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Abstract

Motivation: Identifying the genetic basis of the brain structure, function and disorder by using the

imaging quantitative traits (QTs) as endophenotypes is an important task in brain science. Brain

QTs often change over time while the disorder progresses and thus understanding how the genetic

factors play roles on the progressive brain QT changes is of great importance and meaning. Most

existing imaging genetics methods only analyze the baseline neuroimaging data, and thus those

longitudinal imaging data across multiple time points containing important disease progression in-

formation are omitted.

Results: We propose a novel temporal imaging genetic model which performs the multi-task

sparse canonical correlation analysis (T-MTSCCA). Our model uses longitudinal neuroimaging

data to uncover that how single nucleotide polymorphisms (SNPs) play roles on affecting brain

QTs over the time. Incorporating the relationship of the longitudinal imaging data and that within

SNPs, T-MTSCCA could identify a trajectory of progressive imaging genetic patterns over the time.

We propose an efficient algorithm to solve the problem and show its convergence. We evaluate

T-MTSCCA on 408 subjects from the Alzheimer’s Disease Neuroimaging Initiative database with

longitudinal magnetic resonance imaging data and genetic data available. The experimental results

show that T-MTSCCA performs either better than or equally to the state-of-the-art methods. In

particular, T-MTSCCA could identify higher canonical correlation coefficients and capture clearer

canonical weight patterns. This suggests that T-MTSCCA identifies time-consistent and time-

dependent SNPs and imaging QTs, which further help understand the genetic basis of the brain QT

changes over the time during the disease progression.

Availability and implementation: The software and simulation data are publicly available at https://

github.com/dulei323/TMTSCCA.

Contact: dulei@nwpu.edu.cn or li.shen@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

VC The Author(s) 2019. Published by Oxford University Press. i474

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i474–i483

doi: 10.1093/bioinformatics/btz320

ISMB/ECCB 2019

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://github.com/dulei323/TMTSCCA
https://github.com/dulei323/TMTSCCA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz320#supplementary-data
https://academic.oup.com/


1 Introduction

Brain imaging genetics studies the relationship between the quantita-

tive traits (QTs) extracted from neuroimaging data and genotypic

data such as single nucleotide polymorphisms (SNPs). This research

methodology is expected to uncover the genetic basis of brain struc-

ture and function, thereby further offers new opportunities to inter-

pret the relationships between genetic variations and brain disorders

(Potkin et al., 2009; Saykin et al., 2015; Shen et al., 2010).

During the last decade, many efforts have been made to explore

computational methods to identify the correlation between QTs and

genetic factors (Du et al., 2016, 2018; Hao et al., 2017; Shen et al.,

2010; Vounou et al., 2010, 2012; Wang et al., 2012b; Witten and

Tibshirani, 2009; Yan et al., 2014). The early imaging genetic stud-

ies (Shen et al., 2010; Vounou et al., 2010) used pairwise univariate

analysis to identify single-SNP-single-QT associations. To improve

the identification power, the multivariate sparse regression methods

were introduced later (Vounou et al., 2012; Wan et al., 2011; Wang

et al., 2012b). They either regressed a set of SNPs for a few candi-

date QTs, or regressed a set of QTs for a few candidate SNPs, and

the relationship among predictors is usually taken into consideration

via the regularization.

Recently, sparse canonical correlation analysis (SCCA) becomes

popular in imaging genetics since it can identify bi-multivariate asso-

ciations between multiple SNPs and multiple imaging QTs without

pre-selecting candidate biomarkers (Du et al., 2016; Witten and

Tibshirani, 2009; Yan et al., 2014). Most existing SCCA methods

only employ neuroimaging data of one time point, e.g. the baseline,

to study their correlation with SNPs. Neuroimaging techniques

show improved power in investigating the characteristics of neuro-

degenerative progression in the spectrum from healthy controls

(HCs) to patients with Alzheimer’s disease (AD) (Cheng et al.,

2019). Thus, the brain structure and function along with the disease

diagnosis change over time other than remain stationary. For ex-

ample, a HC subject might progress to mild cognitive impairment

(MCI) patient, and further to AD several years later; while another

HC subject could remain healthy during these years. Therefore,

understanding how the genetic factors modulate the trajectory of

disease progression is particularly important and interesting.

The aforementioned methods might be insufficient to discover

deep-seated imaging genetic relationship due to the ignorance of rich

temporal information carried by the imaging data across multiple time

points. To date, there are a few methods studying imaging genetics

using the longitudinal phenotypic data. A common issue is that a pre-

selection of candidate risk biomarkers is required before conducting

the actual imaging genetic analysis. For example, Vounou et al. (2010)

