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A polychromatic X-ray beam causes the grey of the reconstructed image to depend on its position within a solid and the material
being imaged. This factor makes quantitative measurements via computed tomography (CT) imaging very difficult. To obtain
a narrow-energy-width reconstructed image, we propose a model to decompose multivoltage X-ray images into many narrow-
energy-width X-ray images by utilizing the low frequency characteristics of X-ray scattering. It needs no change of hardware in the
typical CT system. Solving the decompositionmodel, narrow-energy-width projections are obtained and it is used to reconstruct the
image. A cylinder composed of aluminum and silicon is used in a verification experiment. Some of the reconstructed images could
be regarded as real narrow-energy-width reconstructed images, which demonstrates the effectiveness of the proposed method.

1. Introduction

With the development and application of advanced technol-
ogy, computed tomography (CT) has changed from conven-
tional qualitative imaging for detection to quantitative func-
tional imaging for distinguishing and identifying different
components. For instance, quantifying the composition of
coal and the microstructure of mineral grain contributes to
an understanding of the transformation of minerals during
coal processing, which promotes the development of clean
coal technologies [1]. Quantifying the three-dimensional
microstructure of excipients contributes to the development
and testing of new drugs [2]. Quantification of soil aggregate
microstructure on abandoned cropland during vegetative
succession allows determination of the retention and trans-
port of water, gases, and nutrients in soils, thus allowing
preservation of soil productivity and maintaining soil poros-
ity and resistance to erosion [3]. In these applications, good
congruity is needed between the linear attenuation coefficient
andX-ray energy in the reconstructed images. In otherwords,
the linear attenuation coefficient of the same component
should be uniform, and the corresponding energy of different
components’ linear attenuation coefficients should be uni-
form in a single reconstructed image. A higher grey value

corresponds to a larger linear attenuation coefficient in one
reconstructed image. It is polychromatic X-ray in the typical
CT system and leads to cupping artifacts, which is that the
grey of the reconstructed image depends on both thematerial
and its position [4, 5]. So if two materials have approximately
linear attenuation coefficients, their grey may overlap, which
makes them difficult to distinguish. Overlapping attenuation
coefficients makes quantitative imaging very challenging.
The use of monochromatic radiation can eliminate cupping
artifacts and accomplish a one-to-one relationship between
grey values and materials [6]. But it is impractical to apply
monochromatic radiation in the typical CT system [7, 8].
One feasible method is to synthesize monochromatic images
using dual-energy imaging. One example is the gemstone
spectral imaging (GSI) systems. It is a type of dual-energy
CT and its X-ray is polychromatic [9]. In the synthesized
monochromatic images, the CT numbers becomemore accu-
rate, but they are still not truly monochromatic, especially at
low energy [10]. Another feasiblemethod is to obtain narrow-
energy-width images, which can approximate monochro-
matic images. It can be accomplished through multienergy
imaging, which may require an X-ray photon counting
detector [11, 12]. Multienergy imaging can be seen an exten-
sion of dual-energy CT [7, 13]. The photon counting detector
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can count discrete photon interactions [14] and has energy
selectivity. So it can improve contrast in CT and apply to
the material identification [15]. The imaging system based
on photon counting detector shows effectiveness in distin-
guishing different materials [16]. Photon counting detectors
are used in nuclear medicine and spectral mammography,
but they are not commercially available for CT systems [14].
Challenges remain for them since the exposure rates are
insufficient when used to CT imaging [14].

The photon counting detector can obtain many narrow-
energy-width images by selecting energy bands. A multi-
energy CT imaging method was presented based on energy
spectrum filtering separation [17], which can, in theory,
distinguish different components. However, the application
of the multienergy CT imaging method is limited in practice
because the energy spectrum can only be narrowed to main-
tain X-ray penetrability, and the difference between different
spectra is insufficient. Another method to obtain narrow-
energy-width images is to decompose the multivoltage X-ray
images acquired in a typical CT system [18].This can improve
the contrast of different materials with approximately linear
attenuation coefficients in reconstructed images [18]. How-
ever, these reconstructed images are not real narrow-energy-
width reconstructed images, as their contrast is much larger
than the theoretical value [18].

