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Abstract

Objective

In this prospective, longitudinal study of young children, we examined whether a history of
preschool generalized anxiety, separation anxiety, and/or social phobia is associated with
amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigat-
ed whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal
dysregulation.

Methods

Participants were children taking part in a 5-year study of early childhood brain development
and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and
social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA) in the
first wave of the study when the children were between 2 and 5 years old. The PAPA was re-
peated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old
to assess neural responses to viewing of angry and fearful faces.

Results

A history of preschool social phobia predicted less school-age functional connectivity be-
tween the amygdala and the ventral prefrontal cortices to angry faces. Preschool general-
ized anxiety predicted less functional connectivity between the amygdala and dorsal
prefrontal cortices in response to fearful faces. Finally, a history of preschool separation
anxiety predicted less school-age functional connectivity between the amygdala and the
ventral prefrontal cortices to angry faces and greater school-age functional connectivity be-
tween the amygdala and dorsal prefrontal cortices to angry faces.
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Conclusions

Our results suggest that there are enduring neurobiological effects associated with a history
of preschool anxiety, which occur over-and-above the effect of subsequent emotional symp-
toms. Our results also provide preliminary evidence for the neurobiological differentiation of
specific preschool anxiety disorders.

Introduction

A number of community studies have shown that clinically significant anxiety can be identified
and diagnosed in children as young as 2 years of age [1-13]. These anxiety symptoms are asso-
ciated with significant impairment [3, 4] and predict later psychopathology and impairment
[2-4, 14-18]. Furthermore, recent research has shown that anxiety in early childhood differen-
tiates into phenotypically distinct subtypes similar to patterns of anxiety seen in later adoles-
cence and adulthood [19-23]. These subtypes include social phobia, separation anxiety, and
generalized anxiety. These disorders are among the earliest occurring and most common psy-
chiatric disorders in young children [3, 4] and occur at rates in early childhood that are similar
to rates in later childhood [24]. The anxious distress characteristic of these anxiety disorders is
associated with difficulty with emotion regulation processes that develop over toddlerhood,
with self-regulatory processes apparent around 7-8 months and engagement of emotion regu-
lation strategies emerging by 2 years and continuing to develop over the preschool period and
beyond [25, 26]. The emergence of these emotion regulation capabilities is associated with the
development of prefrontal-limbic connections, with better emotion regulation capabilities in
young children correlated with both increased dorsomedial and decreased ventromedial pre-
frontal cortex activity [27, 28]. Furthermore, difficulty with emotion regulation processes,
which are characteristic of anxiety disorders, has been linked to disruption of interactions be-
tween the amygdala and portions of the prefrontal cortex [29-31].

Phenotypically, generalized anxiety, separation anxiety, and social phobia share the com-
mon feature of anxious distress; however, associated characteristics differ between disorders.
Social phobia and separation anxiety are characterized by fear and avoidance of specific types
of social situations and stimuli [32, 33].

Generalized anxiety is characterized by pervasive and intrusive worry about a range of situa-
tions and stimuli that may be in the past, present, and/or future [24, 31]. Previous studies have
suggested that the phenotypic differences between anxiety disorders may reflect different pat-
terns of amygdala-prefrontal cortex dysregulation [30, 31, 34]. Studies have shown that differ-
ent amygdala-prefrontal networks are associated with ruminative worry and with fear and
avoidance. Amygdala-dorsal prefrontal neural networks are associated with the cognitive regu-
lation of emotion and are linked to both normative and pathological worry 35, 36]. Amygda-
la-ventral prefrontal networks are involved in more automatic emotion regulation and are
associated with the fear response [37-40]. In support of this worry-fear distinction, amygdala
hyperactivation and dysregulation of amygdala-ventral prefrontal fear networks has been re-
ported in both social phobia and adult anxious attachment, which shares phenotypic similari-
ties with separation anxiety disorder [32, 41-43]. Amygdala findings in generalized anxiety are
more heterogeneous [44-50], although there have been consistent reports of dysregulation of
both amygdala-prefrontal connectivity and of regions associated with worry, including the dor-
somedial prefrontal and anterior cingulate cortices [35, 36].
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While fear and avoidance of social situations and stimuli are core characteristics of both dis-
orders, social phobia and separation anxiety are also phenotypically distinct. Pine and col-
leagues have noted similarities between the hypervigilance to social information that
characterizes social phobia and the conditioned fear response, which is associated with interac-
tions between the amygdala and ventral prefrontal cortex [30, 32]. Neuroimaging studies have
found dysregulation of the ventral prefrontal cortex and aberrant amygdala-ventral prefrontal
cortex connectivity in social phobia [32, 43]. Although there is a paucity of neuroimaging stud-
ies of separation anxiety, anxious attachment styles in adulthood are associated with both
greater amygdala and less orbitofrontal cortex activation [41, 42]. Physiological studies have re-
ported greater hypothalamic-pituitary-adrenal (HPA) axis activity in children with separation
anxiety [51]. The orbitofrontal cortex, amygdala, and associated lateral prefrontal cortex regu-
late the HPA axis and non-human primate studies implicate this network in the neural re-
sponse to separation distress [40, 52]. Thus, although amygdala hyperactivation is associated
with both social phobia and separation anxiety, the phenotypic differences between the disor-
ders may be a result of dysregulation of different ventral prefrontal networks: the ventromedial
prefrontal fear-conditioning network in social phobia and the orbitofrontal and lateral prefron-
tal HPA axis regulatory network in separation anxiety.