proposed a two-step method which first selected a small set of disease-

related imaging voxels which can distinguish AD subjects from HC

ones. Then a sparse reduced-rank regression was applied to identify

those disease relevant SNPs by using the pre-selected voxels as

responses and SNP as predictors (Vounou et al., 2012). Given the

complexity of the human brain (Mai et al., 1997), only including a

small proportion might be insufficient since this may lose important

information carried by cerebral components which are not included

(Shen et al., 2010). Wang et al. (2012a) proposed a sparse regression

model which uses a small set of pre-selected SNPs as responses and the

brain-wide imaging phenotypes as predictors. Instead of identifying

disease relevant SNPs (Vounou et al., 2010), it identifies disease rele-

vant brain imaging phenotypes with common influence on all candi-

date SNPs (Wang et al., 2012a). Recently, Hao et al. (2017) proposed

a temporally constrained group SCCA (TGSCCA) which simplified

the multi-set/multi-view SCCA (mSCCA) model (Witten and

Tibshirani, 2009) by dropping the pairwise association between longi-

tudinal imaging phenotypes. Both TGSCCA and mSCCA require that

one set of variables (SNPs) being associated with several sets of varia-

bles (longitudinal imaging QTs across multiple time points) simultan-

eously, which might be too strict to make full use of the

complementary information embedded in different period of imaging

data. Moreover, TGSCCA identified time-consistent markers for

imaging QTs, which only revealed those relevant markers being shared

by all time points. As a result, it could not uncover the heterogeneous

progressive patterns of human brain. Neuroimaging studies have

shown that the human brain cerebral decline, e.g. the atrophy in AD,

presents regional differences in the atrophy rates (Fox and Schott,

2004; Harper et al., 2017). This implies that, in many cases, the com-

mon progressive pattern is shared by multiple time points, but not all

(Lee et al., 2010; Wang et al., 2011). This regional variations may

trace back to the involvement of different SNPs at different time

points. Therefore, developing longitudinal imaging genetics methods,

with the ability of identifying a trajectory of progressive and time-

dependent imaging genetic patterns, is of great importance and mean-

ing. This could further help uncover the diverse genetic factors’ roles

in affecting brain changes over the disease progression.

In this article, using the longitudinal brain imaging QTs across

multiple time points, we propose a novel Temporal Multi-Task

SCCA (T-MTSCCA) framework which learns bi-multivariate associ-

ations between intermediate phenotypes and genotypes simultan-

eously. In this new model, each SNP or QT is denoted as a feature,

and an SCCA task is conducted between each longitudinal imaging

modality and SNPs. Distinct from mSCCA and TGSCCA who learn

only one canonical weight vector for SNPs, our T-MTSCCA learns a

canonical weight matrix for SNPs, where each column corresponds

to one canonical weight of one SCCA task. This means that our

method can make full use of the complementary information carried

by imaging QTs at different time points. The inherent linkage dis-

equilibrium (LD) (Pritchard and Przeworski, 2001) structure is

taken into consideration by the group ‘2;1-norm (G2;1-norm) (Wang

et al., 2012b) to make the model practical. The ‘2;1-norm is used to

jointly select an individual feature for SNPs and phenotypic QTs.

The longitudinal imaging QTs naturally present a temporal pattern

across multiple time points, we use a fuse pairwise group lasso to ac-

commodate this temporal relationship. In addition, the ‘1-norm for

both SNPs and imaging QTs assures a time-dependent feature selec-

tion, indicating its capability in finding markers which are only ef-

fective at a specific time point. We derive an efficient algorithm and

show its convergence to a local optimum.

In the experiments, to evaluate the performance of T-MTSCCA,

we used synthetic datasets with different characters and a real neu-

roimaging genetic dataset from the Alzheimer’s disease neuroimag-

ing initiative (ADNI) (Mueller et al., 2005) cohort. The real data

included longitudinal structural magnetic resonance imaging (MRI)

measurements over a two year period and 1085 SNPs near the

APOE gene. Compared with two state-of-the-art methods, on both

synthetic and real datasets, our method yielded improved canonical

correlation coefficients, and clear canonical weight profiles showing

its capability in identifying relevant biomarkers. Moreover, T-

MTSCCA also identified time-dependent and progressive imaging

and genetic markers, demonstrating it is a potential alternative

method in longitudinal brain imaging genetics.

2 Materials and methods

Throughout this article, we denote scalars as italic letters, vectors as

boldface lowercase letters and matrices as boldface uppercase
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letters. The i-th row and j-th column of matrix X ¼ ðxi;jÞ are

denoted as xi and xj, respectively. The i-th matrix of a set of matri-

ces is denotes as Xi. The Euclidean norm of x is denoted as kxk2 and

the Frobenius norm of X is defined as kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j x2

i;j

q
.

2.1 The sparse canonical correlation analysis
Canonical correlation analysis (CCA) combined with sparse learning

techniques is widely used in imaging genetics. Suppose we have T

matrices, i.e. Xiði 2 ½1; . . . ;T�Þ and T canonical weights wi, the

SCCA can be formally defined as:

min
w1 ;...;wT

X
t< k

�w>t X>t Xkwk þ ktXðwtÞ (1)

s:t: kXtwtk2
2 ¼ 1; 8t:

XðwtÞ is the sparsity-inducing term to select those features of

interest and kt is the parameter to control the strength of sparsity. So

far, SCCA studies have involved the Lasso (‘1-norm) (Parkhomenko

et al., 2009; Witten and Tibshirani, 2009), group Lasso (Chen and

Liu, 2012; Du et al., 2017) and graph Laplacian regularization

(Chen and Bushman, 2013; Du et al., 2016; Yan et al., 2014), to

name a few. For the sake of description, we name an SCCA method

based on the number of matrices involved. For example, we call it

two-view or two-set SCCA (SCCA for short) when t¼2, and most

existing studies are in this category. The multi-view or multi-set

SCCA (mSCCA) studies the associations among three or more matri-

ces (t � 3).

The temporally constrained group SCCA (TGSCCA) (Hao et al.,

2017) is introduced by relating the SNP data to the imaging data at

each time point separately while enforcing a shared canonical load-

ing on the genetic side, i.e.

min
u;v1 ;...;vT

XT

t¼1

�u>X>Ytvt þ kuXðuÞ þ kvXðVÞ (2)

s:t: kXuk2
2 ¼ 1; kYtvtk2

2 ¼ 1; 8t:

X 2 R
n�p here represents the genotype SNPs data with n subjects

and p SNPs, Yt 2 R
n�qðt ¼ 1; . . . ;TÞ represents the longitudinal

phenotype data with q imaging QTs, where T is the number of time

points and V ¼ ½v1 v2 � � � vT �.

