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Abstract: High-throughput technology has generated large-scale protein interaction data, which is
crucial in our understanding of biological organisms. Many complex identification algorithms have
been developed to determine protein complexes. However, these methods are only suitable for dense
protein interaction networks, because their capabilities decrease rapidly when applied to sparse
protein–protein interaction (PPI) networks. In this study, based on penalized matrix decomposition
(PMD), a novel method of penalized matrix decomposition for the identification of protein complexes
(i.e., PMDpc) was developed to detect protein complexes in the human protein interaction network.
This method mainly consists of three steps. First, the adjacent matrix of the protein interaction
network is normalized. Second, the normalized matrix is decomposed into three factor matrices.
The PMDpc method can detect protein complexes in sparse PPI networks by imposing appropriate
constraints on factor matrices. Finally, the results of our method are compared with those of other
methods in human PPI network. Experimental results show that our method can not only outperform
classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve
an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC),
and the maximum matching ratio (MMR).

Keywords: protein–protein interaction (PPI); clustering; protein complex; penalized matrix decomposition

1. Introduction

The identification of protein complexes is highly beneficial for the investigation of all kinds
of organisms to understand biological processes and determine inherent organizational structures
within cells [1]. The dramatic development of computational methods stimulates many protein
complex identification algorithms for protein–protein interaction (PPI) networks, which are generally
organized into three catalogs. The first catalog includes clustering methods that are also divided into
three sub-catalogs. First, the local search approaches based on density are used to identify densely
connected subgraphs in PPI networks, in which subgraphs with density above a pre-defined threshold,
such as MCODE (Molecular Complex Detection) [2], CFinder (a software tool for network cluster
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detection) [3], DPCLus (a Density-Periphery based graph CLustering software) [4], and ICPM (Iterative
Clique Percolation Method) [5], are considered protein complexes. However, these approaches tend
to neglect surrounding proteins that are connected to the kernel clusters with sparse links, which
can show experimentally validated true interactions [6]. Another kind of method for detecting
protein complexes uses classical hierarchy clustering techniques, which mainly depend on the distance
between proteins to detect meaningful groups [6] and contain HC-PIN ((fast Hierarchical Clustering
algorithm for Protein Interaction Network, agglomerative method) [7] and G-N algorithms (divisive
method) [8]. Many hierarchical clustering methods employ similarities among the proteins that
are calculated on the basis of network topology characteristics or biological meaning due to the
further development of clustering technology. Such approaches mainly include NEMO (NEtwork
MOdule identification) [9], ClusterONE (Clustering algorithm with Overlapping Neighborhood
Expansion) [10], RFC (Rough Fuzzy Clustering) [11], MINE (Module Identification in Networks) [12],
PageRankNibble [13], SPICi (Speed and Performance In Clustering,) [14], PCE-FR (Pseudo-Clique
Extension based on Fuzzy Relation) [15], MTGO (Module detection via Topological information and GO
knowledge) [16], WCOACH (Weighted COACH) [17], DCAFP (Density-based Clustering Approach for
identifying overlapping protein complexes with Functional Preferences) [18], and cwMINE (Combined
Weight of Module Identification in Networks) [19]. Experimental results show that these novel
methods greatly outperform classical hierarchical clustering approaches. Except for the aforementioned
clustering approaches, many other protein complex detection algorithms, such as RNSC (Restricted
Neighborhood Search Clustering) [20], MCL [1], RRW (Repeated Random Walks algorithm) [21],
CMC (Clustering-based on Maximal Cliques) [22], Coach [23], and AP (Affinity Propagation) with its
variant [24] have achieved satisfactory results.