Building on previous research [18], we continued study-
ing the decomposition approach ofmultivoltageX-ray images
to obtain a narrow-energy-width projectionwith a typical CT
system without changes in hardware. Herein, we present a
new decomposition model based on X-ray scattering charac-
teristics. Some reconstructed images obtained with the new
decompositionmodel can be regarded as real narrow-energy-
width reconstructed images. The remainder of this paper is
organized as follows. In Section 2, the decomposition model
of multivoltage X-ray images presented in [18] is introduced.
In Section 3, the new decomposition model and its solution
algorithm are presented. Then, in Section 4, the new method
is applied to obtain the narrow-energy-width reconstructed
image of a cylinder composed of aluminum and silicon. In
Section 5, the discussion of innovations and shortcomings
of the method are presented, along with upcoming work.
Finally, our conclusions are presented.

2. Previous Decomposition Model of
Multivoltage X-Ray Images

The X-ray emitted from an X-ray tube is polychromatic
and can be split into many narrow-energy-width bands.
Therefore, a polychromatic X-ray image can be seen as the
sum of many narrow-energy-width X-ray images. The X-ray
imaging can be described as follows:

𝐼 = 𝐼0 𝑅∑
𝑟=1

𝑆 (𝐸𝑟) exp(− 𝐾∑
𝑘=1

𝑢𝑟𝑘𝑑𝑘) , (1)

where 𝐼0 is initial X-ray intensity, 𝐼 is final X-ray intensities,𝑟 means different narrow energy bands, 𝑘 denotes different
materials, 𝐸𝑟 is the energy of the 𝑟th narrow energy band,

𝑆(𝐸𝑟) means the weighted coefficient of the 𝑟th narrow-
energy-width X-ray image, 𝑢𝑟𝑘 is a linear attenuation coef-
ficient depending on the 𝑘th material being traversed by the
X-ray and the energy level of the 𝑟th narrow-energy-width
band, and the distance the X-ray traverses through the 𝑘th
material is denoted as 𝑑𝑘 [18]. 𝑆(𝐸𝑟) is related to the incident
X-ray spectrum and the detector efficiency:

1 = 𝑅∑
𝑟=1

𝑆 (𝐸𝑟) . (2)

The weighted coefficients 𝑆(𝐸𝑟) are unknown because the
energy spectrum is unknown. The narrow-energy-width X-
ray images can be get from the decomposition of multiple X-
ray images with different voltages [18]. In other words, the
narrow-energy-width projection can be obtained and can be
used to reconstruct a narrow-energy-width CT image.𝐼/𝐼0 of the 𝑚th pixel in the X-ray image of 𝑛th voltage is
denoted as 𝑓𝑛𝑚, 𝑛 = 1, 2, . . . , 𝑁, 𝑚 = 1, 2, . . . ,𝑀, and the
multivoltage X-ray imaging model is

𝐹 = 𝑆 exp (−𝑈𝐷) + Δ𝐹, (3)

where 𝐹 = (𝑓𝑛𝑚)𝑁𝑀, 𝑆 = (𝑠𝑛𝑟)𝑁𝑅,𝑈 = (𝑢𝑟𝑘)𝑅𝐾,𝐷 = (𝑑𝑘𝑚)𝐾𝑀,Δ𝐹 = (Δ𝑓𝑛𝑚)𝑁𝑀, and Δ𝐹 is the error produced by measure-
ment and scattering [19–21]. The 𝑛th row of 𝑆 is the weighted
coefficients of the narrow-energy-width X-ray images to
constitute the X-ray image at the 𝑛th voltage. The value of𝑑𝑘𝑚 is the 𝑚th pixel’s corresponding distance that the X-ray
traversed through the 𝑘th material. When several materials
are uniformly mixed, they are considered one material [18].
To guarantee that the information related to narrow-energy-
width X-ray images is sufficient, 𝑁, 𝑀, 𝑅, and 𝐾 should
satisfy the following inequality [18]:

𝑁𝑀 > 𝑁𝑅 + 𝑅𝐾 + 𝐾𝑀. (4)

The solution is translated to a least squares optimization
model as

min

𝐹 − 𝑆 exp (−𝑈𝐷)𝐹


2

𝐹

s.t. 𝑆 ≥ 0,
𝑈 ≥ 0,
𝐷 ≥ 0.

(5)

This model can be solved with the Karush-Kuhn-Tucker
(KKT) condition [18]. In the verification experiment [18], the
materials with approximately linear attenuation coefficients
in the reconstructed images could be significantly distin-
guished. However, the contrast of the materials is larger than
it should be in a real narrow-energy-width reconstructed
image. In other words, the reconstructed images are not
real narrow-energy-width reconstructed images.This may be
because scattering is not considered in model (5).
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3. Decomposition Model Based on X-Ray
Scattering Character

During X-ray imaging, scattering is an important interfer-
ence factor, especially when a flat panel detector is used [22].
Significant research on scattering is available. From [22–25],
scattering is a low frequency signal related to the imaging
objects. The estimated scattering is obtained by multiplying a
coefficient to the low-pass filter of the original image, and the
scattering suppression method is the original image minus
the estimated scattering. This method was quite effective in
[23, 25]. In the X-ray imaging model in [26], scattering is
regarded as a constant over the entire projection and the same
for all projections and depends on the object in the scan.
Summarizing the aforementioned research results, scattering
is a low frequency signal.