2.2 The T-MTSCCA
In this subsection, we aim to investigate the association between

genotypes and longitudinal imaging phenotypes. In view that imag-

ing phenotypes show regional variations over time owing to the im-

pact of genotypes, the computational model should account for the

regional variations. Inspired by the success of multi-task regression

in imaging genetics studies (Wang et al., 2012a, b), we propose a

novel temporal multi-task SCCA (T-MTSCCA) method for longitu-

dinal imaging genetics as follows:

min
ut ;vt

XT

t¼1

�u>t X>Ytvt þXðUÞ þ XðVÞ (3)

s:t: kXutk2
2 ¼ 1; kYtvtk2

2 ¼ 1; 8t;

where U ¼ ½u1 u2 � � � uT �; V ¼ ½v1 v2 � � � vT � and T is the number

of time points (SCCA tasks). XðUÞ and XðVÞ are the regularization

terms for selection of time-dependent and time-consistent genotypic

and imaging phenotypic markers.

T-MTSCCA has three advantages over previous models mSCCA

and TGSCCA. First, T-MTSCCA is a multi-task bi-multivariate

method which jointly learns related SCCA tasks. The neurodegener-

ative disorders, e.g. AD, usually deteriorate gradually, implying the

brain structure and function, might show little difference between

two consecutive visits. This indicates that the longitudinal imaging

QTs remain stable during this period, which further reveals that

these SCCA tasks regarding associations between genotypes and lon-

gitudinal imaging phenotypes are correlated longitudinally.

According to the multi-task learning theory (Argyriou et al., 2006),

T-MTSCCA is expected to yield enhanced performance owing to

these longitudinally correlated SCCA tasks. Second, T-MTSCCA

learns a weight matrix U with T vectors corresponding to T SCCA

tasks. That is, an SCCA task will promote correlated tasks instead

of enforcing them to be the same, which is meaningful when these

tasks (associations between SNPs and longitudinal imaging pheno-

types at different time points) are not perfectly related (Lee et al.,

2010). This strategy seeks common ground while reserving differen-

ces and offers a unique opportunity to identify both time-consistent

and time-dependent markers simultaneously. Third, the blended

regularization XðUÞ subsumes G2;1-norm, ‘2;1-norm and ‘1-norm,

and thus assures diverse sparsity including time-dependent, time-

consistent and smoothness crossing multiple time points but not all.

XðVÞ is also a blended regularization performing diverse feature se-

lection for heterogeneous progressive patterns of imaging QTs.

Therefore, T-MTSCCA is promising in discovering complex region-

al variations existing in the progression of neurodegenerative disor-

ders (Fox and Schott, 2004), and further identifying the deep-seated

QT loci being responsible for the disorders.

2.2.1 Regularization for genotypes via group-sparsity and individ-

ual-sparsity

It is well known that the genetic markers, i.e. SNPs, affect the brain

structure and function both conjointly at group level and individual-

ly. SNPs could exhibit different temporal patterns longitudinally,

being supported by the truth that the human brain cerebral decline

exhibits regional variations longitudinally (Fox and Schott, 2004).

Therefore, in order to take into consideration these complex tem-

poral patterns, XðUÞ is defined as:

XðUÞ ¼ ku1kUkG2;1
þ ku2kUk2;1 þ ku3

Xp

i¼1

kuik1; (4)

where ku1; ku2 and ku3 are non-negative tuning parameters.

Specifically, the G2;1-norm is formulated as follows:

kUkG2;1
¼
XK

k¼1

kUkkF ¼
XK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
i2gk

XT

t¼1

ðui
tÞ

2

vuut : (5)

Uk is the k-th submatrix of U whose rows is indexed by gk. G ¼
fgkgK

k¼1 denotes K groups in accordance with the LD structure. This

norm assures group sparsity since it penalizes SNPs in the same

group (e.g. LD) jointly, meaning they will be selected or unselected

simultaneously (Wang et al., 2012b). The penalization is practical

owing to packaging SNPs in the same LD block together, which

makes the model consistent with the genotype mechanism.

The ‘2;1-norm is defined as:

kUk2;1 ¼
Xp

i¼1

kuik2 ¼
Xp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðui
tÞ

2

vuut : (6)

This regularization emphasizes on a single variable across mul-

tiple tasks, and could help identify a single SNP that plays a role in

the brain development or disease progression via affecting the

i476 L.Du et al.



longitudinal imaging phenotypes. Finally, the temporal pattern

implies that a SNP could not always play a role during the disease

progression. Therefore, we use the ‘1-norm for each ui to induce

sparsity across all time points for each individual SNP, i.e.

kuik1 ¼
XT

t¼1

jui
tj: (7)

This penalty is focused on selecting the relevant features at a spe-

cific time point. It is worth noting that, combining the three terms

together, they can not only identify active SNPs shared by all time

points, but also identify SNPs being only relevant at a specific time

point.

2.2.2 Regularization for longitudinal imaging phenotypes via time-

consistent and time-dependent sparsity

The regularization aiming for sparsity with respect to imaging QTs

is also desirable, being motivated by the fact that different imaging

QTs play different roles during the disease progression. According

to Equation (3), there is one canonical weight vector for imaging

QTs at a specific time point. Then across multiple times points, an

imaging QT describes the trajectory of the disease progression at

this specific brain area. Based on the analysis earlier, regional varia-

tions, i.e. one brain region may remain stable while another may

change significantly, should be taken into consideration.

On this account, we introduce a novel time-consistent and time-

dependent constraint which is defined as follows:

XðVÞ ¼ kv1kVkFP2;1
þ kv2kVk2;1 þ kv3

Xq

j¼1

kvjk1; (8)

where kv1; kv2 and kv3 are non-negative tuning parameters.

The fused pairwise ‘2;1-norm (FP2;1-norm) (Du et al., 2017) is

defined as:

kVkFP2;1
¼
Xq

j¼1

XT�1

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvj

tÞ2 þ ðvj
tþ1Þ

2
q

: (9)

This norm first imposes the ‘2-norm for two adjacent time points

of one QT, then uses the ‘1-norm for all QTs spanning the whole

brain. As a result, the intermediate temporally stable pattern of one

QT is considered as well as the sparsity among all QTs. Moreover,

FP2;1-norm is convex and thus could be easily optimized compared

to the non-convex fused Lasso of TGSCCA (Hao et al., 2017). The

‘2;1-norm:

kVk2;1 ¼
Xq

j¼1

kvjk2 ¼
Xq

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðvj
tÞ2

vuut ; (10)

is used to assure the cross-task relationship for each imaging QT.