Most of the neuroimaging studies on anxiety disorders are cross-sectional with evaluation of
the neural correlates of concurrent anxiety disorders. A limitation of cross-sectional studies is
that we cannot disentangle the degree to which neurobiological findings represent state-
dependent brain differences (i.e. when an individual has a disorder, they also have brain
changes, but the brain returns to normal when the disorder resolves) or represent a trait or de-
velopmental process that presented early in life and has persisted whether or not the earlier
symptomatology persists. Understanding remitting versus enduring neural effects of impairing
anxiety in early childhood may enable us to identify early childhood biomarkers of risk for im-
pairing anxiety and depression across the lifespan and to target our interventions or preventive
efforts as early as possible. To our knowledge, our study is the first longitudinal study to examine
the relationship between impairing anxiety in the preschool period and differences in neural
correlates at school age. Additionally, few studies have explored the neural correlates of distinct
anxiety disorders while controlling for between-anxiety comorbidity which is relatively com-
mon. In our study 30% of the anxious preschoolers had two or more anxiety disorders [53], a
rate which is consistent with previous reports [14, 54]. To address both (1) the enduring neural
effects associated with preschool anxiety disorders and (2) the neurobiological differences be-
tween these disorders, we need prospective, longitudinal neuroimaging studies that include chil-
dren with a variety of anxiety disorders and are designed to examine anxiety symptoms and the
comorbidity between anxiety and non-anxiety disorders across this developmental period.

In this paper we present the first wave of functional magnetic resonance imaging (fMRI)
data from a prospective, longitudinal imaging study of the neural underpinnings of early child-
hood anxiety. The children in the imaging study were recruited from a large, community-based
study of anxiety in preschool children. We hypothesized that impairing anxiety in the pre-
school period would be associated with differences in amygdala-prefrontal cortex networks at
school age and that these differences would persist when controlling for school-age symptoms.
While we can identify impairing anxiety in children two to five years old, we have found that
five and a half is the youngest age for consistent success in conducting fMRI scans. By using
preschool anxiety symptoms to predict neural differences at school-age that occurs over-and-
above school-age symptomatology, we aimed to identify early brain-level differences or a “neu-
ral signature” linked to clinically significant anxiety in young children. A secondary, explorato-
ry hypothesis of this study was that amygdala-prefrontal network differences would vary with
the distinct phenotypic characteristics of these preschool anxiety disorders and that these
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differences would mirror the disorder specific dorsal-ventral patterns described in previous
studies.

Methods
Study Design

Children were recruited from the Duke Preschool Anxiety Study, a cross sectional, screen-
stratified study of anxiety in children ages two to five years old. The Duke Preschool Anxiety
Study was a three part study, including a screening phase (N = 3,433), an in home assessment
phase (N =917), and a case-control laboratory phase (N = 502) [53]. Parents completed the
Preschool Age Psychiatric Assessment (PAPA) in the in-home phase of the Preschool Anxiety
Study when their children were ages 2 to 5 years old [12]. Children who met criteria for impair-
ing generalized anxiety disorder, social phobia, and/or separation anxiety disorder were re-
cruited as “cases” for the laboratory phase (n = 254). A random sample of 248 children who
did not meet criteria for an anxiety disorder was recruited as our comparison group. Children
in the laboratory phase were not excluded for comorbid non-anxiety disorders or for taking
psychotropic medications (one child was on Zoloft).