A low frequency signal indicates slow change. In other
words, the difference of the neighboring sampling nodes is
small; therefore, variance is used to describe this charac-
teristic. Because scattering is related to the imaging object,
different projections may result in different scattering. For
this reason, the local variance of a signal sampling node
is used to estimate the change rate of the sampling node.
The whole scattering character is described with the sum of
all local variance. The initial intensity of the X-ray beam is
greater than 1, so the signal of dividing scattering by 𝐼0 is
also a low frequency signal. The decomposition model of
multivoltage X-ray images can be considered:

min 𝐺 = 𝑁∑
𝑛=1

𝑀−𝑇∑
𝑚=𝑇+1

(var ((𝐹 − 𝑆 exp (−𝑈𝐷))𝑛𝑚))
s.t. 𝑆 ≥ 0,

𝑈 ≥ 0,
𝐷 ≥ 0,

(6)

where𝑇 is a parameter related to local image size (and it needs
to set up first in order to solve the model) and 𝑛𝑚 is the local
image whose center is the 𝑚th pixel in the X-ray image of𝑛th voltage. For example, the local image size is 1 × (2𝑇 + 1),
and the current pixel is the center in the 2-dimensional CT
reconstruction. To reconstruct an image, the projections of
many different angles are needed; then formula (6) is changed
as

min 𝐺
= 𝑁∑
𝑛=1

𝐽∑
𝑗=1

𝑀𝑗−𝑇∑
𝑚=𝑇+1

(var ((𝐹 − 𝑆 exp (−𝑈𝐷))𝑛(𝑗𝑚)))
s.t. 𝑆 ≥ 0,

(7)

𝑈 ≥ 0, (8)

𝐷 ≥ 0, (9)

where 𝑗 denotes different angles; 𝑛(𝑗𝑚) means the local
image, whose center is the 𝑚th pixel in the 𝑗th angle X-ray
image of 𝑛th voltage; and𝑀𝑗 denotes the pixel amount in the𝑗th angle X-ray image.

Similar to [18], formula (7) can be solved by the KKT
condition. The iterative formulas are

𝑆 = 𝑆 ⊙ 𝑆up𝑆down (10)

𝑈 = 𝑈 ⊙ 𝑈up𝑈down
(11)

𝐷 = 𝐷 ⊙ 𝐷up𝐷down
(12)

𝑆up = 2 ((((𝑆𝑒−𝑈𝐷) ⊗ 11×(2𝑇+1)) ⊙ 𝑂𝐵(𝑁×(2𝑇+1)(∑𝐽𝑔=1𝑀𝑔))) (𝑒−𝑈𝐷 ⊗ 11×(2𝑇+1))𝑇)
2𝑇 + 1 + (𝐹𝑂𝑇) (𝑒−𝑈𝐷𝑂𝑇)𝑇

(2𝑇 + 1)2 (13)

𝑆down = 2 (((𝐹 ⊗ 11×(2𝑇+1)) ⊙ 𝑂𝐵(𝑁×(2𝑇+1)(∑𝐽𝑔=1𝑀𝑔))) (𝑒−𝑈𝐷 ⊗ 11×(2𝑇+1))𝑇)
2𝑇 + 1 + 2 ((𝑆𝑒−𝑈𝐷)𝑂𝑇) (𝑒−𝑈𝐷𝑂𝑇)𝑇

(2𝑇 + 1)2 (14)

𝑈up = 2 ((((𝑆𝑇𝑆𝑒−𝑈𝐷) ⊗ 11×(2𝑇+1)) ⊙ 𝑂𝐵(𝑅×(2𝑇+1)(∑𝐽𝑔=1𝑀𝑔))) ⊙ (𝑒−𝑈𝐷 ⊗ 11×(2𝑇+1))) (𝐷 ⊗ 11×(2𝑇+1))𝑇
2𝑇 + 1