Thus it could select or discard those imaging QTs remaining stable

across all time points. Finally, as stated, the brain areas exhibit dis-

tinct atrophy patterns (Fox and Schott, 2004). Therefore, identifying

time-dependent imaging QTs is also very important to understand

the disease pathology. We use the ‘1-norm penalty, i.e.

kvjk1 ¼
XT

t¼1

jvj
tj; (11)

for each vt to assure the individual-sparsity at a specific time point.

Obviously, either the FP2;1-norm, ‘2;1-norm or ‘1-norm alone is

insufficient due to the regional variations of both healthy and patho-

logical brains. Therefore, we use all of them to regularize the

longitudinal imaging QTs to account for both time-consistent and

time-dependent feature selection. This make T-MTSCCA a very

practical model, and thus suitable for longitudinal brain imaging

genetics.

2.3 The optimization algorithm and its convergence
Writing the regularizers for genotypes and imaging phenotypes ex-

plicitly, the T-MTSCCA becomes:

min
ut ;vt

XT

t¼1

� u>t X>Ytvt þ ku1kUkG2;1
þ ku2kUk2;1

þku3

Xp

i¼1

kuik1 þ kv1kVkFP2;1
þ kv2kVk2;1 þ kv3

Xq

j¼1

kvjk1

s:t: kXutk2
2 ¼ 1; kYtvtk2

2 ¼ 1; 8t:

(12)

Since 8t; kXutk2
2 ¼ 1 and kYtvtk2

2 ¼ 1, Equation (12) is equiva-

lent to:

min
ut ;vt

XT

t¼1

kXut � Ytvtk2
2 þ ku1kUkG2;1

þ ku2kUk2;1

þku3

Xp

i¼1

kuik1 þ kv1kVkFP2;1
þ kv2kVk2;1 þ kv3

Xq

j¼1

kvjk1

s:t: kXutk2
2 ¼ 1; kYtvtk2

2 ¼ 1; 8t:

(13)

It is hard to solve Equation (13) above due to its non-convexity

in the quadratic term and non-smooth in regularization terms. But

the objective is biconvex in U and V even if it is still non-smooth. In

particular, this objective is convex in U with all vt’s fixed; and it is

convex in vt with U and the rest of vt0 ðt0 6¼ tÞ fixed. Therefore, the

solution can be easily attained via first using smoothing approxima-

tions of non-smooth terms, and then applying the efficient smooth

optimization such as the alternative search method (Gorski et al.,

2007).

2.3.1 Updating U

When V is fixed, the Lagrangian of Equation (13) regarding U

writes:

min
U

XT

t¼1

kXut � Ytvtk2
2 þ ku1kUkG2;1

þ ku2kUk2;1 þ ku3

Xp

i¼1

kuik1

þcu

XT

t¼1

kXutk2
2;

(14)

with those constants vanish. Now this equation transforms to a

multi-task regression problem.

We take its derivative with respect to each ut and set it to

zero, i.e.

�X>Ytvt þ ku1
~D1ut þ ku2

�D1ut þ ku3D1tut þ ð1þ cuÞX>Xut ¼ 0:

(15)

~D1 is a block diagonal matrix with the k-th diagonal block as
1

2kUkkF
Ik (Ik is an identity matrix with size being equal to the k-th

submatrix Uk, and 1 � k � K), �D1 is also a diagonal matrix whose

i-th diagonal element is 1
2kuik2

1 � i � pÞð and D1t is a diagonal ma-

trix with the i-th diagonal element being 1
2jui

t j
.

This equation indicates that every ut can be solved in closed

form. Simple mathematical derivation yields the updating rule for

each ut, i.e.
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ut ¼ ðku1
~D1 þ ku2

�D1 þ ku3D1t þ ð1þ cuÞX>XÞ�1X>Ytvt: (16)

Since ~D1; �D1 and D1t (t ¼ 1; 2; . . . ;T) are latent variables which

depend on U, we can solve Equation (16) using the efficient iterative

algorithm (Wang et al., 2011, 2012b).

2.3.2 Updating V

Now with U being fixed, the objective with respect to vt writes:

min
vt

kXut � Ytvtk2
2 þ kv1kVkFP2;1

þ kv2kVk2;1 þ kv3kvtk1 þ cvkYtvtk2
2:

(17)

Taking the derivative with respect to vt and setting it to zero, we

have,

�Y>t Xut þ kv1
~D2tvt þ kv2

�D2vt þ kv3D2tvt þ ð1þ cvÞY>t Ytvt ¼ 0:

(18)

Then, we arrive at:

vt ¼ ðkv1
~D2t þ kv2

�D2 þ kv3D2t þ ð1þ cvÞY>t YtÞ�1Y>t Xut; (19)

where �D2; ~D2t and D2t (t ¼ 1; 2; . . . ;T) are all diagonal matrices. In

particular, the j-th diagonal element of ~D2t is 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvj

t�1
Þ2þðvj

tÞ
2

p þ

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvj

tÞ
2þðvj

tþ1
Þ2

p (1 � j � q; 1 � t � T) (The j-th diagonal elements

of ~D2t is 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvj

tÞ
2þðvj

tþ1
Þ2

p when t ¼ 1, and 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvj

t�1
Þ2þðvj

tÞ
2

p when t ¼ T.).

The j-th diagonal element of �D2 is 1
2kvjk2

, and that of D2t is 1
2jvj

t j
. This

closed form shows that each vt can be obtained via the alternative it-

eration algorithm too.