In the Learning about the Developing Brain study (LADB), 208 of the 502 children who par-
ticipated in the case-control laboratory phase of the Preschool Anxiety Study were recruited to
take part in a five year prospective, longitudinal eye tracking and neuroimaging study of early
childhood brain development and anxiety disorders. Fig. 1 depicts the design of these two
linked studies. In the first wave of the LADB study, 155 children were eligible to participate in
the imaging phase. Inclusion criteria are detailed below. This paper reports on the fMRI data
collected in this first wave of the LADB study. Descriptions of the subsequent waves of LADB
data collection are summarized in S1 Text.

Measures of Early Childhood Psychopathology

The PAPA was administered in the Preschool Anxiety Study when the children were two to
five years old and in the LADB study when the children were six years old. The PAPA is a par-
ent-report instrument for the assessment of psychopathology in 2-5-year-olds and is based on
the parent version of the Child and Adolescent Psychiatric Assessment [55]. The PAPA uses a
highly structured protocol, with requires questions and probes, however, the onus throughout
is on the interviewer to ensure that interviewees (1) understand the question being asked; (2)
provide clear information on behavior or feelings relevant to the symptom; and (3) report the
symptom at a pre-specified level of severity as defined in an extensive glossary. When symp-
toms are reported, their frequency, duration and dates of onset are collected, to determine
whether they meet the symptom and duration criteria for the various DSM diagnoses. A three
month “primary period” is used, because shorter recall periods are associated with more accu-
rate recall [56]. The PAPA includes assessment of most DSM-IV diagnostic criteria insofar as
they are relevant to younger children, plus all items in the Diagnostic Classification: 0-3R [57].
DSM-1V diagnoses include: attention-deficit/hyperactivity disorder, oppositional defiant disor-
der, conduct disorder, depression (major depression, dysthymia and depression-not otherwise
specified), anxiety disorders (separation anxiety disorder, generalized anxiety disorder, social
phobia, specific phobia, posttraumatic stress disorder, and selective mutism), and elimination
disorder (enuresis and encopresis). The assessment of impairment resulting from each group
of symptoms was based upon the World Health Organization’s International Classification of
Functioning, Disability and Health [58]. To avoid tapping into normative fears, impairment
from anxiety was required for all anxiety diagnoses. A study of the test-retest reliabilities of the
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Duke Preschool Anxiety Study (DPAS) of children ages 2-5

Screen high
N=943

Completed screening phase Not screen high
Overall N=3433 N=2490

N

Completed in-home phase
Screen highs
N=769

Completed in-home phase Completed in-home phase
{ i { Not screen highs
Qverall N=917 N=148

Child met criteria for GAD, SAD or Child did not meet criteria for GAD,

SOC based on PAPA
N=327

SAD or SOC based on PAPA
N=590

Completed lab phase
GAD, SAD,SOC
N=254

Completed lab phase
No GAD, SAD, SOC
N=248

Completed lab phase
Overall N=502

Learning About the Developing Brain (LADB) study of children ages 4-11

Unreachable/ o Not
No Show Not Scheduled ¢ — — — — — — — —p{ Contacted | Excluded | Refused
19 67 143 50 15

Enrolled in LADB study
N=208

Did not do | Excessive movement

29 12

Too Young | MRI Contraindication

mock training | during mock training
Vs L] L] E— L]
‘_ e -

2 10

Eligible for first MRI Scan
(fMRI, anatomical MRI,
Diffusion Tensor Imaging)

Over the 5 year study,
children completed up to 2

Not N=155 ’ follow-up MRI scans and
No Show |Refused| completed i

up to 4 additional yearly

5 56

e — eye-tracking and
11 assessments

Completed first f/MRI Scan |
N=83

Figure 1. Sampling design of the Preschool Anxiety and Learning About the Developing Brain studies. See S1 Text for details. Key: GAD =
Generalized Anxiety Disorder; SAD = Separation Anxiety Disorder; SOC = Social Phobia; PAPA = Preschool Age Psychiatry Assessment.

doi:10.1371/journal.pone.0116854.9001

PAPA concluded that the diagnostic reliability of the PAPA is on a par with those achieved by
older child, adolescent and adult psychiatric interviews [12].

