
SCIENTIFIC COMMENTARIES

Quantitative postural models as biomarkers of
balance in Parkinson’s disease

This scientific commentary refers to

‘Balance control systems in Parkinson’s

disease and the impact of pedunculo-

pontine area stimulation’, by Perera

et al. (doi:10.1093/brain/awy216).

Falls as a result of imbalance related to

the axial features of freezing of gait

and postural instability have a major

impact upon quality of life in patients

with Parkinson’s disease (Soh et al.,

2011). Unfortunately, axial dysfunction

in Parkinson’s disease responds poorly

to current drug and deep brain stimu-

lation (DBS) therapies. More recently,

pedunculopontine nucleus (PPN) DBS

has been used to improve axial fea-

tures. But despite its promise, PPN

DBS remains experimental as the data

concerning its effect on Parkinson’s dis-

ease-related imbalance are highly vari-

able (Thevathasan et al., 2018). In

typical Parkinson’s disease with rela-

tively little axial involvement, the

effect of DBS (e.g. subthalamic nucleus

stimulation) can be reliably assessed by

quantifying limb kinematics (e.g.

tremor or kinesis), providing a ready

parameter for optimizing DBS para-

meters. A key barrier to studying the

effect of PPN DBS is the lack of easy-

to-obtain markers of gait and balance

to reliably assay treatment effects. The

availability of such biomarkers would

accelerate studies of the effect of PPN

DBS on postural control. In this issue

of Brain, Perera and co-workers use

quantitative postural models to derive

biomarkers of balance in patients with

Parkinson’s disease and show that

these parameters correlate with clinical

measures of imbalance (Perera et al.,

2018).

PPN DBS studies show a consistent

reduction in falls (Thevathasan et al.,

2018) with sustained effects for 2

years or even longer (Mestre et al.,

2016). One problem with measuring

a reduction in falls is that its prospec-

tive nature makes for slow progress in

PPN DBS research, as the data can

only be used to inform subsequent

studies as opposed to optimize DBS

parameters at the outset of a study.

A second, perhaps more critical, pro-

blem is the multifactorial and often

complex nature of falls causation.

Fall response to any successful treat-

ment is non-linear, e.g. if the fre-

quency of falls is a product of the

amount of locomotor activity under-

taken and the relative risk of falling

when locomoting, a patient may

reduce falls by walking less; or a

patient with objectively improved bal-

ance may show no change in falls as

they start walking more. Falls risk can

be modulated by patients’ lifestyle

choices; e.g. if a patient regains the

ability to hill walk, they may simulta-

neously have more falls and report

improved quality of life. Thus, since

there are many factors affecting gait,

the small sample sizes typical of PPN

DBS studies (six to eight patients) are

insufficient to account for between-

patient variability, particularly given

the complexity of gait and its assess-

ment. This combination of factors is

one reason why the benefits of PPN

DBS in Parkinson’s disease are cur-

rently unclear.

Sensitive and easy-to-obtain out-

come measures that independently

and reliably predict fall frequency

(all other factors remaining the

same) are thus needed for PPN DBS

studies. Freezing of gait is associated

with falls (Michalowska et al., 2005),

and gait freezing is reduced by PPN

DBS, which may reduce falls (Mestre

et al., 2016), although not consis-

tently (Thevathasan et al., 2018).

In one blinded controlled study

(Thevathasan et al., 2012), PPN DBS

had little effect on limb kinematics

during walking, implying little utility

as a biomarker of PPN DBS effect.

Recently, PPN DBS was shown to

improve quantitative assessment of

vestibular perceptual thresholds

during passive whole-body yaw rota-

tion self-motion (Yousif et al., 2016),

indicating a PPN DBS modulation of

higher order sensory signals that may

be linked to enhanced balance.

Surprisingly, there are only limited

data on the impact of PPN DBS on

postural stability during quiet standing.

There are even less data about whether

measures of postural stability predict

improvement in falls with PPN DBS

and there are no prior studies describing

the effect of PPN on gait function with

postural models.

Perera et al. offer the first necessary

step for deriving postural signatures

for use as biomarkers: they related

measurement of sway during quiet

standing to parameters of possible

underlying computational mechanisms

controlling sway. Sway data were col-

lected from 13 healthy controls and
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13 patients with Parkinson’s disease

implanted with PPN deep brain stimu-

lators for severe postural instability

and falls. Patients were tested OFF

medication and blinded to two condi-

tions: off and on PPN stimulation.