Now that U and V are solved, respectively, we summarize the

optimization procedure in Algorithm 1, which guarantees to con-

verge to a local optimum. In the iteration, Steps 1, 3 and 5 are com-

putationally trivial. Steps 4 and 6 solve a system of linear equations,

both of which are well studied in literature and can be solved

efficiently.

2.3.3 Convergence analysis

The following theorem holds for Algorithm 1.

THEOREM 1. The objective decreases in each iteration of Algorithm 1.

PROOF. Denote the current estimate of U and V, respectively, as U and V

(with a slight abuse of notation, for notational convenience), and their

refined estimates using the updating rules in Equations (16) and (19) as

Û and V̂. Denote the objective function value of problem (13) as

f ðU;VÞ.
According to the update rule in Equation (16), we have,

XT

t¼1

kXût � Ytvtk2
2 þ ku1TrðÛ> ~D1ÛÞ þ ku2TrðÛ> �D1ÛÞ þ ku3

XT

t¼1

û>t D1tût

þcuTrðÛ>X>XÛÞ �
XT

t¼1

kXut � Ytvtk2
2 þ ku1TrðU> ~D1UÞ

þku2TrðU> �D1UÞ þ ku3

XT

t¼1

u>t D1tut þ cuTrðU>X>XUÞ

)
XT

t¼1

kXût � Ytvtk2
2 þ ku1

XK

k¼1

kÛkk2
F

2kUkkF

þ ku2

Xp

i¼1

kû ik2
2

2kuik2

þku3

Xp

i¼1

XT

t¼1

ju^ i
tj2

2jui
tj
þ cukXÛk2

F �
XT

t¼1

kXut � Ytvtk2
2 þ ku1

XK

k¼1

kUkk2
F

2kUkkF

þku2

Xp

i¼1

kuik2
2

2kuik2

þ ku3

Xp

i¼1

XT

t¼1

jui
tj

2

2jui
tj
þ cukXUk2

F:

Applying kÛkkF �
kÛkk2

F

2kUkkF
� kUkkF �

kUkk2
F

2kUkkF
, kû ik2 �

kû ik2
2

2kuik2
� kuik2�

kuik2
2

2kuik2
and ju^ i

tj �
ju
^

i
t j

2

2jui
t j
� jui

t j �
jui

t j
2

2jui
t j

[Lemma 1 in (Wang et al., 2012b)] to

Equation (2.3.3) with respect to each group and individual features, re-

spectively, we arrive at:

XT

t¼1

kXût � Ytvtk2
2 þ ku1

XK

k¼1

kÛkkF þ ku2

Xp

i¼1

kûik2 þ ku3

Xp

i¼1

XT

t¼1

ju^ i
tj

þcukXÛk2
F �

XT

t¼1

kXut � Ytvtk2
2 þ ku1

XK

k¼1

kUkkF

þku2

Xp

i¼1

kuik2 þ ku3

Xp

i¼1

XT

t¼1

jui
tj þ cukXUk2

F:

Writing in matrix form, we obtain:

XT

t¼1

kXût � Ytvtk2
2 þ ku1kÛkG2;1

þ ku2kÛk2;1 þ ku3

Xp

i¼1

kû ik1

þcu

XT

t¼1

kXûtk2
2 �

XT

t¼1

kXut � Ytvtk2
2 þ ku1kUkG2;1

þ ku2kUk2;1

þku3

Xp

i¼1

kuik1 þ cu

XT

t¼1

kXutk2
2:

This reveals that, in each iteration of Equation (16), the objective

decreases, namely, f ðÛ;VÞ � f ðU;VÞ.
Similarly, we can prove the convergence of updating vt ’s one by one.

Combined, in equations with respect to each vt yields:

XT

t¼1

kXût � Yt v̂tk2
2 þ kv1kV̂kFP2;1

þ kv2kV̂k2;1 þ kv3

Xq

j¼1

kv̂ jk1

þcv

XT

t¼1

kYt v̂tk2
2 �

XT

t¼1

kXût �Ytvtk2
2 þ kv1kVkFP2;1

þ kv2kVk2;1

þkv3

Xq

j¼1

kvjk1 þ cv

XT

t¼1

kYtvtk2
2;

from which it follows that f ðÛ; V̂Þ � f ðÛ;VÞ.
Combining two conclusions above yields f ðÛ; V̂Þ � f ðÛ;VÞ �

f ðU;VÞ, which completes the proof. h

Algorithm 1 The T-MTSCCA algorithm

Require:

The genotype data matrix X 2 R
n�p, longitudinal imaging

phenotype data matrices of T time points Yt 2 R
n�q;

t 2 ½1;T�, the pre-tuned ku1; ku2; ku3, cu, kv1; kv2; kv3 and

cv.

Ensure:

Canonical weights U and V.

1: Initialize U 2 R
p�T ; V 2 R

q�T ;

2: while not convergence do

3: Update ~D1; �D1 and D1t (t ¼ 1; 2; . . . ;T);

4: Solve U according to Equation (16), and scale ut as that

kXutk2
2 ¼ 1;

5: Update �D2; ~D2t and D2t (t ¼ 1; 2; . . . ;T);

6: Solve vt alternatively according to Equation (19), and

scale vt so that kYtvtk2
2 ¼ 1;

7: end while
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Since both objectives of problems Equations (14) and (17) are lower

bounded by zero and the T-MTSCCA problem is biconvex, the overall

iteration algorithm will converge to a local optimum. In our experi-

ments, we terminate Algorithm 1 when maxi;tju^ i
t � uj

tj � � and

maxj;tjv^ i
t � vj

tj � � satisfy, where � is the pre-set error bound. We use � ¼
10�5 in this article empirically based on experiments.

3 Experimental results and discussions

3.1 Experimental setup
In the experiments, we compare T-MTSCCA with two close coun-

terparts including the mSCCA (multi-view SCCA) and TGSCCA

(temporally constrained group SCCA) using both synthetic data and

real neuroimaging genetic data. The mSCCA computes pairwise cor-

relation coefficients between the SNPs data and the imaging QTs

data including that between every two modalities of imaging QTs at

different time points (Witten and Tibshirani, 2009). TGSCCA is

similar to mSCCA by dropping the pairwise correlation terms be-

tween those imaging QTs data at different time points (Hao et al.,

2017).

