted factors that bind to the Tie2
receptor. The Tie2 receptor is highly expressed on endothelial
cells, and it is composed of immunoglobulin-like domains,
epidermal growth factor-like domains, and fibronectin type
III domains [26]. Following activation, Tie2 demonstrates
strong kinase activity and becomes phosphorylated on several
cytoplasmic tyrosine residues. This results in the down-
stream activation of a number of pathways, including the
PI3-kinase/protein kinase B (AKT) and extracellular signal-
regulated kinase (ERK) pathways, which inhibit de novo
blood vessel growth and vascular hyperpermeability [23].
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Whilst a structural characterisation of the Ang4 protein is
lacking, efforts have been made to resolve the structure of
the Angl/Tie2 and Ang2/Tie2 ligand/receptor interactions.
X-ray crystallography analysis of Angl/Tie2 interactions,
coupled with structure-based mutagenesis, has been used to
identify molecular surfaces necessary for Tie2 activation.
The Ang fibrinogen-like domain has been shown to mediate
the Tie2 agonistic properties of Angl, and when this domain
was transferred into Ang2, the protein developed constitutive
Tie2 phosphorylating capabilities [27, 28].

3. Pathological Consequences of
Angiopoietin Dysregulation

The Ang proteins regulate a large number of biochemical
pathways and physiological processes, and as such, they have
been implicated in a number of pathological pathways across
a broad range of diseases. Ang dysregulation has been impli-
cated in diabetic nephropathy, with aberrant Ang function
correlating with abnormal glomerular barrier filtration [29].
The role of Ang proteins in diabetic wound healing is
also an area of active research. In a streptozotocin- (STZ-)
induced mouse model of diabetes, Angl treatment was shown
to upregulate matrix metalloproteinase- (MMP-) 9 and stem
cell factor levels which were associated with improved ree-
pithelialisation, neovascularisation, and endothelial progeni-
tor cell recruitment [30]. An Ang-based peptide mimetic,
Vasculotide (Vasomune), was shown to promote endothelial
cell survival, migration, and MMP-2 synthesis in a skin-
wound model employing the db/db transgenic diabetic mouse
model. Decreased wound closure times and a significant
increase in granulation tissue were also reported [31].

In the lymphatic system, Angl/Tie2 signalling was found
to attenuate oedema formation, and decreased inflammation
was seen in Angl-overexpressing mice exposed to UVB
irradiation [32]. In the nervous system, Angl induced
neurite outgrowth in PC12 cells at levels comparable with
nerve growth factor (NGF). Interestingly, this effect was
shown to be S1-integrin-dependent, but Tie2-independent,
demonstrating that Angl is capable of binding to multiple
receptors [33].

The Ang proteins have been closely studied in oncologi-
cal models given their close association with angiogenic pro-
cesses. In a study looking at the role of Ang2 in the migration
of glioma tumour cells, Ang2 was found to bind to a5f1-
integrins on Tie2 receptor-negative cells via a specific
residue, GIn*®%, and this in turn upregulated focal adhesion
kinase (FAK). This Ang2/a5f31-integrin interaction was
shown to enhance the migration and invasion of the glioma
cells, suggesting an important role for Ang2 in mediating
tumour growth and metastasis [34].

4. Role of Angiopoietins in
Diabetic Retinopathy

It has become increasingly clear that Ang proteins regulate a
number of physiological systems, and dysregulation of these
pathways has important pathological consequences. This
family of proteins has been implicated in DR as mediators
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of the permeability of the blood-retinal barrier (BRB) and in
the regulation of pericyte function, angiogenesis, and apopto-
sis. Various treatment modalities used in DR are thought to
alter Ang protein levels, and the ability to specifically modu-
late Ang protein function therefore represents a promising
therapeutic strategy.

4.1. Ang Proteins as Risk Factors for Diabetic Retinopathy.
The levels of Angl and Ang2 proteins have been determined
in the eyes of patients with pDR and DMO, but there is little
consensus in the literature whether these levels are indepen-
dent risk factors for the development of these diabetic com-
plications. In most reports, Ang2 concentrations have been
reported to be increased in patients with both pDR and
DMO, implying a possible role in neovascularisation and
vascular hyperpermeability through attenuation of Tie2
activity [35-37]. However, one study reported lower levels
of Ang2 in pDR patients, an apparent inconsistency that
could reflect the established nature of the neovascularisation
seen in the group of patients studied [38].

Angl has been reported to be upregulated in DMO, but
there are conflicting data with regard to whether Angl is
upregulated in pDR [35, 36]. These observations are perhaps
unexpected given that a proposed function of Angl is to
prevent neovascularisation and vascular hyperpermeability.
Further research is needed to define the relative ratios of
Angl and Ang2 levels in the eyes of patients with different dia-
betic complications and their pathophysiological relevance.