+ 2
(2𝑇 + 1)2

𝑇∑
𝑡=−𝑇

(((𝑆𝑇𝐹𝑂𝑇) ⊙ ((𝑒−𝑈𝐷)
→𝑡

)) (𝐷→𝑡)𝑇)
(15)
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𝑈down = 2 ((((𝑆𝑇𝐹) ⊗ 11×(2𝑇+1)) ⊙ 𝑂𝐵(𝑅×(2𝑇+1)(∑𝐽𝑔=1𝑀𝑔))) ⊙ (𝑒−𝑈𝐷 ⊗ 11×(2𝑇+1))) (𝐷 ⊗ 11×(2𝑇+1))𝑇
2𝑇 + 1

+ 2
(2𝑇 + 1)2

𝑇∑
𝑡=−𝑇

(((𝑆𝑇𝑆𝑒−𝑈𝐷𝑂𝑇) ⊙ ((𝑒−𝑈𝐷)
→𝑡

)) (𝐷→𝑡)𝑇)
(16)

𝐷up = 22𝑇 + 1𝑈𝑇 (((𝑆𝑇 (𝑆 (𝑒−𝑈𝐷))) ⊙ 𝑂𝐷) ⊙ 𝑒−𝑈𝐷) + 2
(2𝑇 + 1)2𝑈𝑇 ((𝑆𝑇 (𝐹𝑂2𝑇)) ⊙ (𝑒−𝑈𝐷)) (17)

𝐷down = 22𝑇 + 1𝑈𝑇 (((𝑆𝑇𝐹) ⊙ 𝑂𝐷) ⊙ 𝑒−𝑈𝐷) + 2
(2𝑇 + 1)2𝑈𝑇 ((𝑆𝑇 (𝑆𝑒−𝑈𝐷𝑂2𝑇)) ⊙ (𝑒−𝑈𝐷)) , (18)

where “⊙” is the Hadamard product. 11×(2𝑇+1)means amatrix
with every element = 1 with 1 row and (2𝑇 + 1) columns.
“( )→𝑡” means the matrix moves left 𝑡 columns (right if the𝑡 is negative), and the empty columns at the boundary are
replaced with original columns. 𝑂𝑇 means a matrix with∑𝐽𝑗=1𝑀𝑗 rows and ∑𝐽𝑗=1𝑀𝑗 columns, and only the element
at the row from 𝑚 − 𝑇 + ∑𝑗−1𝑔=1𝑀𝑔 to 𝑚 + 𝑇 + ∑𝑗−1𝑔=1𝑀𝑔 in𝑚+∑𝑗−1𝑔=1𝑀𝑔 (𝑚 = 𝑇+1, 𝑇+2, . . . ,𝑀𝑗−𝑇) column is 1, while
the others are 0. 𝑂2𝑇 means a matrix with ∑𝐽𝑗=1𝑀𝑗 rows
and ∑𝐽𝑗=1𝑀𝑗 columns, and the 𝑚 + ∑𝑗−1𝑔=1𝑀𝑔 (𝑚 = 2𝑇 + 1,2𝑇 + 2, . . . ,𝑀𝑗 − 2𝑇) column is

(𝑂2𝑇):(𝑚+∑𝑗−1𝑔=1𝑀𝑔)

= (0 ⋅ ⋅ ⋅ 0 1 2 ⋅ ⋅ ⋅ 2𝑇 2𝑇 + 1 2𝑇 ⋅ ⋅ ⋅ 2 1 0 ⋅ ⋅ ⋅ 0)𝑇 ,
(19)

where the nonzero row is from𝑚−2𝑇+∑𝑗−1𝑔=1𝑀𝑔 to𝑚+2𝑇+
∑𝑗−1𝑔=1𝑀𝑔,𝑚+∑𝑗−1𝑔=1𝑀𝑔 (𝑚 = 1, 2, . . . , 2𝑇), and the column is

(𝑂2𝑇):(𝑚+∑𝑗−1𝑔=1𝑀𝑔)
= (1 2 ⋅ ⋅ ⋅ 𝑚 𝑚 𝑚 ⋅ ⋅ ⋅ 2 1 0 ⋅ ⋅ ⋅ 0)𝑇 , (20)

where the nonzero row is from 1 + ∑𝑗−1𝑔=1𝑀𝑔 to 𝑚 + 2𝑇 +
∑𝑗−1𝑔=1𝑀𝑔,𝑚+∑𝑗−1𝑔=1𝑀𝑔 (𝑚 = 𝑀𝑗−2𝑇+1,𝑀𝑗−2𝑇+2, . . . ,𝑀𝑗),
and the column is