We use the nested 10-fold cross-validation method to find the

optimal parameters. These parameters generating the highest cross-

task mean testing correlation coefficient will be chosen as the opti-

mal parameters, i.e. CVðk; b; cÞ ¼ 1
10

P10
j¼1

PT
t¼1 Corrð �Xjuj;t; �Y j;tvj;tÞ,

where �Xj and �Y j;t are the j-th fold which are the complementary sets

used for testing, and uj;t and vj;t are the canonical weights estimated

from the training set. To further reduce the time effort, we fix cu ¼
1 and cv ¼ 1 since they result in two scaling steps in Algorithm 1,

and thus only affect the magnitude of U and V (Chen and Liu,

2012). This indicates that the relative relationship among each vari-

ables remain the same. Finally, we tune these parameters from can-

didate range 10i (i ¼ �5;�4; . . . ;0; . . . ; 4;5), within which the

results are from less-sparsity to over-sparsity. Once determined, we

use the tuned parameters to obtain the final training and testing

results. In each experiment, all methods are stopped if

maxiju
ðtþ1Þ�u

ðtÞ
i

i j � � and maxjjv
ðtþ1Þ�v

ðtÞ
j

j j � �, with � being the toler-

able error. � is set to 10�5 empirically in this article.

3.2 Results on simulation data
In this simulation study, to evaluate the T-MTSCCA method, we

used four synthetic datasets with distinct properties which could

thoroughly access the performance. First, we generated one sparse

vector u 2 Rp�1 and four successive sparse vectors vt 2 Rq�1. In

particular, several non-zero variables are shared by all vt’s while

some ones are time-dependent. Then, using a latent vector z 2 Rn�1,

we create X by xi � Nðziu; e � Ip�pÞ, and each Yt by

yt;i � Nðzivt; e � Iq�qÞ. Being embedded with different strengths of

noise, the first three datasets share the same ground truth, i.e.

n¼80, p¼100 and q¼120, on which could show one method’s

performance under different noises. The fourth dataset simulated a

large and complex imaging genetic problem (n¼500, p¼2000 and

q¼600). The details of the ground truths are presented in Figure 2

(top row).

We presented the testing canonical correlation coefficients

(CCCs) in Figure 1 (training CCCs are omitted due to the space limi-

tation). The CCCs, i.e. CCC_T1, CCC_T2, CCC_T3, CCC_T4, of

each method were calculated between X and Yt at every time point.

In this figure, all methods obtained low testing CCCs, indicating

they were over-fitted when the true CCC was quite low. As

expected, their performances improve as the CCC increased. T-

MTSCCA and TGSCCA obtained better CCCs than mSCCA on

data 2 and data 3 attributing to the temporal constraints. On data 4

with thousands of variables, T-MTSCCA and TGSCCA also hold

better CCCs than mSCCA, which demonstrates they were suitable

for longitudinal imaging genetics.

In addition, the ability of feature selection, i.e. the selected SNPs

and imaging QTs at intermediate time points, is also important. To

make the results stable, we averaged the canonical weights across

10-folds and shown them in Figure 2. The actual U and V were

shown on the top row followed by those estimated by mSCCA,

TGSCCA and T-MTSCCA. Within each method’s panel, the canon-

ical weights associated with all time points were stacked vertically.

It is clear that T-MTSCCA identified a clear and clean pattern in

terms of both U and V, whose non-zero variables were consistent to

the ground truth. TGSCCA also obtained acceptable results due to

its temporal constraint for the intermediate imaging QTs. It is worth

mentioning that T-MTSCCA also identified time-dependent non-

zero variables for U and V thanks to its novel time-dependent penal-

ties. This is very interesting since, combined with the time-consistent

penalty, our T-MTSCCA can not only identify those active variables

at a specific time point, but also identify those active variables

shared by all time points. To summarize, the results on this four dis-

tinct synthetic datasets demonstrate that T-MTSCCA could be a

competitive alternative method for longitudinal bi-multivariate asso-

ciation’s identification.

3.3 Results on real neuroimaging genetic data
The real genotyping and brain imaging data used in this article were

obtained from the ADNI database (adni.loni.usc.edu). The primary

goal of ADNI has been to test whether serial MRI, positron emission

tomography (PET), other biological markers and clinical and
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Fig. 1. Comparison of the mean canonical correlation coefficients (CCCs)

obtained from 10-fold cross-validation trials. The CCCs at all time points are

illustrated, where CCC_T1 is calculated between the SNP data and the imag-

ing data at T1, and so forth.
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Fig. 2. Heat maps of canonical weights on synthetic data. Rows 1–4: Ground

truth, mSCCA, TGSCCA and T-MTSCCA, respectively. In each row, U is on the

left panel and V is on the right. Within each panel, there are four canonical

weights associating with four time points. For our method, there are four ca-

nonical weights corresponding to four time points, i.e. T1, T2, T3, T4, for both

U and V. For mSCCA and TGSCCA, the weight matrix U is stacked by the

same canonical weight vector u.
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neuropsychological assessment can be combined to measure the pro-

gression of MCI and early AD. For up-to-date information, see

www.adni-info.org.

The longitudinal neuroimaging data were from 408 non-

Hispanic Caucasian participants, including 125 healthy controls

(HC), 192 MCI and 91 AD subjects at the baseline screening.