4.2. Role of the Ang Proteins in Regulating Blood-Retinal
Barrier Function and Vascular Permeability in DR. It is now
well established that Angl can induce vascular remodelling
by upregulating highly organised angiogenic processes and
by facilitating the tightening of endothelial cell junctions
[39]. In contrast to other angiogenic molecules like VEGF,
neovascularisation in the presence of Angl is highly ordered
and hierarchical, and Angl has been shown to rescue the for-
mation of a poorly remodelled and abnormally permeable
vascular network in a murine model of diabetic retinopathy
[40]. The exact mechanisms involved remain unclear, but
the effect of Angl could be antagonistic to that of VEGF-
induced vascular permeability. VEGF acts via Src to induce
vascular endothelial cadherin (VE-cadherin) tyrosine phos-
phorylation and subsequent internalisation, which results in
elevated endothelial cell permeability (Figure 1) [41]. By
sequestering Src, Angl/Tie2 interactions could inhibit this
VEGF-induced effect and prevent endothelial cell permeabil-
ity [42]. In addition to Src regulation, Angl is also thought to
influence vascular endothelial phosphotyrosine phosphatase
(VE-PTP) activity. The current evidence points towards
Angl promoting the formation of Tie2/VE-PTP/VE-
cadherin complexes at the cellular membrane, thereby
preventing the dissociation of VE-PTP and VE-cadherin,
which normally increases vascular permeability via VE-
PTP-mediated VE-cadherin dephosphorylation and interna-
lisation (Figure 1) [43].

The role of Ang2 in regulating BRB function and vascular
permeability has been explored in murine models of DR. The
induction of diabetes in rats (with an STZ injection) and

human retinal endothelial cells (with 5-30 mM concentra-
tions of glucose) was found to increase Ang2 mRNA levels
with an associated decrease in VE-cadherin levels (Figure 1)
[44]. Methylglyoxal is a product of the hyperglycaemia-
induced AGE pathway, and increased Ang2 expression in
the retinal pigment epithelium (RPE) was linked with abnor-
mal microvascular permeability via increased methylglyoxal
synthesis [45]. Elevated Ang2 synthesis was also correlated
with increased levels of proapoptotic BAX and decreased
levels of antiapoptotic BCL-2, indicating an important
role in endothelial cell dysfunction and apoptosis in DR
[45]. Interestingly, Ang2 has been shown to activate
Bl-integrins in order to promote vascular destabilisation
via the regulation of VE-cadherin-containing cell-cell junc-
tions (Figure 1) [46].

4.3. Role of the Angiopoietins in Angiogenesis in DR. The
Ang/Tie2 signalling axis modulates the survival and migra-
tion of endothelial cells and is a key regulator of both vascular
remodelling and the maintenance of vascular integrity
[47]. Unsurprisingly, the role of Ang proteins in facilitating
angiogenesis has been implicated in a number of ocular
pathologies, including age-related macular degeneration,
neovascular glaucoma, and trachoma [48].

In the context of diabetic ocular pathology, Angl and
Ang2 were found to enhance the effects of VEGF-mediated
angiogenesis when assessed in vitro with a bovine retinal cap-
illary endothelial cell line-based tube formation assay [49].
However, the assumption that these two proteins upregulate
aberrant angiogenesis in pDR has recently been called into
question. Angl supplementation in an oxygen-induced
in vivo model of diabetic retinopathy blocked the develop-
ment of retinal disease by inhibiting aberrant angiogenesis
and vascular leakage [50]. This observation was replicated
in other biological systems strongly indicating that the
functions of Angl and Ang2 are dualistic [23, 51, 52]. It
has been proposed that Ang2 facilitates disease progression
in DR. Overexpression of Ang2 in transgenic mouse
models demonstrated reduced pericyte capillary coverage
and increased intraretinal neovascularisation via the inhibi-
tion of Angl/Tie2 interactions (Figure 1). Furthermore,
Ang2 upregulation was found to increase VEGF expression,
which is a key factor in the development and progression
of diabetic angiogenesis [53]. Recent evidence points
towards Ang2 differentially regulating angiogenesis through
Tie2 and integrin signalling. Angiogenesis-activated endo-
thelial cells were found to harbour a subpopulation of
Tie2-negative integrin-overexpressing cells, and Ang2 was
bound to these integrins, inducing angiogenesis in a FAK-
and RAC-1-dependent manner (Figure 1) [54].

4.4. Role of Angiopoietins in Inducing Apoptosis in DR. Ang2
upregulation has been correlated with reduced pericyte cov-
erage and increased pericyte apoptosis (REES). In a diabetic
rat model, Ang2 was upregulated almost 30-fold compared
with normal controls, and this upregulation preceded peri-
cyte loss. Injection of recombinant Ang?2 into the eyes of nor-
mal rats also resulted in pericyte loss in a dose-dependent
manner [55].
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FIGURE 1: Overview of Ang/Tie2 signalling in the diabetic eye, including crosstalk with the VEGF pathway. EC = endothelial cell;

VE-CAD = VE-cadherin.