(𝑂2𝑇):(𝑚+∑𝑗−1𝑔=1𝑀𝑔) = (0 ⋅ ⋅ ⋅ 0 1 2 ⋅ ⋅ ⋅ 𝑀𝑗 + 1 − 𝑚 𝑀𝑗 + 1 − 𝑚 𝑀𝑗 + 1 − 𝑚 ⋅ ⋅ ⋅ 2 1)𝑇 , (21)

where the nonzero row is at 𝑚 − 2𝑇 + ∑𝑗−1𝑔=1𝑀𝑔 to 𝑀𝑗 +∑𝑗−1𝑔=1𝑀𝑔.𝑂𝐵(𝑥×(2𝑇+1)(∑𝐽𝑗=1𝑀𝑗))means amatrix with 𝑥 rows and
(2𝑇 + 1)(∑𝐽𝑗=1𝑀𝑗) columns and all elements equal to 1 when
the column is from 1 + (2𝑇+ 1)(𝑚− 1) + (2𝑇+ 1)∑𝑗−1𝑔=1𝑀𝑔 to(2𝑇+1)𝑚+(2𝑇+1)∑𝑗−1𝑔=1𝑀𝑔 (𝑗 = 1, 2, . . . , 𝐽, 𝑚 = 2𝑇+1, 2𝑇+
2, . . . ,𝑀𝑗−2𝑇), from 1+(2𝑇+1)(𝑚−1)+(2𝑇+1)∑𝑗−1𝑔=1𝑀𝑔 to𝑚+ (2𝑇+ 1)(𝑚− 1) + (2𝑇 + 1)∑𝑗−1𝑔=1𝑀𝑔 (𝑗 = 1, 2, . . . , 𝐽, 𝑚 =1, 2, . . . , 2𝑇), from 2𝑇 + 1 − (𝑀𝑗 − 𝑚) + (2𝑇 + 1)(𝑚 − 1) +
(2𝑇 + 1)∑𝑗−1𝑔=1𝑀𝑔 to (2𝑇 + 1)𝑚 + (2𝑇 + 1)∑𝑗−1𝑔=1𝑀𝑔 (𝑗 =1, 2, . . . , 𝐽, 𝑚 = 𝑀𝑗 − 2𝑇 + 1,𝑀𝑗 − 2𝑇 + 2, . . . ,𝑀𝑗). All
elements of other columns are 0. 𝑂𝐷 means a matrix with𝑅 rows and ∑𝐽𝑗=1𝑀𝑗 columns where every column of 𝑚 =2𝑇 + 1, 2𝑇 + 2, . . . ,𝑀𝑗 − 2𝑇 is as (𝑂𝐷):column = (2𝑇 +
1) (1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1)𝑇; every column of 𝑚 = 1, 2, . . . , 2𝑇 is
(𝑂𝐷):column = 𝑚 (1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1)𝑇; every column of 𝑚 =𝑀𝑗 − 2𝑇 + 1,𝑀𝑗 − 2𝑇 + 2, . . . ,𝑀𝑗 is (𝑂𝐷):column = (𝑀𝑗 +1 − 𝑚) (1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1)𝑇.

Similar to [18], the multiplicity solution of 𝑈 and 𝐷 still
exists due to putting a pair invertible matrix between 𝑈 and𝐷. As the eventual goal is the product UD, we considered

that they are the same solution. Every row of 𝑆 is normalized
according to (2). The following is the complete algorithm to
solve (7):

(1) initialize 𝑆, 𝑈,𝐷;
(2) set maximum number of iterations niter and a small

value 𝜀;
(3) for 𝑛𝑖𝑡𝑒𝑟 = 1, 2, . . . , 𝑛𝑖𝑡𝑒𝑟,

(a) update 𝑆 according to (10);
(b) normalize every row of 𝑆 with

𝑠𝑛𝑟 = 𝑠𝑛𝑟∑𝑅𝑟=1 𝑠𝑛𝑟 (22)

(c) update 𝑈 according to (11);
(d) update𝐷 according to (12);
(e) compute the value of the objective function of

(7), and note as y;
(f) if 𝑦 < 𝜀,

iteration terminates
end

end
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Table 1: Some origin values of NIST and difference of the linear attenuation coefficient of aluminum and silicon.

Energy/KeV 10.32 30.01 51.19 62.53 71.46 93.31 113.99 130.27
Aluminum/cm−1 62.32 3.013 0.9526 0.7119 0.6112 0.4876 0.4318 0.4038
Silicon/cm−1 69.46 3.293 0.9693 0.6984 0.5865 0.4519 0.3933 0.3648
Difference −11.46% −9.29% −1.75% 1.90% 4.04% 7.32% 8.92% 9.66%
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Figure 1: Linear attenuation coefficients of aluminum and silicon.