Another type of method used to detect protein complexes employs an intelligent optimization
algorithm, which seeks the optimal solution of PPI based on a heuristic concept [25]. For large
databases, the complexity of intelligent optimization algorithms is too high to run a correct
consequence. The major weakness of the aforementioned methods is that their performance
deteriorates when they are employed to sparse PPI networks [19,26]. To address this problem,
matrix decomposition is proposed to improve the disadvantages of these methods. A co-clustering
algorithm based on the adjacent matrix of PPI networks was proposed [6] and obtained overlapping
and non-overlapping protein complexes successfully. The results show that the method reached
a remarkable balance between network coverage and accuracy (ACC) and outperformed classical
methods. Matrix factorization can be mainly organized into two main levels. The first level is the
non-negative matrix factorization (NMF) (which integrates gene ontology (GO), gene expression data,
and the PPI network to form the corresponding adjacency matrix and then decomposes it with common
factors to achieve the overlapping functional modules with high ACC [27]). Zhang et al. [28] proposed
sparse network-regularized multiple NMFs (SNMNMFs) to identify the microRNA regulatory modules
and demonstrated the ideal performance of the proposed method in ovarian cancer dataset. The second
level is the penalized matrix decomposition (PMD), which is widely applied in various datasets, such as
microarray data [29], including gene expression data, and proteomic datasets [30].

Inspired by Ref. [24], PMDpc, an approach used to identify the protein interaction network of
protein complexes was originally proposed. First, the adjacent matrix of the protein interaction
network was normalized. Second, the normalized matrix was decomposed into three factor matrices.
Finally, the PMDpc algorithm and several classical algorithms were executed from the well-investigated
human PPI network. The experimental results show that our approach achieved satisfactory
performance in terms of F-measure, ACC, and maximum matching ratio (MMR).

2. Results and Discussion

When PMDpc is applied to identify the protein complexes in PPI network, the parameters of c1, c2,
and k are crucial for the decomposition of the network. Considering that u should be sparse, we take
c1 = 0.25×

√
n and c2 = 0.25×√p [31].
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To study the parameter of k on the effect on the experimental results, we repeated the execution
of algorithm and studied how the algorithm behaves in terms of F-measure and let k ∈ (0, 2500]
with a 100 increment. The detailed experimental results with different k values are presented in
Figure 1. From Figure 1, we can clearly see that k is less than 1000; the experimental results fall short
of satisfaction.

The value of the F-measure increases gradually until k = 1600 with the increase in k, such that
the maximum value of 0.398, the F-measure, displays a steady state when it changes from 1600 to
2000. When k is greater than 2000, the value of F-measure shows a downward trend. Therefore, k is set
to 2000.
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Figure 1. Values of F-measure for different values of k ∈ (0, 2500] with a 100 increment in HPRD dataset.

Five classical protein complex algorithms, namely, CFinder [3], ClusterONE [10], RRW [21],
HC-PIN [7], and PCE-FR [15], are applied on human PPI network of HPRD (Human Protein Reference
Database, HPRD) to demonstrate the performance of PMDpc. The complexes of the aforementioned
algorithms with sizes less than 2 are filtered in our work. Moreover, the parameters of each method
that is compared with our method are set using the default values recommended by the authors.
The experimental result is shown in Table 1.

Table 1. Results of six protein complexes Algorithms in HPRD Dataset.

Algorithms Number Precision Recall F-Measure ACC Sep MMR MCC

CFinder 49 0.959 0.143 0.249 0.184 0.165 0.017 0.327
ClusterONE 755 0.295 0.186 0.229 0.333 0.209 0.084 0.391

RRW 167 0.671 0.190 0.296 0.236 0.231 0.034 0.209
HC-PIN 99 0.646 0.140 0.230 0.256 0.233 0.024 0.196
PCE-FR 274 0.534 0.178 0.267 0.279 0.169 0.029 0.035
PMDpc 118 0.451 0.356 0.398 0.362 0.777 0.010 0.343

Table 1 shows that PMDpc achieves a satisfactory performance on human PPI networks.
Particularly, PMDpc obtains the highest value of recall, F-measure, ACC, and Sep, which are 0.356,
0.398, 0.362, and 0.777, respectively. These results are significantly superior to the five other algorithms.
Furthermore, CFinder achieves the highest precision of 0.959 and the lowest MMR of 0.017. ClusterONE
identifies 755 protein complexes and achieves the highest MMR of 0.084. These values elaborate that
our approach achieved an ideal result in identifying protein complexes from sparse PPI networks.
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From Table 1, we can also clearly see that our method obtains the second highest value of MCC,
which is 12.28% lower than that of ClusterONE. It demonstrates that our method achieved satisfactory
performance in dealing imbalanced data.