In retinal pericytes, Angl and Ang2 had opposite roles
depending on the culture conditions. In the presence of
tumour necrosis factor alpha (TNF«), Angl protected peri-
cytes against apoptosis whereas Ang2 accelerated the onset
of programmed cell death [56]. In mouse models of DR,
increased levels of Ang2 correlated with elevated loss of peri-
cytes, and vascular endothelial cells were implicated as a
potential source of Ang2. The latter was also found to induce
apoptosis under high glucose conditions and via the p53
pathway by binding to a3f1-integrins. It is therefore likely
that integrin binding is the mechanism by which Ang2
induces pericyte apoptosis (Figure 1) [57].

Upregulation of Ang2 enhances vascular damage during
hyperglycaemia in transgenic models of diabetic retinopathy.
Overexpression of Ang2 in nondiabetic and STZ-induced

diabetic mice significantly worsened the underlying vascular
pathology when pericyte apoptosis and acellular capillary
formation were assessed (Figure 1) [58]. These findings have
been corroborated in diabetic models investigating the effect
of nucleoside diphosphate kinase B (NDPKB) deficiency
[59]. NDPKB deficiency upregulated Ang2 expression and
protein N-acetylglucosamine modification, which is a prod-
uct of the hexosamine pathway, and this was associated with
decreased pericyte coverage and elevated acellular capillary
formation [59].

Ang2 could also induce astrocyte apoptosis via an
integrin-dependent mechanism. DR was induced in STZ
mouse models, and elevated Ang?2 levels were correlated with
astrocyte loss. Interestingly, Ang2-mediated astrocyte apo-
ptosis could be inhibited with an anti-Ang2 neutralising



Journal of Diabetes Research

antibody, and this likely occurred via a GSK3-dependent
mechanism. Activation of GSK3p seemed to occur down-
stream of Ang?2 binding to avf35-integrins, and in vivo injec-
tions of an anti-avf5-integrin antibody were sufficient to
inhibit astrocyte apoptosis in these particular STZ mouse
models (Figure 1) [60].

5. Role of Angiopoietin/Tie2 Signalling as Novel
Therapeutic Strategies

The modulation of Angl and Ang2 levels is an attractive
therapeutic target for DR [61]. Administration of Angl
protects the vasculature against VEGF-induced leakage in a
number of physiological systems [62]. Overexpression of
Angl in a transgenic diabetic mouse model inhibited the
onset and progression of oxygen-induced neovascularisation
[63]. Angl also blocked VEGF-induced leakage of mannitol
from the systemic circulation into the retina (Table 1). In a
VEGF-overexpressing transgenic mouse model, Angl sup-
plementation prevented exudative retinal detachment, but it
did not have any effect on established retinal neovascularisa-
tion [64]. Consistent with these findings, intravitreal injec-
tions of adenovirus expressing Angl prevented leukocyte
adhesion, apoptosis of retinal endothelial cells, and subse-
quent breakdown of the BRB in an STZ-induced rat model
of DR [65].

Although Angl supplementation represents a viable
treatment option for DR, the instability and insolubility of
the Angl protein represent major technical challenges. Phar-
macological research is now being directed towards creating
more stable and soluble forms of Angl with more potent
activity. Cartilage oligomeric matrix protein- (COMP-)
Angl was shown to attenuate the structural and functional
hallmarks of DR in a transgenic mouse model [66]. When
delivered into the retina using an adeno-associated virus
serotype 2 (AAV2) viral vector, leukocyte adhesion and
vascular permeability were decreased and retinal neurophys-
iological responses were improved to levels similar to that of
nondiabetic control animals. AAV2.COMP-Angl was also
shown to enhance the therapeutic benefit of the intravitreal
delivery of endothelial colony-forming cells by facilitating
their integration into the retinal vasculature (Table 1) [66].

In order to enhance Tie2 activity with Angl supplemen-
tation, another strategy that is being explored is the inhibi-
tion of VE-PTP using biological and pharmacologic
modalities. Similarly, incubation of Tie2 expressing endothe-
lial cells in culture with AKB-9778, a small molecule inhibitor
of VE-PTP, resulted in increased Tie2 phosphorylation
[67, 68]. Crucially, inhibition of VE-PTP has been shown to
prevent ischaemia-induced retinal neovascularisation and
choroidal neovascularisation. When used in combination
with the anti-VEGF agent Aflibercept, an additive effect
was seen in the reduction of vascular leakage in VEGF-
overexpressing transgenic mouse models (Table 2) [68].
Cumulative experimental data supports the translational
potential of VE-PTP inhibition in the treatment of sight-
threatening pDR and DMO. In a phase IIb randomised
clinical trial (TIME-IIb) that recruited 144 patients with
DMO, patients treated with AKB-9778 showed a greater

reduction in central subfield thickness (CST) compared
with the anti-VEGF (ranibizumab) monotherapy group,
but this structural benefit did not result in a significantly
better visual outcome (Table 2) [69-73]. One possible rea-
son why AKB-9778 failed to improve visual acuity in the
DMO patients may be related to the absolute dependence
of Angl to activate Tie2 receptors and the potential for
significant loss in agonist concentrations through pericyte
death in this disease.