Table 1 shown the demographic information. We used MRI T1-

weighted imaging including baseline (BL), Month 06 (M6), Month

12 (M12) and Month 24 (M24) in this work. These preprocessed

imaging data, i.e. the voxel-based morphometry (VBM), were

aligned to each participant’s same visit scan. Then the normalized

gray matter density maps were created from MRI data in the stand-

ard Montreal Neurological Institute (MNI) space as 2� 2� 2 mm3

voxels via the SPM software (Ashburner and Friston, 2000). Based

on the MarsBaR AAL atlas (Tzourio-Mazoyer et al., 2002), we fur-

ther extracted 116 ROI level measurements of mean gray matter

densities. Finally, we removed the cerebellum area and obtained 90

imaging measures, and finally used them as phenotypes of four time

points in the experiments. Before the experiment, the imaging meas-

ures were adjusted by removing the effects of the baseline age, gen-

der, education and handedness.

The genotyping data of the same 408 subjects were downloaded

from the ADNI website too. The SNPs were generated by the

Human 610-Quad or OmniExpress Array (Illumina, Inc., San

Diego, CA, USA), and preprocessed according to the standard qual-

ity control (QC) and imputation steps. We included 1085 SNPs

from the neighbor of the APOE gene based on the ANNOVAR an-

notation (see the Supplementary file). We aim to study associations

between SNPs and longitudinal brain imaging measures, and iden-

tify those time-consistent and time-dependent markers in this ADNI

dataset.

3.3.1 Improved bi-multivariate association

We applied three methods to this real neuroimaging genetic data.

mSCCA and TGSCCA yielded one canonical weight u and four ca-

nonical weights vt associating with four longitudinal time points. By

calculating association between SNPs and each imaging QTs of dif-

ferent time points, we obtained four CCCs for them. Our method

naturally generated four pairs of canonical weights, and thus there

were four CCCs with respect to four time points. We denoted these

four CCCs as CCC_BL, CCC_M6, CCC_M12 and CCC_M24 for

the sake of description, and presented them in Figure 3 separately.

In this figure, the testing CCCs was shown with those training ones

omitted due to the space limitation. As expected, owing to the util-

ization of temporal regularization, both TGSCCA and T-MTSCCA

obtained better CCCs than mSCCA. This shows their effectiveness

in longitudinal bi-multivariate association studies.

3.3.2 Identification of time-consistent and time-dependent SNPs

Besides the CCC which showing the strength of the association, the

identification of longitudinally active SNPs and imaging QTs is of

great importance. These time-dependent patterns help uncover the

basis of the diverse progression stages of diseases. We illustrated the

weight matrix U, whose absolute values show the importance of

SNPs, of each method in Figure 4. In this figure, each subfigure

denotes a method, within which each row corresponds to one ca-

nonical weight at one time point. mSCCA and TGSCCA only

reported one canonical weight vector with respect to SNPs, and

thus, we stacked u for four times. T-MTSCCA yielded four ut’s,

with each being associated to one time point. Finally, the canonical

weights across 10-folds were averaged to make a stable selection.

T-MTSCCA yielded a clear time-consistent and time-dependent

pattern with respect to selected features (SNPs) across multiple time

points owing to the jointly learning and the novel constraint.

TGSCCA and mSCCA could only identify time-consistent imaging

QTs. The reason is that both methods output only one canonical

weight vector based on their modeling strategy, and thus cannot

identify those ones being involved at a specific time point. This

reveals that our method performs cleverly and suitably in longitu-

dinal feature selection studies. For the selected features, we observed

that the SNPs identified by T-MTSCCA have been reported to show

increasing risk for AD or MCI progression in previous studies.

Specifically, there are evidences showing that rs76692773

(TOMM40) and rs112262807 (PVRL2) were AD-risk loci.

rs141622900 (APOC1) is a determinant of the cholesterol efflux

Capacity (CEC) (Low-Kam et al., 2018), whose reduction is a sign

of MCI or AD (Yassine et al., 2016). rs76075198 (CEACAM19) is a

loci associated to Dyslipidemia which shares some pathology with

AD (Carlsson, 2010). It warrants further investigation to confirm

the effects of the remaining loci since they were within in AD-

associated genes such as PVRL2 (rs7343130), and RELB

Table 1. Participant characteristics

HC MCI AD

Num (n) 125 192 91

Gender (M/F) 73/52 122/70 65/26

Handedness (R/L) 112/13 178/14 86/5

Age (mean 6 SD) 74.44 6 6.58 75.26 6 6.85 74.12 6 7.07

Education (mean 6 SD) 15.62 6 2.96 16.27 6 2.83 16.14 6 2.64

Time point
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Fig. 3. Comparison of the mean canonical correlation coefficients (CCCs)

obtained from 10-fold testing trials on ADNI.
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Fig. 4. Comparison of canonical weights in terms of SNPs averaged from 10-

fold cross-validation trials. Each row corresponds to a SCCA method: (1)

mSCCA; (2) TGSCCA and (3) T-MTSCCA. For our method, there are four rows

corresponding to four time points, i.e. BL, M6, M12 and M24. For mSCCA and

TGSCCA, the four rows are stacked by the same u.
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(rs141652051) (Nho et al., 2017), BCL3 (rs7249244 and

rs2927462) (Xiao et al., 2017), CEACAM19 (rs141846480) (Jansen

et al., 2019), CLPTM1 (rs12983572) (Hao et al., 2018). TGSCCA

and mSCCA also identified AD-associated loci such as rs57537848

(Nazarian et al., 2019) and rs76692773, as well as loci falling with-

in AD-risk genes such as rs1166329 (PVRL2) and rs7249244

(BCL3) which have not been reported to be associated with AD or

MCI. Given these meaningful results, further investigation, such as a

post-refined analysis, is warranted to confirm the role of these SNPs

during the AD progression. It is interesting that all three method did

not identify rs429358 which is a well-known AD risk locus. This

might stem from the reduced effect of rs429358 in the AD progres-

sion, and, of course, it warrants further investigation to conform

this. In summary, the results regarding SNPs selection show that the

proposed method can not only identify SNPs being effective across

multiple time points, but also identify those being only effective at a

specific time point. This reveals that T-MTSCCA could be suitable

to identify meaningful genetic markers in a longitudinal scenario.