To void the advantage of some evaluation metric, the composite score [24] is employed to wrap
up the global performance. Interestingly, the composite comparison of our method shows absolute
advantage in terms of F-measure, accuracy, and maximum matching ratio. Figure 2 presents the
comparison results of the six algorithms on the HPRD dataset. The composite score of F-measure,
accuracy, and maximum matching ratio is 0.770, which is 19.20% higher than the highest value of the
five other methods. It further demonstrates the effectiveness of our method.
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Figure 2. Results comparison of the six algorithms in HPRD dataset using CHPC2012 gold standard
dataset. Columns correspond to the following algorithms, CFinder, ClusterONE, HC-PIN, PCE-FR,
and PMDpc from left to right. Various color of the same columns denotes the individual components
of the composite score of the algorithm (cyan = F-measure, blue = ACC, and purple = MMR). The total
height of each column is the value of the composite score for a special algorithm in a special dataset.
Large score shows the clustering result is better.

3. Materials and Methods

3.1. Materials and Datasets

Our method is applied to detect the protein complexes in the human PPI dataset downloaded
from Ref. [24], in which 9459 proteins and 36,935 interactions with the density of 0.0008 are included.
The gold standard dataset is employed to evaluate the performance of the protein complexes identified
in sparse PPI networks, which is CHPC2012 [32], integrating three databases, namely, CORUM [33],
HPRD [34], and PINdb [35], and includes 1389 complexes and 3065 proteins.

3.2. Methods

Consider a sample dataset that consists of p eigenvectors in n samples, which is described by a
matrix X with size n× p [30]. Without loss of generality, we assume that the means of column and row
X are zero. The singular value decomposition of matrix X can be written as follows:

X = U∆VT , UTU = In, VTV = Ip (1)
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The decomposition of sparse matrix is executed by imposing additional constraints on U and V.
The single-factor PMD can be optimized using the following objective function, which is formulated
as [30]

argmin
δ,u,v

1
2 ||η − δuvT ||2F,

s.t.
∣∣∣∣u∣∣|22 = 1,

∣∣∣∣v∣∣|22 = 1,
P1(u) ≤ c1, P2(v) ≤ c2, δ ≥ 0.

(2)

in which u is a column of U, v is a column of V, δ is a diagonal element of the matrix of η, ‖•‖F is the
Frobenius norm, and P1 and P2 are penalty functions that have variety of forms [30].

Let U and V be n× R and p× R orthogonal matrices, respectively, and ∆ a diagonal matrix with
diagonal elements δr [30]

1
2
‖η −U∆VT‖2

F =
1
2
‖η‖2

F −
R

∑
r=1

uT
r ηvrδr +

1
2

R

∑
r=1

δ2
r (3)

Therefore, when R = 1, we can infer that u and v satisfy Equation (7) and the following condition:

argmaxuT
u,v

ηv

s.t. ‖u‖2
2 = 1, ‖v‖2

2 = 1, P1(u) ≤ c1, P2(v) ≤ c1
(4)

Moreover, δ satisfies Equation (2) when δ = uTηv.
The optimization problem in Equation (4) can be applied to the following biconvex

optimization [30]:
argmax

u,v
uTδv

s.t. ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2
(5)

Equation (5) satisfies Equation (4) based on the appropriate value of c [30]. Equation (5) is called
the single factor PMD, and the iterative algorithm used to optimize it is described in Algorithm 1:

Algorithm 1. Calculating the single factor of PMD.

Step1. Initialize v and let unit L2 − norm.
Step2. Interate until convergence:

(i) u← arg maxu uTδv, s.t.‖u‖2
2 ≤ 1, P1(u) ≤ c1

(ii) v← arg maxv uTδv, s.t.‖v‖2
2 ≤ 1, P2(v) ≤ c2

Step3. d← uTδv

Equation (2) is computed repeatedly to obtain other PMD factors. The corresponding algorithm is
described in Algorithm 2.