The inhibition of Ang2 as a means of elevating Tie2 phos-
phorylation and promoting vascular stabilisation has been
investigated in two clinical trials for DMO. In the phase II
RUBY trial, patients with DMO received high and low doses
of an anti-Ang2 antibody in combination with Aflibercept
(REGN910-3) or Aflibercept on its own. No additional visual
benefit was observed in the dual treatment group (Ang2 and
VEGF inhibition) compared with the Aflibercept monother-
apy group (Table 2) [72]. The BOULEVARD phase II clinical
trial investigated a bispecific antibody (RG-7716) targeting
both VEGF and Ang2 proteins. At week 24, patients receiv-
ing this experimental treatment modality showed a statisti-
cally superior gain in visual acuity compared with those
receiving ranibizumab. However, it should be noted that
the BOULEVARD trial compared RG-7716 against low-
dose (0.3mg) ranibizumab and not Aflibercept, which is
now considered the gold standard for the treatment of
DMO. Furthermore, the absolute visual benefit was relatively
modest, suggesting that a head-to-head comparison of
RG-7716 with Aflibercept might not demonstrate the superi-
ority of dual VEGF and Ang?2 inhibition over conventional
treatment (Table 2) [73]. Despite only modest benefits of
Ang2 neutralisation, no clinical studies have yet examined
the benefits of elevating levels of Tie2 agonists, both to counter
loss in pericyte-derived Angl and to counterbalance increased
Ang? levels.

Several preclinical studies have demonstrated the thera-
peutic benefit of modulating Tie2 signalling in DR. Although
exciting, the translational potential of this particular pathway
remains to be demonstrated, and further research into
Ang/Tie2 is needed to identify other targets that could be
manipulated either pharmacologically or with gene therapy
approaches.

6. Conclusion

The known reported effects of Ang proteins on vascular
function strongly suggest a key role in DR pathophysiology.
Multiple studies have demonstrated that interaction of Ang
proteins with the Tie2 receptor serves to mediate a number
of intracellular signalling pathways in a number of cell types,
including endothelial cells, RPE cells, and a number of neuro-
nal cell types, all of which are affected to some degree in DR.
The binding of the Ang proteins to Tie2 influences a range of
physiological events, including blood vessel permeability and
neovascularisation. In DMO, dysregulated Ang signalling is
thought to mediate destabilisation of the blood-retinal bar-
rier, whilst in pDR, it has been shown to induce pathological
neovascularisation in the retina. Preclinical and recent clini-
cal studies outlining the promising therapeutic potential of
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TaBLE 2: Overview of agents targeting the Ang/Tie2 pathway that are currently in clinical development.
. I Patients Primary outcome
Drug name Developer Target Trial phase Indication Control Result
enrolled measure
AKB-9778 Akebia VE-PTP IIb DMO 167 Placebo DRSS Failed
Therapeutics
REGN910-3  Regeneron  Ang2 and VEGF I DMO 301 Aflibercept BCVA Failed
RG-7716 Roche Ang2 and VEGF 11 DMO 230 Low-dose BCVA Success
Genentech ranibizumab

DRSS = diabetic retinopathy severity score; BCVA = best-corrected visual acuity.

mediating Ang/Tie2 signalling have started to confirm Tie2
receptors as a therapeutic target for DR although no agents
which directly stimulate the receptor have so far been exam-
ined. In summary, Ang proteins play a vital role in DR and
are exciting therapeutic candidates towards the development
of new treatments for the condition.

Disclosure

The views expressed are those of the authors and not nec-
essarily those of the NHS, the NIHR, or the Department
of Health.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors would like to acknowledge all of the funding
bodies who have contributed to the writing of this manu-
script, and in particular, the core support grant from Well-
come Trust and MRC to the Wellcome Trust-Medical
Research Council Cambridge Stem Cell Institute. MW and
PYWM are funded by the Medical Research Council (UK)
grants. MW, PYWM, and AO receive support from the Novo
Nordisk UK Research Foundation, the Cambridge Eye Trust,
and the Jukes Glaucoma Research Fund. AO, PYWM, and
KRM also hold Fight for Sight UK awards. PYWM is
also supported by a Clinician Scientist Fellowship Award
(G1002570), the Isaac Newton Trust, the UK National
Institute for Health Research (NIHR) as part of the Rare
Diseases Translational Research Collaboration, and the
NIHR Biomedical Research Centre based at Moorfields Eye
Hospital NHS Foundation Trust and UCL Institute of
Ophthalmology. Research in the laboratory is supported by
core funding from Wellcome Trust and MRC to the
Wellcome Trust-MRC Cambridge Stem Cell Institute.

References

[1] R. Lee, T. Y. Wong, and C. Sabanayagam, “Epidemiology of
diabetic retinopathy, diabetic macular edema and related
vision loss,” Eye and Vision, vol. 2, no. 1, 2015.

[2] E.J.Duh,]. K. Sun, and A. W. Stitt, “Diabetic retinopathy: cur-
rent understanding, mechanisms, and treatment strategies,”
JCI Insight, vol. 2, no. 14, 2017.