These postural mechanisms were

expressed as a simplified postural

model combining biomechanical and

central control systems, with the

latter being the critical ingredient for

stable posture. In modelling posture,

the simplest approach is to assume

the human body is an inverted pendu-

lum with a single pivot at the ankle

(Fig. 1). From an engineering perspec-

tive, there are two main ways of con-

trolling this inverted pendulum to

maintain an upright body posture:

continuous and intermittent control

(Fig. 2) (Glasauer and Straka, 2017).

For the continuous control of body

posture—which requires continuous

motor action—Perera et al. used a

relatively simple controller, common

in engineering practice, called a ‘PID’

(proportional-integral-derivative) con-

tinuous control system (Fig. 3 and

Supplementary material), the para-

meters of which serve as possible bio-

markers. In contrast to a continuous

controller requiring a continuous

motor action, an intermittent control-

ler only requires motor output from

time to time: for example, if the

error between desired and actual

state becomes too large, a corrective

motor action is issued. Both types of

control can coexist, an example being

our gaze movements, where we can

track moving objects with our eyes

(continuous control) or make rapid

saccades (intermittent control) to

catch up with the target if lost during

ocular pursuit. Unlike their use of an

explicit model for the PID controller,

Perera et al. did not explicitly model

intermittent control but simply looked

for its signature in sway patterns.

Specifically, intermittent control of

posture would predict discontinuities

in the sway pattern and here, the out-

come of interest for the authors was

the number of discontinuities in the

sway pattern that occurred over time

(i.e. the frequency of intermittent

switching).

Perera et al. found abnormal gains

in the continuous (PID) control model

and reduced intermittent switching.

Additionally, PPN DBS improved the

degree of intermittent switching, PID

control gains, and clinical balance

score towards normal. Indeed the

clinical balance score, an amalgam

Figure 2 Feedback control mechanisms for human posture. (A) Continuous con-

trol: the sensed posture is compared to the set-point (zero for quiet standing), and their error

is sent to a controller, which computes optimal motor commands for error minimization. The

time delay in the sensory feedback severely degrades the stability of the continuous control

loop. (B) Intermittent control: the simplified scheme here is similar to A, except that a switch

prevents error signals from being transmitted to the controller such that the latter acts only if

the trigger closes the switch when the error between the set-point and sensed posture

exceeds a threshold. This model essentially assumes that postural control mechanisms are

effectively switched off in the vertical position but when the body moves away from the near

vertical, postural control mechanisms are switched back on. Compared to continuous control,

the intermittent control is more robust to the feedback time delay.

Figure 1 Conceptual engineering control system models of quiet standing sway in

humans. The simplest postural control model of a quietly standing body assumes a pivot

around the ankle as if the body were an inverted pendulum where the centre of mass (COM)

of the body is above the ankle pivot point. An inverted pendulum is inherently unstable and will

fall over without additional help. The system controlling upright posture is conceptualized as a

central neural command output to the muscles that generate an appropriate torque at the

ankle, T, in response to a sensory signal indicating the body sway angle, �, from the upright, and

hence maintains the body close to upright. Note that computational models of human

movement and balance are conceptual and attempt to predict the spontaneous motor (or

sway) behaviour rather than explicitly reflecting neuroanatomically correct control

mechanisms.
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of the Unified Parkinson’s Disease

Rating Scale (UPDRS) chair rise test

(a rating of attempts to rise from sit-

ting) and the pull test (which measures

postural reflexes to a postural pertur-

bation when standing), correlated well

with intermittent switching of postural

sway and PID control gains (see

Figure 5 in Perera et al., 2018), imply-

ing that the control system metrics

may have potential as biomarkers of

balance impairment in Parkinson’s dis-

ease. Intriguingly, Perera et al. found

no correlation between the rostro-

caudal distance of the PPN stimulation

location (one factor amongst many

that may explain variability in the clin-

ical response to PPN DBS) and inter-

mittent switching or clinical balance

score. This finding alludes to the use

of postural biomarkers for targeting

DBS, or indeed suggests a network

explanation for the effect of PPN

DBS (a discussion of which is beyond

the scope of this commentary).

Of course, behavioural testing in

patients is challenging, as investigators

must ensure laboratory testing is not

too onerous, particularly as patient

volunteers are typically highly moti-

vated. It follows that there is always

room for methodological improvement

in patient-based studies, including

those using postural models as biomar-

kers. For example, Perera et al. used

the reaction time from a volitional

elbow flexion assuming that it reflected

the feedback time delay in the contin-

uous PID postural control model.