Algorithm 2. Calculating the k factor of PMD.

Step1. η1 ← η ;
Step2. For r ∈ 1, 2, . . . , R

(i) The single factor PMD (Algorithm 1) is executed on the matrix of ηr, computing ur, vr, δr, respectively;
(ii) ηr+1 ← ηr − δrurvT

r

The constraint is imposed on u and v with L1 − norm, i.e., ‖u‖1 ≤ c1, ‖v‖1 ≤ c2. By selecting
parameters c1 and c2 appropriately, PMD can make factors u and v sparse. Generally, c1 and c2
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should be restricted to ranges 1 ≤ c1 ≤
√

n and 1 ≤ c2 ≤
√

p. Thus, the PMD method is shaped as
PMD(L1, L2), which is described as follows:

argmax
u,v

uTηv

s.t. ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2
(6)

Let S denote the operator of the soft threshold, i.e., S(a, c) = sgn(a)(|a| − c)+, in which c > 0,

x+ =

{
x x > 0
0 x ≤ 0

. The corresponding theorem is as follows:

Theorem 1. Considering the optimization problem

argmax
u

uTa

s.t. ‖u‖2
2 ≤ 1, ‖u‖1 ≤ c.

(7)

The solution is u = S(a,∆)
‖S(a,∆)‖2

. If ‖u‖1 ≤ c, then ∆ = 0; otherwise, ‖u‖1 = c s.t. ∆ > 0. The detailed
proof regarding the theorem can be found in Ref. [30]. The analysis shows the solution of Equation (6)
with Algorithm 1. According to Theorem 1, the single factor PMD can be optimized, as shown in
Algorithm 3:

Algorithm 3. The optimization process of the single factor PMD.

Step1. Initialize v and let unit L2 − norm.
Step2. Iterate until convergence:

(i) u← S(Xv,∆1)
‖S(Xv,∆1)‖2

, if ‖u‖1 ≤ c1, then ∆1 = 0, else ‖u‖1 = c1, s.t., ∆1 > 0

(ii) u← S(XTu,∆2)
‖S(XT u,∆2)‖2

, if ‖v‖1 ≤ c2, then ∆2 = 0, else ‖v‖1 = c2, s.t., ∆2 > 0

Step3. d← uTδv

To obtain the sparse factors of u and v, we let c1 = c
√

n, c2 = c
√

p, and the values of ∆1 and ∆2

are selected by the binary search.
For comprehensive discussion, discovered protein complexes and gold standard dataset are

matched. The following evaluation measures are employed in this study.
F-measure. Two protein complexes, namely, p and g, are generated from the predicted protein

complex and gold standard sets, respectively. The overlapping score os(p, g) quantizes the closeness
between the sets and is defined as follows [24]:

os(p, g) =

∣∣Cp ∩ Cg
∣∣∣∣Cp

∣∣•∣∣Cg
∣∣ (8)

in which Cp, Cg denote protein complex sets p and g, respectively. If os(p, g) ≥ θ, then the two
complexes are matched, in which θ is the threshold. θ is set as 0.2, which is consistent with many
experiments for protein complex identification [24]. Let P and G represent the detected protein complex
and gold standard sets, respectively; Ncp describes the number of identified protein complexes that
match at least one gold standard set, i.e., Ncp =

∣∣{p|p ∈ P, ∃g ∈ G, os(p, g) ≥ θ}| ; and Ncp presents
the number of gold standard protein complexes that match at least one identified complex, that is
Ncg =

∣∣{g|g ∈ G, ∃p ∈ P, os(p, g) ≥ θ}| . F-measure is mathematically defined as [24]

F−measure =
2× Precision× Recall

Precision + Recall
(9)
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in which Precision = Ncp/
∣∣P∣∣, Recall = Ncg/

∣∣G∣∣. F-measure is defined as the harmonic mean of
precision and recall, which can evaluate the overall performance of the detection methods.