[3] F. C. Gundogan, U. Yolcu, F. Akay, A. Ilhan, G. Ozge, and
S. Uzun, “Diabetic Macular Edema,” Pakistan Journal of
Medical Sciences, vol. 32, no. 2, p. 505, 2016.

[4] M. Martin and M. W. U. Nentwich, “Diabetic retinopathy -
ocular complications of diabetes mellitus,” World Journal of
Diabetes, vol. 6, no. 3, p. 489, 2015.

[5] M. Whitehead, S. Wickremasinghe, A. Osborne, P. Van
Wijngaarden, and K. R. Martin, “Diabetic retinopathy: a
complex pathophysiology requiring novel therapeutic strate-
gies,” Expert Opinion on Biological Therapy, vol. 18, no. 12,
pp. 1257-1270, 2018.

[6] S.Z.Safi, R. Qvist, S. Kumar, K. Batumalaie, and I. S. B. Ismail,
“Molecular mechanisms of diabetic retinopathy, general pre-
ventive strategies, and novel therapeutic targets,” BioMed
Research International, vol. 2014, Article ID 801269, 18 pages,
2014.

[7] M. Coucha, S. L. Elshaer, W. S. Eldahshan, B. A. Mysona, and
A. B. El-Remessy, “Molecular mechanisms of diabetic retinop-
athy: potential therapeutic targets,” Middle East African Jour-
nal of Ophthalmology, vol. 22, no. 2, pp. 135-144, 2015.

[8] W. Wang and A. C. Y. Lo, “Diabetic retinopathy: patho-
physiology and treatments,” International Journal of Molecular
Sciences, vol. 19, no. 6, article 1816, 2018.

[9] UK Prospective Diabetes Study (UKPDS) Group, “Effect of
intensive blood-glucose control with metformin on complica-
tions in overweight patients with type 2 diabetes (UKPDS 34),”
The Lancet, vol. 352, no. 9131, pp. 854-865, 1998.

[10] A. C. Keech, P. Mitchell, P. A. Summanen et al., “Effect of
fenofibrate on the need for laser treatment for diabetic retinop-
athy (FIELD study): a randomised controlled trial,” The
Lancet, vol. 370, no. 9600, pp. 1687-1697, 2007.

[11] Early Treatment Diabetic Retinopathy Study Research Group,
“Treatment techniques and clinical guidelines for photocoagu-
lation of diabetic macular edema. Early Treatment Diabetic
Retinopathy Study Report Number 2,” Ophthalmology,
vol. 94, no. 7, pp. 761-774, 1987.

[12] M. H. Dehghan, H. Ahmadieh, A. Ramezani, M. Entezari, and
A. Anisian, “A randomized, placebo-controlled clinical trial of
intravitreal triamcinolone for refractory diabetic macular
edema,” International Ophthalmology, vol. 28, no. 1,
pp. 7-17, 2007.

[13] R. N. Frank, “Potential new medical therapies for diabetic
retinopathy: protein kinase C inhibitors,” American Journal
of Ophthalmology, vol. 133, no. 5, pp. 693-698, 2002.

[14] P. Osaadon, X. J. Fagan, T. Lifshitz, and J. Levy, “A review of
anti-VEGF agents for proliferative diabetic retinopathy,” Eye,
vol. 28, no. 5, pp. 510-520, 2014.

[15] M.F. Elsawy, N. Badawi, and H. A. Khairy, “Prophylactic post-
operative ketorolac improves outcomes in diabetic patients



(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

assigned for cataract surgery,” Clinical Ophthalmology, vol. 7,
article 1245, 2013.

W. Xu, J. Yin, L. Sun et al,, “Impact of minocycline on vascu-
larization and visual function in an immature mouse model
of ischemic retinopathy,” Scientific Reports, vol. 7, no. 1,
p- 7535, 2017.

J. M. Santos, G. Mohammad, Q. Zhong, and R. A. Kowluru,
“Diabetic retinopathy, superoxide damage and antioxidants,”
Current Pharmaceutical Biotechnology, vol. 12, no. 3,
pp- 352-361, 2011.

D. Smet and M. Castilla, “Ocriplasmin for diabetic retinopa-
thy,” Expert Opinion on Biological Therapy, vol. 13, no. 12,
pp. 1741-1747, 2013.

P. A. Campochiaro and K. G. Peters, “Targeting Tie2 for treat-
ment of diabetic retinopathy and diabetic macular edema,”
Current Diabetes Reports, vol. 16, no. 12, 2016.

Y. Reiss, A. Scholz, and K. H. Plate, “The angiopoietin—Tie
system: common signaling pathways for angiogenesis, cancer,
and inflammation,” in Endothelial Signaling in Development
and Disease, M. Schmidt and S. Liebner, Eds., pp. 313-328,
Springer, New York, NY, USA, 2015.

W. Kim, “The role of angiopoietin-1 in kidney disease,”
Electrolyte & Blood Pressure, vol. 6, no. 1, pp. 22-26, 2008.
M. K. Brunckhorst, H. Wang, R. Lu, and Q. Yu, “Angiopoietin-
4 promotes glioblastoma progression by enhancing tumor cell
viability and angiogenesis,” Cancer Research, vol. 70, no. 18,
pp. 72837293, 2010.