The solution may be a local minimum, so the algorith-
mic processes must be repeated many times with different
initializations.The optimal solution is selected from themany
results.

4. Results

A cylinder made of aluminum and silicon was used in the
verification experiment because the two materials’ linear
attenuation coefficients are approximate. The linear attenu-
ation coefficients of aluminum and silicon are near-equal at
approximately 60KeV, and, from 10 to 140KeV, their max
difference is less than 13%, as shown in Figure 1. Thus, for the
contrast of aluminum and silicon in the reconstructed image,
the absolute value should first decrease and then increase
as the voltage increases from 10KeV. The linear attenuation
coefficient was obtained from National Institute of Standards
and Technology (NIST), and the values were processed using
cubic spline interpolations. Some origin values of NIST and
difference of the linear attenuation coefficient of aluminum
and silicon are shown in Table 1. The silicon was on the
outside, and the aluminum was on the inside of the cylinder.
The cylinder’s diameter was 40mm, and the aluminum’s
diameter was 30mm.

In the experiment, an X-ray source (ISOVOLT TITAN
4503PH with 450/5 tube housing) was operated at a tube
current of 3mA and tube voltages of 120, 130, and 140 kV.The
applied flat panel detector (PerkinElmer XRD1621 AN14 ES)
was 2,048 × 2,048 cells of size 0.2mm, and only a portion

of a row of data was used for 2D image reconstruction. The
source-object distance (SOD) was 120 cm, and the object-
detector distance (ODD) was 20 cm. The angular sampling
interval was 2 degrees, and the data were obtained for 180
angles. The image reconstruction algorithm was an algebraic
reconstruction algorithm (ART), and the contribution coef-
ficient of every pixel was the distance the X-ray traversed
through the pixel. The reconstructed images had some noise
and were denoised with a median filter with a window size of
5 × 5.

The direct reconstructed images of 120, 130, and 140 kV
are shown in Figure 2.

Four representational reconstructed images with the
lowest noise were selected from the results obtained by the
method in [18] and are shown in Figure 3.

To decompose themultivoltage X-ray images, we used the
method of this paper.The X-ray images were decomposed by
the proposed method with 𝑅 = 14. The last two coefficients
of the row of 𝑆, corresponding to 120 kV, were set to zero.
The last coefficient of the row of 𝑆, corresponding to 130 kV,
was set to zero. These coefficients are the same as those in
[18] with the empirical parameter 𝑇 = 20. To decrease the
iterative time, a good initial value of 𝑆, 𝑈, and 𝐷 were
given. The estimated 𝐷 can be computed by combining
the threshold segmentation of the image (Figure 3(b)). The
estimated 𝑆 can be computed by normalizing the simulation
energy spectrum, which comes from the simulation software
Spectrum GUI 1.03. The estimated 𝑈 can be replaced with
the linear attenuation coefficient of center energy at every
energy interval.The initial values of 𝑆,𝑈, and𝐷were selected
as random increases or decreases less than 10% based on
their estimation. Since the iterative updating formula is a
multiplicative model, a small value of 0.001 was added to the
initial value of𝐷 to avoid that 0 always is 0.Themax iterative
time was 500. The stopping condition was the difference
of neighboring two objective function values less than 𝜀 =0.1%. The optimal objective function value was 1.1377, which
was obtained with many repetitions. Four representational
reconstructed images were selected from the results and are
shown in Figure 4.

Since the result images of the method in [18] are out-of-
order, which is influenced by its initial value, and some images
of them with high noise level have very poor image quality
and the sequence numbers of selected images are different in
Figures 3 and 4.

The cupping artifact, which is caused by beam hardening,
is an important characteristic of polychromatic reconstructed
images. The cupping artifact is apparent in the reconstructed
images in Figure 2 and causes the greys of aluminum and
silicon to overlap. Compared to the reconstructed images in
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Figure 2: Direct reconstructed images.
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Figure 3: Four representational reconstructed images obtained by the method of [18].

Figure 2, the cupping artifacts in the reconstructed images
of Figures 3 and 4 apparently weaken, which conforms to
narrow-energy-width reconstructed images.