The variables used in this paper include impairing generalized anxiety, social phobia, and
separation anxiety disorders assessed when the children were preschoolers (ages 2-5 years
old). A composite score of generalized anxiety, social phobia, separation anxiety, and
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depression symptom counts, obtained from the PAPA that was completed when the children
were 6 years old, was used as a measure of school-age emotional symptomatology.

Participants

Children were eligible for an MRI in the first wave of the LADB study if they (1) completed a
laboratory assessment in the Preschool Anxiety Study, (2) were at least five and a half years old
during the recruitment period, and (3) successfully completed a mock scanner training session,
detailed in S1 Text. In this paper, “anxious children” are those who met criteria for an impair-
ing anxiety disorder as preschoolers; “non-anxious children” are those who did not meet crite-
ria for an anxiety disorder as preschoolers. In total, 155 children were eligible for the MRI scan
in this first wave. Of these children, 56 parents or children refused to participate; five did not
show up for multiple MRI appointments; and 11 children asked to be removed from the scan-
ner before data could be collected. A total of 83 children completed a scan, of which 41 had
met criteria for an anxiety disorder as a preschooler. Anxious children were less likely to com-
plete an MRI scan (c* = 7.25, p>0.01), however the group of anxious children who completed a
scan were similar to children who did not complete the scan in their number of preschool anxi-
ety symptoms (t(91) = 0.13, p = 0.9) and impairments (t(91) = -0.29, p = 0.8). Of the remaining
83 children who completed the fMRI scan, 45 (54%) children had usable data. Of participants
without usable data, 29 had excessive motion, defined by either a signal-to-noise ratio <60 or
movement >1 voxel in any direction as measured with in-house quality control software and
motion parameters produced by FSL FLIRT [59, 60]; 5 fell asleep; and 4 had other reasons

for not producing usable data (e.g. scanner error). Children with lower IQs (t(81) = -2.10,

p = 0.04) were less likely to have usable fMRI data. There were no other significant differences
between the groups of children with and without usable data. Both groups were similar in age
(t(81) =-0.63, p = 0.53), sex (c*=1.19, p = 0.28), race (c*=3.22, p = 0.07), and preschool

anxiety status (c” = 0.12, p = 0.73). There were no differences in any motion parameters
(Rotation: t(43) = 0.69, p = 0.49; Translation: t(43) = 1.69, p = 0.1; Displacement: t(43) = 1.07,
p = 0.29) between anxious and non-anxious children.

Table 1 summarizes the demographic and clinical characteristics of the 22 anxious and 23
non-anxious children, ages 5.5 to 9.5 years old, who had usable fMRI data in this first wave of
data collection. As preschoolers, the children in the anxious group met criteria for impairing
generalized anxiety, separation anxiety, social phobia, or a combination of these disorders. In
total, 15 children as preschoolers met criteria for generalized anxiety, 10 for separation anxiety,
and 11 for social phobia. Twelve of the 22 anxious children met criteria for more than one anx-
iety disorder. Despite between-anxiety comorbidity, there was no significant correlation be-
tween generalized anxiety and separation anxiety (® = -0.16, p = 0.5) or between separation
anxiety and social phobia (@ = 0.00, p = 1.0). There was a significant correlation between gen-
eralized anxiety and social phobia, however it was a significant negative correlation (® = -0.49,
p = 0.02), suggesting that children were less likely to meet criteria for generalized anxiety if
they met criteria for social phobia and vice versa. Anxious children were, on average, a year
younger than non-anxious children (t(43) = -2.37, p = 0.02; Table 1). To ensure our results
were not associated with this difference in age we ran all models both with and without age as a
covariate and the findings remained the same. Anxious children were similar to non-anxious
children in race (c? = 0.203, p=0.7), sex (2=1.29, p = 0.3), handedness (p = 0.6, 2-tailed
FET), poverty status, which was used as a proxy for SES (p = 0.72, 2-tailed FET), and
1Q (t(43) = -0.16, p = 0.9).

Table 1 also details preschool comorbidity between the anxiety disorders and depression
and other disorders, as well as the school-age disorders for each group. Half of the children
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Table 1. Sample Characteristics.

Demographic
Variables

Preschool
Comorbidity

School-Age
Diagnosis

African American

Female

Right Handed

Federal income below federal poverty
line

Age at Scan®

1Q*

Impairment'T (range: 0-10)?