G. Thurston and C. Daly, “The complex role of angiopoietin-2
in the angiopoietin-tie signaling pathway,” Cold Spring
Harbor Perspectives in Medicine, vol. 2, no. 9, 2012.

A. Scholz, K. H. Plate, and Y. Reiss, “Angiopoietin-2: a
multifaceted cytokine that functions in both angiogenesis
and inflammation,” Annals of the New York Academy of
Sciences, vol. 1347, no. 1, pp. 45-51, 2015.

E. A. Korhonen, A. Lampinen, H. Giri et al., “Tiel controls
angiopoietin function in vascular remodeling and inflamma-
tion,” The Journal of Clinical Investigation, vol. 126, no. 9,
pp- 3495-3510, 2016.

H. G. Augustin, G. Y. Koh, G. Thurston, and K. Alitalo,
“Control of vascular morphogenesis and homeostasis
through the angiopoietin-Tie system,” Nature Reviews Molec-
ular Cell Biology, vol. 10, no. 3, pp. 165-177, 2009.

X. Yu, T. C. M. Seegar, A. C. Dalton et al., “Structural basis for
angiopoietin-1-mediated signaling initiation,” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 110, no. 18, pp. 7205-7210, 2013.

W. A. Barton, D. Tzvetkova-Robev, E. P. Miranda et al.,
“Crystal structures of the Tie2 receptor ectodomain and
the angiopoietin-2-Tie2 complex,” Nature Structural &
Molecular Biology, vol. 13, no. 6, pp. 524-532, 2006.

L. Gnudi, “Angiopoietins and diabetic nephropathy,” Diabeto-
logia, vol. 59, no. 8, pp. 1616-1620, 2016.

S. Balaji, N. Han, C. Moles et al., “Angiopoietin-1 improves
endothelial progenitor cell-dependent neovascularization in
diabetic wounds,” Surgery, vol. 158, no. 3, pp. 846-856, 2015.
P. Van Slyke, J. Alami, D. Martin et al, “Acceleration of
diabetic wound healing by an angiopoietin peptide
mimetic,” Tissue Engineering Part A, vol. 15, no. 6,
pp. 1269-1280, 2009.

K. Kajiya, H. Kidoya, M. Sawane et al.,, “Promotion of lym-
phatic integrity by angiopoietin-1/Tie2 signaling during

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

Journal of Diabetes Research

inflammation,” The American Journal of Pathology, vol. 180,
no. 3, pp. 1273-1282, 2012.

X. Chen, W. Fu, C. E. Tung, and N. L. Ward, “Angiopoietin-1
induces neurite outgrowth of PC12 cells in a Tie2-indepen-
dent, S1-integrin-dependent manner,” Neuroscience Research,
vol. 64, no. 4, pp- 348-354, 2009.

H. S. Lee, S. J. Oh, K.-H. Lee et al., “Gln-362 of angiopoietin-2
mediates migration of tumor and endothelial cells through
association with w581 integrin,” Journal of Biological Chemis-
try, vol. 289, no. 45, pp- 31330-31340, 2014.

N. Khalaf, H. Helmy, H. labib, I. Fahmy, M. Abd el Hamid, and
L. Moemen, “Role of angiopoietins and Tie-2 in diabetic reti-
nopathy,” Electronic Physician, vol. 9, no. 8, pp. 5031-5035,
2017.

Y. Yu, J. Zhang, R. Zhu et al., “The profile of angiogenic factors
in vitreous humor of the patients with proliferative diabetic
retinopathy,” Current Molecular Medicine, vol. 17, no. 4, 2017.

D. Watanabe, K. Suzuma, I. Suzuma et al., “Vitreous levels of
angiopoietin 2 and vascular endothelial growth factor in
patients with proliferative diabetic retinopathy,” American
Journal of Ophthalmology, vol. 139, no. 3, pp. 476-481, 2005.
J. 1 Patel, P. G. Hykin, Z. ]. Gregor, M. Boulton, and I. A. Cree,
“Angiopoietin concentrations in diabetic retinopathy,” British
Journal of Ophthalmology, vol. 89, no. 4, pp. 480-483, 2005.
G. Y. Koh, “Orchestral actions of angiopoietin-1 in vascular
regeneration,” Trends in Molecular Medicine, vol. 19, no. 1,
pp. 31-39, 2013.

A. Uemura, M. Ogawa, M. Hirashima et al., “Recombinant
angiopoietin-1 restores higher-order architecture of growing
blood vessels in mice in the absence of mural cells,” The Jour-
nal of Clinical Investigation, vol. 110, no. 11, pp. 1619-1628,
2002.

J. Gavard and J. S. Gutkind, “VEGF controls endothelial-cell
permeability by promoting the f-arrestin-dependent endocy-
tosis of VE-cadherin,” Nature Cell Biology, vol. 8, no. 11,
pp. 1223-1234, 2006.