We further verified whether the contrast of these recon-
structed images matched the narrow-energy-width charac-
teristics. From Figure 1, the greys of narrow-energy-width
reconstructed images can be classified into three types: grey
of silicon larger than that of aluminum at low X-ray energy,
grey of silicon close to that of aluminum at middle X-ray
energy, and grey of silicon smaller than that of aluminum at
high X-ray energy. Comparing the reconstructed images in

Figures 3 and 4, the images in Figure 4 are more consistent
with this change. To compute the contrast of aluminum and
silicon in the reconstructed images of Figures 3 and 4,we used
the following formula:

𝑐contrast = 𝑔Al − 𝑔Si𝑔Al
, (23)

where 𝑔𝐴𝑙 is the average grey of the aluminum region and𝑔𝑆𝑖 is the average grey of the silicon region. The results from
Figure 3 are presented inTable 2, and the results fromFigure 4
are presented in Table 3.
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Figure 4: Four representational reconstructed images obtained by the method of this paper.

Table 2: Contrast of aluminum and silicon in the reconstructed
images from Figure 3.

Image (a) second (b) third (c) fifth (d) eighth
Contrast 0.2789 0.2759 0.2718 0.2797

Table 3: Contrast of aluminum and silicon in the reconstructed
images from Figure 4.

Image (a) first (b) second (c) fourth (d) seventh
Contrast −1.1290 −0.0442 0.2870 0.0871

In Table 2, the contrast of all reconstructed images was
much higher than 13%, which implies that these recon-
structed images were not real narrow-energy-width recon-
structed images.This finding is consistentwith the conclusion
of [18].

In Table 3, the contrast of the first and fourth recon-
structed images was also much higher than 13%, which
implies that they are not real narrow-energy-width recon-
structed images. However, the second and seventh recon-
structed image contrast was within the realm of theory. In the
ART, the distance unit or length unit is pixel and the pixel size
is equal to it of X-ray images. By computing their linear atten-
uation coefficients, the method implies that the grey should
be multiplied by 5 since the detector cell size was 0.2mm
if the unit of linear attenuation coefficient is mm−1. The
linear attenuation coefficient of aluminum and silicon was
close to 16 KeV in the second reconstructed image.The linear
attenuation coefficient of aluminum was close to 69KeV,
and the silicon was close to 73KeV in the seventh recon-
structed image. The energy difference between aluminum
and siliconwas acceptable if the two reconstructed images are
regarded as narrow-energy-width reconstructed images. In
other words, the narrow-energy-width reconstructed images

are produced by the decomposition of multivoltage X-ray
images when using the method described in this paper.

5. Discussion

The proposed method can be regarded as in-depth research
of the concept that is presented in [18] to obtain narrow-
energy-width reconstructed images in the typical CT imaging
system without changing hardware. Compared to the pre-
vious multivoltage X-ray image decomposition model, the
new decomposition model considers the influence of X-ray
scattering. Scattering is an important factor that disturbs
the accuracy of X-ray imaging. Scattering is a nonnegative
value for whole X-ray imaging. Thus, the error caused
by scattering is not suitably described with the weighted
least square in [18]. The low frequency characteristic of
scattering is embedded in the new decomposition model and
should be more reasonable than the previous model. This
assumption is validated in the verification experiment, where
no reconstructed image was a real narrow-energy-width
reconstructed image by solving with the previous model;
there are some reconstructed images that can be seen as real
narrow-energy-width reconstructed images by solving with
the model in this paper. The proposed method provides a
glimmer of light by obtaining narrow-energy-width recon-
structed images with a typical CT imaging system without
changing hardware and knowing the energy spectrum, which
is difficult to accurately measure. This may improve the
application potential of typical CT imaging systems, whereas
a monochromatic or narrow-energy-width X-ray source and
photon counting detector are expensive.

However, many reconstructed images obtained with
the new decomposition model are still not real narrow-
energy-width reconstructed images. This implies that the
new decomposition model is still imperfect. The variance
description for the low frequency characteristic of scattering
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is rough. Apparently, the optimal solution for the newdecom-
position model is that the scattering is constant throughout
the whole X-ray image; this solution is unrealistic because of
the complicacy of scattering. However, X-ray imaging errors
are not all caused by scattering. Therefore, a more accurate
model of practical X-ray imaging is needed to obtain a more
accurate narrow-energy-width projection.

In addition to optimizing the decomposition model, two
other problems require further research. One is the selection
of parameter 𝑇, which was empirically selected in this paper.
However, 𝑇 is not a strict value because low frequency yields
a blurry description. The second issue is to improve the new
model’s present solving algorithm, which may converge to a
local minimum solution and is of slow convergence.