Preschool emotional symptoms
(range: 0-9)?

School-Age emotional symptoms
(range 0-14)?

No disorder

Generalized Anxiety Only
Separation Anxiety Only
Social Phobia Only

Generalized Anxiety + Separation
Anxiety

Generalized Anxiety + Social Phobia
Separation Anxiety + Social Phobia
All three anxiety disorders
Depression

Other Diagnoses

Anxiety Disorder(s)

No Anxiety Disorder
Other Diagnoses

Non-Anxious

(N =23)
12

13

16

4
7.4(0.94)
104.5(14.03)
0.74(1.09)
2.17(1.99)
2.43(1.95)
20

;

2

4

19

All Anxious
(N=22)
10

16

18

6

6.72(1)*
103.86
(10.82)
3.5(2.35)*
6.54(2.91)*
4.14(3.38)*
6

1

3

4

3

3

2

3

10

11

11

3

Notes: Other diagnoses include conduct disorder, oppositional defiant disorder, and ADHD.
*Significant difference from non-anxious children at p<0.05;
2The values in these columns represent average (standard deviation);
TThese are not mutually exclusive groups;
T This represents the level to which psychiatric symptoms interfere with everyday functioning.

doi:10.1371/journal.pone.0116854.t001

Generalized
Anxiety
(N=15)t

8

12

14

5
6.72(1.02)*

103.53(11.51)

3.93(2.66)*
7.27(3.13)*

4.67(3.89)*

Separation

Anxiety

(N=10)t

6

7

7

5

6.87(1.28)

103.2(10.63)

3.8(2.62)*
4(2.91)*

4.8(4.39)*

1

4

3

2

1

5

5

5

3

6.5(0.86)*
106.18(9.54)

3.27(1.68)*
5.82(2.4)*

2.91(1.87)

o A =2 DWW

o

who met criteria for an anxiety disorder as preschoolers still met criteria for an anxiety disorder

at school-age, and 4 children who did not meet criteria for an anxiety disorder as preschoolers,
did meet criteria for an anxiety disorder at school age. As noted above, we measured school-

age emotional symptoms using a composite anxiety and depression symptom scale.

The Duke University Medical Center Institutional Review Board approved this study. Ver-
bal assent from the child and written informed consent from the parent was obtained following
a complete description of the study. The primary caregiver/parent was reimbursed $40 for each
laboratory visit and $75 for each MRI visit. Additionally, the child chose a toy worth approxi-
mately $5 for participation in the laboratory portion of the study and a toy worth approximate-
ly $10 for participation in the MRI study. Children also received a frame at the MRI visit and
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were sent pictures of their brain that they could place in the frame, along with a thank you
card, after their visit. Participants were given vouchers to cover parking cost.

Functional MRI Task

Each subject completed two runs of a block-design, emotional face-processing task. Thirty-six
face stimuli expressing angry, fearful, happy, or neutral emotions were selected from the Nim-
Stim Stimulus Set [61]. The current manuscript focuses on results from the angry and fearful
faces, as these have been most consistently reported to elicit differences in previous studies in
adults and adolescents with anxiety disorders. Future work will explore differences in response
to both happy and neutral faces. Furthermore, many previous studies have used neutral faces
as a baseline condition. However, we did not choose this approach due to evidence suggesting
that neutral faces are not processed the same in social phobia as they are in unaffected individ-
uals [62]. Each run began and ended with a 16-second fixation block. 15-second task blocks
were separated by 12-second baseline fixation blocks, consisting of a centralized solid colored
star. Each face-block contained 12 pictures from a single emotion category. Faces were pre-
sented for 1.25 seconds with no interstimulus interval. Each run consisted of three blocks of
each emotion type, with the order of the emotion categories randomized. The paradigm was
programmed in CIGAL [63], projected onto a screen at the back of the scanner bore, and
viewed via an angled mirror mounted on the scanner headcoil. To keep the child engaged and
enable us to measure task compliance, the child was instructed to press a button in response to
a single face wearing glasses within each block. This face was randomly located within the
block and expressed the same emotion as other pictures within the block. Average task accura-
cy was reasonable (non-anxious: 83.33%; anxious: 82.29%) and similar between the groups
(t(36) = -0.15, p = 0.88).