J. Gavard, V. Patel, and J. S. Gutkind, “Angiopoietin-1 pre-
vents VEGF-induced endothelial permeability by sequestering
Src through mDia,” Developmental Cell, vol. 14, no. 1,
pp. 25-36, 2008.

P. Saharinen, L. Eklund, J. Miettinen et al., “Angiopoietins
assemble distinct Tie2 signalling complexes in endothelial
cell-cell and cell-matrix contacts,” Nature Cell Biology,
vol. 10, no. 5, pp. 527-537, 2008.

S. Rangasamy, R. Srinivasan, J. Maestas, P. G. McGuire, and
A. Das, “A potential role for angiopoietin 2 in the regulation
of the blood-retinal barrier in diabetic retinopathy,” Investi-
gative Opthalmology & Visual Science, vol. 52, no. 6,
pp. 3784-3791, 2011.

C. F. Bento, R. Fernandes, P. Matafome, C. Sena, R. Sei¢a, and
P. Pereira, “Methylglyoxal-induced imbalance in the ratio of
vascular endothelial growth factor to angiopoietin 2 secreted
by retinal pigment epithelial cells leads to endothelial dysfunc-
tion,” Experimental Physiology, vol. 95, no. 9, pp. 955-970,
2010.

L. Hakanpaa, T. Sipila, V. M. Leppanen et al., “Endothelial
destabilization by angiopoietin-2 via integrin 1 activation,”
Nature Communications, vol. 6, no. 1, 2015.

T. Morisada, Y. Kubota, T. Urano, T. Suda, and Y. Oike,
“Angiopoietins and angiopoietin-like proteins in angiogene-
sis,” Endothelium, vol. 13, no. 2, pp. 71-79, 2006.



Journal of Diabetes Research

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

(57]

(58]

(59]

(60]

[61]

[62]

[63]

A. M. Joussen, “Vascular plasticity—the role of the angiopoie-
tins in modulating ocular angiogenesis,” Graefe's Archive for
Clinical and Experimental Ophthalmology, vol. 239, no. 12,
pp. 972-975, 2001.

H. Takagi, S. Koyama, H. Seike et al., “Potential role of the
angiopoietin/tie2 system in ischemia-induced retinal neovas-
cularization,” Investigative Opthalmology & Visual Science,
vol. 44, no. 1, p. 393, 2003.

J. Lee, K. E. Kim, D. K. Choi et al., “Angiopoietin-1 guides
directional angiogenesis through integrin «, 35 signaling for
recovery of ischemic retinopathy,” Science Translational
Medicine, vol. 5, no. 203, article 203ral27, 2013.

E. Fagiani and G. Christofori, “Angiopoietins in angiogenesis,”
Cancer Letters, vol. 328, no. 1, pp. 18-26, 2013.

T. M. Hansen, H. Singh, T. A. Tahir, and N. P. J. Brindle,
“Effects of angiopoietins-1 and -2 on the receptor tyrosine
kinase Tie2 are differentially regulated at the endothelial cell
surface,” Cellular Signalling, vol. 22, no. 3, pp. 527-532, 2010.
Y. Feng, F. vom Hagen, F. Pfister et al., “Impaired pericyte
recruitment and abnormal retinal angiogenesis as a result of
angiopoietin-2 overexpression,” Thrombosis and Haemostasis,
vol. 97, no. 1, pp. 99-108, 2007.

M. Felcht, R. Luck, A. Schering et al., “Angiopoietin-2 differen-
tially regulates angiogenesis through TIE2 and integrin signal-
ing,” The Journal of Clinical Investigation, vol. 122, no. 6,
pp. 1991-2005, 2012.

H. P. Hammes, J. Lin, P. Wagner et al., “Angiopoietin-2 causes
pericyte dropout in the normal retina: evidence for involve-
ment in diabetic retinopathy,” Diabetes, vol. 53, no. 4,
pp. 1104-1110, 2004.

J. Cai, O. Kehoe, G. M. Smith, P. Hykin, and M. E. Boulton,
“The angiopoietin/Tie-2 system regulates pericyte survival
and recruitment in diabetic retinopathy,” Investigative Opthal-
mology & Visual Science, vol. 49, no. 5, p. 2163, 2008.

S. W. Park, J. H. Yun, J. H. Kim, K. W. Kim, C. H. Cho, and
J. H. Kim, “Angiopoietin 2 induces pericyte apoptosis via
a3f1 integrin signaling in diabetic retinopathy,” Diabetes,
vol. 63, no. 9, pp. 3057-3068, 2014.

F. Pfister, Y. Wang, K. Schreiter et al., “Retinal overexpression
of angiopoietin-2 mimics diabetic retinopathy and enhances
vascular damages in hyperglycemia,” Acta Diabetologica,
vol. 47, no. 1, pp. 59-64, 2010.

Y. Qiu, D. Zhao, V. M. Butenschon et al., “Nucleoside
diphosphate kinase B deficiency causes a diabetes-like vas-
cular pathology via up-regulation of endothelial
angiopoietin-2 in the retina,” Acta Diabetologica, vol. 53,
no. 1, pp. 81-89, 2016.