3.3.3 Identification of time-consistent and time-dependent QTs

We want to know the dynamic patterns of imaging QTs longitudin-

ally as well, which shows the interior behavior of diseases progres-

sion. We averaged each vt across 10-folds to assure a stable

selection. These averaged results of every method on each imaging

modality (BL, M6, M12 and M24) were shown in Figure 5. Since

TGSCCA could not yield sparse results due to the lack of individual

sparse-inducing term, we show the top 10 imaging QTs with the

highest absolute weight values. As expected, mSCCA identified ir-

regular non-zero imaging QTs which is time-dependent for each in-

dividual time point due to the lack of temporal constraint. TGSCCA

and T-MTSCCA yielded consistent imaging markers across all time

points, indicating their ability in finding time-consistent markers. T-

MTSCCA also identified imaging QTs being only effective at one

time point, e.g. baseline screening in this study. We then investigated

this by conducting a two-view SCCA between SNP data and imaging

data at each time point separately (results were not shown due to

the space limitation). These four independent tasks showed that the

association pattern at BL is not closely correlated to those of the

three successive time points, i.e. M6, M12 and M24. Therefore,

there is a significant difference with respect to the non-zero imaging

QTs between BL and M6, M12 and M24. This, on the contrary,

demonstrates the value of T-MTSCCA for its time-dependent fea-

ture selection.

T-MTSCCA identified seven imaging markers across all time

points, indicating its ability in discovering time-consistent features.

A literature search shows that all these brain areas are relevant to

MCI or AD. For examples, the right angular gyrus, in which the glu-

cose metabolism shows significant reduction, is associated to aging-

associated cognitive decline (AACD) (Hunt et al., 2007). The right

middle frontal gyrus, the orbitofrontal cortex, the left insula, the left

lingual gyru, and the left occipital were reported as AD-relevant

brain regions in previous studies (Holroyd et al., 2000; Van Hoesen

et al., 2000; Yao et al., 2010). T-MTSCCA also reported several

AD-associated imaging QTs, such as the right fusiform gyrus (Wang

et al., 2015) and the left precuneus, at baseline. It is worth mention-

ing that the left precuneus has been demonstrated to be associated

with early onset AD (Karas et al., 2007). This is promising since T-

MTSCCA could successfully identify the neurodegenerative bio-

marker at its early stage. In addition, T-MTSCCA also captured the

aging-associated areas, such as the left calcarine cortex which shows

predominantly atrophy with age (Bakkour et al., 2013). This is

interesting that, due to the unsupervised modeling strategy, our

method could capture the temporal characters of the brain change

happening to both HCs and ADs, thereby it can also be applied to

brain aging studies. TGSCCA and mSCCA also identified imaging

markers that were associated with MCI or AD, e.g. the left and right

olfactory and the left and right parahippocampal gyri. To summar-

ize, T-MTSCCA identified both time-consistent and time-dependent

imaging QTs, which could help uncover the different changing pat-

terns during different periods in MCI and AD progression, as well as

the change caused by aging. This finally reveals that, using time-

consistent and time-dependent constraints simultaneously, T-

MTSCCA could be very promising in longitudinal brain imaging

genetics.

4 Conclusion

Studying the associations between multiple genetic markers and

brain imaging measurements is an important task in brain science,

with the aim to uncover the genetic basis of the brain structure,

function and disorder. Longitudinal study is widely used in biomed-

ical studies where the brain imaging measures are collected repeat-

edly over long periods of time. These longitudinal data carry rich

information with respect to the disorder progression and brain

aging. Most existing imaging genetics methods only use the baseline

neuroimaging data, and thus ignore useful information embedded in

the longitudinal imaging data across multiple time points. In this art-

icle, we present a novel temporal multi-task SCCA (T-MTSCCA)

method which can identify time-consistent and time-dependent

phenotypic and genotypic markers simultaneously. Being distinct

from existing temporal SCCA, T-MTSCCA treats those temporally

correlated SCCA jointly other than enforcing them to be the same.

This strategy seeks common ground while reserving differences and

can identify both time-consistent and time-dependent markers, and

thus has better modeling ability. An efficient algorithm is proposed

to optimize the problem, which is guaranteed to converge to a local

optimum.

We compared T-MTSCCA with two state-of-the-art counter-

parts, i.e. the mSCCA (multi-view SCCA) (Witten and Tibshirani,

2009) and TGSCCA (temporally constrained group SCCA) (Hao

et al., 2017) using both synthetic data and neuroimaging genetic

data from the ADNI database. On the synthetic data, T-MTSCCA

obtained better CCCs than the benchmarks and identified clearer ca-

nonical weight patterns which were consistent to the ground truths.

On the real neuroimaging genetic data, our method obtained better

or equal CCCs to mSCCA and TGSCCA at multiple time points. It

succeeds in identifying a small set of SNPs and brain imaging QTs
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Fig. 5. Comparison of canonical weights in terms of each imaging QTs aver-

aged from 10-fold cross-validation trials. Each row corresponds to a SCCA

method: (1) mSCCA; (2) TGSCCA and (3) T-MTSCCA. Within each panel, there

are four rows corresponding to four time points of imaging QTs, i.e. BL, M6,

M12 and M24.
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from all markers involved. It is worth noting that our method can

not only find out time-consist features for SNPs and imaging QTs

across multiple time points, but also identified time-dependent

markers at baseline. These identified imaging QTs and SNPs were

highly correlated to AD or MCI, and thus demonstrated that the

proposed temporal multi-task SCCA could be a powerful alternative

method in longitudinal brain imaging genetics. T-MTSCCA also

identified aging-associated areas in elderly subjects. In the future, we

aim to extend T-MTSCCA to the genome-wide brain-wide study,

since the GWAS-oriented longitudinal brain imaging genetics is a

major challenge.
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