Perhaps more appropriate would be

to estimate the model’s feedback

delay directly from the data as this

would require fewer assumptions

(Hidenori and Jiang, 2006). Perera

et al. also analysed the two types of

control systems independently; how-

ever, a more parsimonious approach

would be to assess PPN DBS responses

with a combined continuous-intermit-

tent controller model. Indeed, when

using a combined continuous and

intermittent controller to control pos-

ture, lengthy feedback delays—inherent

to long axons bringing afferent signals

from the lower limbs—assume a lower

importance in achieving postural stabi-

lity (Asai et al., 2009).

Despite its current experimental

status, investigators continue to explore

the use of PPN DBS in patients with

Parkinson’s disease given the impact of

falls upon quality of life (Soh et al.,

2011), and the lack of alternative

Figure 3 An example of the input and output signals of a PID control system, which is commonly used in engineering practice.

A PID control system consists of three basic controllers, proportional (P), integral (I), and derivative (D) controllers, within which the control

gains, Kp, Ki, Kd, are varied to stabilize the controlled plant to optimise the response. Each of the ‘P’, ‘I’, ‘D’ controllers has the same input, the

angular error signal between the upright and the sensed human body attitude, but differ in the outputs to serve different purposes. The output of

the ‘P’ controller (top left) is proportional to the value of error with Kp and provides the ankle with the stiffness for correcting instances of sway

angle. A large Kp results in a large output, while a small Kp results in a small output, hence a less sensitive controller. The ‘I’ controller (top middle)

accounts for past values of error and integrates them over time to give the accumulated offset that should have been corrected previously, and

thus eliminates the residual steady-state error that occurs with a ‘P’ controller. Its output is the multiplication of the accumulated error (the

shaded area) and Ki. A large Ki can cause the overshooting of the human body direction. Outputting the multiplication of Kd and the slope of the

error curve (e.g. the orange lines), the ‘D’ controller (top right) predicts the trend of error and thus reduces setting time and overshoot. A large Kd

can amplify high frequency noise, yielding large amounts of change in the output. It is known from control system theory that the combination of

‘P’ and ‘D’ controllers is enough to stabilize an inverted pendulum, and the ‘I’ controller is not necessary for stability but is for eliminating the

steady-state error. The sum of outputs of ‘P’, ‘I’, and ‘D’ controllers (bottom) forms the final output of the PID control system. The simulation—

provided in the Supplementary material—shows the effect of controlling a single inverted pendulum by a controller using only ‘P’ ‘I’ or ‘D’

compared to a PID controller with appropriate (proper) and inappropriate (improper) gains.
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treatments for axial dysfunction in these

patients. However, biomarkers with

good predictive power for assessing

quality of life related to mobility and

global gait functioning are critical to

establish the clinical utility of PPN

DBS. Using these postural biomarkers

to optimise DBS parameters for balance

performance post-surgery, may acceler-

ate the pace of research. Additionally,

future PPN DBS studies will not only

need to measure falls frequency prospec-

tively, but also obtain overall locomotor

activity during daily life (via wearable

devices) which will allow investigators

to obtain an index of falls risk per quan-

tum of locomotor activity. Signal ana-

lyses could also allude to the type of

activity involved when the fall occurred,

e.g. some patients may fall during quiet

standing while others may fall during

more vigorous activity. It follows that

such complex analyses require much

larger studies than those already com-

pleted. The recent publication of the

PPN DBS working group consensus

(Thevathasan et al., 2018) is a step in

the right direction for developing large-

scale multicentre studies; however,

choosing reliable outcome measures, in

addition to accepting the complexity of

assessing gait and falls outcomes, must

be part of the calculation in powering

future studies. The analysis via model-

ling of biomechanical control systems

in patients is a promising tool for deriv-

ing hallmarks of postural performance.

Its use for disease monitoring including

response to treatments, from PPN DBS

to rehabilitation, indicates a utility that

extends far outside the realm of PPN

DBS but includes other groups such as

the healthy elderly.
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Stimulating cingulate: distinct behaviours arise
from discrete zones

This scientific commentary refers to

‘Motor and emotional behaviours eli-

cited by electrical stimulation of the

human cingulate cortex’, by Caruana

et al. (doi:10.1093/brain/awy219).

The cingulate cortex is one of the

most commonly described loci of

dysfunction in psychiatry and neurol-

ogy, and as regions of the brain go,

its functional properties have stirred

considerable controversy amongst neu-

roscientists (Ebitz and Hayden, 2016).

Such debates have even led to the

region having its own social media

hashtag (#cingulategate). Why such

controversy? The answer to this is mul-

tifaceted but two key factors are (i)

most of the theoretical accounts of cin-

gulate function are based on informa-

tive but correlational neuroimaging

data; and (ii) although appearing by

eye to be a continuous piece of tissue,

the cingulate cortex in fact comprises
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