J. H. Yun, S. W. Park, J. H. Kim, Y. J. Park, C. H. Cho, and
J. H. Kim, “Angiopoietin 2 induces astrocyte apoptosis via
av35-integrin signaling in diabetic retinopathy,” Cell Death
& Disease, vol. 7, no. 2, article 2101, 2016.

A. Moss, “The angiopoietin:Tie 2 interaction: a potential target
for future therapies in human vascular disease,” Cytokine ¢
Growth Factor Reviews, vol. 24, no. 6, pp. 579-592, 2013.

G. Thurston, J. S. Rudge, E. Ioffe et al., “Angiopoietin-1 pro-
tects the adult vasculature against plasma leakage,” Nature
Medicine, vol. 6, no. 4, pp. 460-463, 2000.

H. Nambu, R. Nambu, Y. Oshima et al, “Angiopoietin 1
inhibits ocular neovascularization and breakdown of the
blood-retinal barrier,” Gene Therapy, vol. 11, no. 10,
pp. 865-873, 2004.

(64]

[65]

[66]

(67]

(68]

(69]

[70]

(71]

(72]

(73]

H. Nambu, N. Umeda, S. Kachi et al., “Angiopoietin 1 prevents
retinal detachment in an aggressive model of proliferative ret-
inopathy, but has no effect on established neovascularization,”
Journal of Cellular Physiology, vol. 204, no. 1, pp. 227-235,
2005.

A. M. Joussen, V. Poulaki, A. Tsujikawa et al., “Suppression of
diabetic retinopathy with angiopoietin-1,” The American Jour-
nal of Pathology, vol. 160, no. 5, pp. 1683-1693, 2002.

J. M. Cahoon, R. R. Rai, L. S. Carroll et al., “Intravitreal AAV2.-
COMP-Angl prevents neurovascular degeneration in a
murine model of diabetic retinopathy,” Diabetes, vol. 64,
no. 12, pp. 4247-4259, 2015.

O. K. Yacyshyn, P. F. H. Lai, K. Forse, K. Teichert-
Kuliszewska, P.Jurasz, and D.J. Stewart, “Tyrosine phospha-
tase beta regulates angiopoietin-Tie2 signaling in human
endothelial cells,” Angiogenesis, vol. 12, no. 1, pp. 25-33, 2009.

J. Shen, M. Frye, B. L. Lee et al., “Targeting VE-PTP activates
TIE2 and stabilizes the ocular vasculature,” The Journal of
Clinical Investigation, vol. 124, no. 10, pp. 4564-4576, 2014.

“The TIME-2b study: a study of AKB-9778, a novel Tie 2 acti-
vator, in patients with non-proliferative diabetic retinopathy
(NPDR),” March 2019, https://clinicaltrials.gov/ct2/show/
NCT03197870.

“The TIME-2 study: a phase 2 study of AKB-9778, a novel Tie-
2 activator, in patients with diabetic macular edema,” March
2019, https://clinicaltrials.gov/ct2/show/NCT02050828.

P. A. Campochiaro, A. Khanani, M. Singer et al., “Enhanced
benefit in diabetic macular edema from AKB-9778 Tie2
activation combined with vascular endothelial growth factor
suppression,” Ophthalmology, vol. 123, no. 8, pp. 1722-1730,
2016.

“Anti-vasculaR Endothelial Growth Factor plUs Anti-
angiopoietin 2 in Fixed comBination therapY: evaluation for
the treatment of diabetic macular edema,” November 2018,
https://clinicaltrials.gov/ct2/show/record/ NCT02712008.

“A study of RO6867461 in participants with center-involving

diabetic macular edema,” November 2018, https://
clinicaltrials.gov/ct2/show/NCT02699450.


https://clinicaltrials.gov/ct2/show/NCT03197870
https://clinicaltrials.gov/ct2/show/NCT03197870
https://clinicaltrials.gov/ct2/show/NCT02050828
https://clinicaltrials.gov/ct2/show/record/NCT02712008
https://clinicaltrials.gov/ct2/show/NCT02699450
https://clinicaltrials.gov/ct2/show/NCT02699450

	Angiopoietins in Diabetic Retinopathy: Current Understanding and Therapeutic Potential
	1. Introduction to Diabetic Retinopathy
	2. The Angiopoietin/Tie2 Signalling Axis
	3. Pathological Consequences of Angiopoietin Dysregulation
	4. Role of Angiopoietins in Diabetic Retinopathy
	4.1. Ang Proteins as Risk Factors for Diabetic Retinopathy
	4.2. Role of the Ang Proteins in Regulating Blood-Retinal Barrier Function and Vascular Permeability in DR
	4.3. Role of the Angiopoietins in Angiogenesis in DR
	4.4. Role of Angiopoietins in Inducing Apoptosis in DR

	5. Role of Angiopoietin/Tie2 Signalling as Novel Therapeutic Strategies
	6. Conclusion
	Disclosure
	Conflicts of Interest
	Acknowledgments