ACC (Accuracy, ACC). ACC is used to quantify the quality of detected protein complexes, which
is the geometric means of sensitivity and positive predictive value, PPV. The corresponding formulas
are described as follows [24]:

ACC =
√

Sn × PPV (10)

in which Sn =
∑n

i=1 maxm
j=1tij

∑n
i=1 ni

, PPV =
∑m

j=1 maxn
i=1tij

∑m
j=1 ∑n

i=1 tij
.

Sep (Separation, Sep). To void the case wherein proteins of a gold standard complex are matched
with several identified protein complexes, Sep is used to measure the one-to-one correspondence
between generated protein complexes and gold standard protein complexes. The formula is described
as follows [24]:

Sepg =
∑n

i=1 ∑m
j=1 Sepij

n
, Sepp =

∑m
j=1 ∑n

i=1 Sepij

m
, Sep =

√
Sepg × Sepp, (11)

in which Sepij =
(tij)

2

∑n
i=1 tij∗∑m

j=1 tij
. In Formulas (10) and (11), n is the number of protein complexes in

the gold standard dataset, m is the number of identified protein complexes, tij denotes the size of
intersection between the ith gold standard complex and the jth detected complex, and ni denotes the
number of proteins included in the ith gold standard complex.

MMR (Maximum Matching Ratio). MMR is used to describe the maximum one-to-one matching
between the identified and gold standard protein complexes, which are defined as follows [24]:

MMR(g, p) =
∑n

i=1 maxm
j=1os(gi, pj)

Ni
(12)

in which os represents the overlapping score between two protein complexes, gi is the ith gold standard
complex, and pj represents the jth identified protein complex.

MCC (Matthews Correlation Coefficient). MCC is widely used in bioinformatics as a performance
metric that can handle imbalanced data. The formula is described as follows [24]:

MCC =
TP× TN − FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(13)

in which TP, TN, FP, and FN mean the true positive, true negative, false positive, and false
negative, respectively.

3.3. Detection of Protein Complexes Using PMDpc

A PPI network is usually modeled as an undirected weight graph G = (V, E, ω), in which V
represents a set of nodes (proteins), E is a set of edges (protein pairs), and ω is a set of similarity
value between each protein pairs. The similarity of GO (Gene Ontology, GO) terms is mathematically
expressed as follows [36]:

Sim(i, j) =
|N(i) ∩ N(j)|

min(N(i), N(j))
(14)

in which Sim(i, j) indicates the GO similarity of the protein pair (i, j). N(i) denotes the number of
GO terms that annotate the protein i. The PPI network is stocked as the matrix X with a size of n× n,
which is transformed into the vertex–PCA matrix X of size n× p by the principal component analysis,
in which each row of X represents a protein in all n samples (protein complexes), and each column of
X represents the expression level of a sample in all p proteins.

According to Section 3.2, the matrix X is decomposed into three matrices, namely, U, V, and ∆
by PMD. The graphical description of PMDpc is shown in Figure 3, in which uk is the kth principal
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component, vk is the kth expression model of the principal component, and uik indicates that the
kth protein is projected on the kth protein complex. Therefore, matrix U is decomposed into several
clusters (protein complexes) due to matrix decomposition.
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PMDpc is implemented in Java, and all experiments are performed on an Intel(R) Core(TM)
i7-5557U CPU with 2.2 GHz and 8 GB RAM running Windows 7.0. The elapsed time is 9533 s.

4. Conclusions

The identification of protein complex helps us to discover and understand the cellular
organizations and biological functions in PPI networks. Previous computational approaches mainly
identified protein complexes in dense PPI networks, which had inferior performances in sparse PPI
networks. In this work, PMDpc is proposed on the basis of the penalized matrix decomposition to
detect protein complexes in the human protein interaction network with 0.0008 density.

The performance of our method, PMDpc, is compared with the performances of CFinder,
ClusterONE, RRW, HC-PIN, and PCE-FR on the human PPI dataset derived from HPRD to validate
the utilization of our method. The experimental results show that our proposed algorithm is better
than the five classical approaches based on F-measure, ACC, and MMR. However, only the human PPI
network was taken as the experimental dataset. The new method should be suitable for substructure
detection with other sparse networks. Therefore, our algorithm will be used in the future to investigate
other species of complex networks, such as gene regulatory and disease networks.
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