Furthermore, there is nowhere to need axisymmetric
structure in the method. The cylinder has axisymmetric
structure, but its center is not the center of CT scan, which can
be observed from the reconstructed images. This can partly
show that no relationship between the shape of materials and
the method. Similarly, there is no relationship between the
energy range of X-ray and the method, since nowhere needs
special energy range of X-ray.

The noise is another problem that needs careful attention.
In this paper, there is no special denoise processing for the
origin data. In other words, the method of this paper is
effective when there is general noise. From the model, the
residual error of X-ray images decomposition is constant
when the solution is ideal optimal, since the variance will be
zero. Then the noise will be shared by the narrow-energy-
width X-ray images. So it is foreseeable that the method is
affected by the noise and the method may be invalid if the
noise is too larger. And the further conclusion needs more
research.

6. Conclusion

In conclusion, we have proposed a novel multivoltage X-ray
image decomposition model to obtain narrow-energy-width
projections based on the low frequency characteristics of scat-
tering in X-ray imaging without changing the existing hard-
ware. The verification experiment shows that some recon-
structed images obtained with this model are completely in
conformity with narrow-energy-width reconstructed images.
Further work is under way, including optimization of the
decomposition model and algorithm.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this work.

Acknowledgments

This work was partially supported by the National Science
Foundation of China (Grants no. 61571404, no. 61471325,
no. 61301259, and no. 61227003), Science Foundation of
Shanxi Province (Grant no. 2015021099), and Shanxi Province
Outstanding Young Academic Leader.

References

[1] H. P. Wang, Y. S. Yang, and Y. D. Wang, “Data-constrained
modelling of an anthracite coal physical structure with multi-
spectrum synchrotron X-ray CT,” Fuel, vol. 106, no. 2, pp. 219–
225, 2013.

[2] L. Fang, X. Yin, L. Wu et al., “Classification of microcrystalline
celluloses via structures of individual particles measured by
synchrotron radiation X-ray micro-computed tomography,”
International Journal of Pharmaceutics, vol. 531, no. 2, pp. 658–
667, 2017.

[3] D. Zhao, M. Xu, G. Liu et al., “Quantification of soil aggre-
gate microstructure on abandoned cropland during vegetative
succession using synchrotron radiation-basedmicro-computed
tomography,” Soil & Tillage Research, vol. 165, pp. 239–246, 2017.

[4] V. I. Ivakhnenko, “A novel quasi-linearization method for CT
image reconstruction in scanners with a multi-energy detector
system,” IEEE Transactions on Nuclear Science, vol. 57, no. 2, pp.
870–879, 2010.

[5] R. A. Ketcham and R. D. Hanna, “Beam hardening correction
for X-ray computed tomography of heterogeneous natural
materials,” Computers & Geosciences, vol. 67, pp. 49–61, 2014.

[6] A. Tsuchiyama, K. Uesugi, T. Nakano, and S. Ikeda, “Quan-
titative evaluation of attenuation contrast of X-ray computed
tomography images usingmonochromatized beams,”American
Mineralogist, vol. 90, no. 1, pp. 132–142, 2005.

[7] S. Masetti, M. Fiaschetti, A. Turco et al., “Development of a
multi-energy CT for small animals: characterization of the
quasi-monochromatic X-ray source,” IEEE Transactions on
Nuclear Science, vol. 56, no. 1, pp. 29–35, 2007.

[8] Y. Rakvongthai, W. Worstell, G. El Fakhri, J. Bian, A. Lorsakul,
and J. Ouyang, “Spectral CT using multiple balanced K-edge
filters,” IEEE Transactions onMedical Imaging, vol. 34, no. 3, pp.
740–747, 2015.

[9] M. Yagi, T. Ueguchi, M. Koizumi et al., “Gemstone spectral
imaging: determination of CT to ED conversion curves for
radiotherapy treatment planning,” Journal of Applied Clinical
Medical Physics, vol. 14, no. 5, pp. 173–186, 2013.

[10] M. M. Goodsitt, E. G. Christodoulou, and S. C. Larson, “Accu-
racies of the synthesized monochromatic CT numbers and
effective atomic numbers obtained with a rapid kVp switching
dual energy CT scanner,” Medical Physics, vol. 38, no. 4, pp.
2222–2232, 2011.

[11] J. S. Lee and J. C. Chen, “A single scatter model for X-ray CT
energy spectrum estimation and polychromatic reconstruc-
tion,” IEEE Transactions on Medical Imaging, vol. 34, no. 6, pp.
1403–1413, 2015.

[12] R. A. Nasirudin, P. Penchev, K. Mei, E. J. Rummeny, M. Fiebich,
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