MRI Acquisition

Fifteen participants (8 anxious, 7 non-anxious) were scanned on a 3T GE Signa EXCITE HD
system and thirty participants (14 anxious, 16 non-anxious) were scanned on a 3T GE MR750
system. Children run on different scanners were similar in age (t(43) =-0.95, p = 0.3), race

(2 =1.11, p =0.3), sex (2 =238, p=0.1),1Q (t(43) = 0.13, p = 0.9), and anxiety status

(c* =.0.18, p = 0.6). The same pulse sequences and parameters were used on both scanners and
identical scanner performance, including spatial accuracy and dynamic signal stability, was
confirmed through calibration experiments in an agar phantom. Each functional scan lasted 5
minutes and 44 seconds, over which 172 functional images were acquired. The task was trig-
gered by a scanner pulse following an 8 second delay included to allow for scanner stabilization.
Within each run, 34-39 slices were acquired parallel to the AC-PC plane using a BOLD-sensi-
tive EPI sequence (Voxel size: 4mm?; Repetition time: 2000ms; Echo time: 27ms; Field-of-view:
24cm; Flip-angle: 77; Interleaved-odd acquisition). A high-resolution T1-weighted anatomical
scan was acquired for co-registration with the functional images using a 3D-FSPGR sequence
with SENSE (Voxel size: 1mm?; Repetition time: 8.096ms; Echo time: 3.18ms; Inversion time:
450ms; Field-of-view: 25.6cm; Interleaved-odd acquisition). Scanner was included as a covari-
ate in all analyses despite evidence suggesting that differences between scanners of similar
manufacturer and field strength are relatively minor.

Analytic Approach

Preprocessing and Whole Brain Analysis. Data were analyzed with FSL version 5.98 using
standard procedures. Volumes with motion and intensity jumps greater than three standard
deviations from the run mean were flagged for removal as part of a modified scrubbing
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protocol [64]. In the case of intensity jumps, run means were determined as the absolute devia-
tion relative to the run mean after each voxel’s data was passed through a (1/60)Hz high-pass
filter to eliminate low-frequency drift. Entire task blocks were excluded if (i) two volumes were
removed from the beginning of the block or (ii) more than 3 volumes in total were removed
from the block. Additionally, the entire run was excluded from subsequent analyses if more
than one block of an emotion condition was removed. On average, 8 volumes were removed
from the non-anxious group’s data and 4 volumes were removed from the anxious group’s
data. There were no differences in the amount of data that was removed through scrubbing be-
tween the anxious and the non-anxious groups (t(64) = -1.7, p = 0.09). After scrubbing, non-
brain tissue was removed using FSL’s Brain Extraction Tool [65]. Motion correction was ana-
lyzed by center-of-mass measurements in three orthogonal planes using FSL MCFLIRT

[59, 60]. The images were then corrected for slice timing and spatially smoothed using a Gauss-
ian kernel of full-width half-maximum of 5mm. Data were acquired in an interleaved-odd pat-
tern, thus we utilized the FSL default interleaved option for slice timing correction. Finally,
images were high-pass filtered, then were normalized into a common pediatric atlas space

[66] representing children ages 4.5-8.5 (42/45 of our subjects fell within this age range) in a
step-wise fashion using FSL’s FLIRT.

FSL’s FEAT was used for the whole-brain analysis. The onset timing for each face block was
convolved with a double-gamma hemodynamic response to create a regressor of the predicted
neural response to face blocks. A mixed effects general linear model (GLM) was used to identify
regions where the entire sample, regardless of group membership, activated in response to
faces. Multiple comparisons in the whole-brain analysis were controlled for with a GRF-
theory cluster-corrected threshold of p < 0.05 and a conservative z-statistic threshold of
3.3 (p< 0.001).

Region of Interest Analyses. Because of a priori hypotheses, we focused on defined regions
of interest (ROIs) and the angry and fearful face stimuli. S1 Fig. depicts the location of these
ROIs. ROIs consisted of 6mm spheres formed around coordinates from meta-analyses of the
neural bases of face-processing, emotion perception, emotion regulation, and threat appraisal
[67-70]. We chose to use a coordinate based system for drawing our ROIs, as opposed to ana-
tomical segmentations, in an effort to constrain our analyses to focus on only those portions of
what are often large anatomical regions, particularly in the prefrontal cortex, that have been
implicated in our constructs of interest. Spheres were created on the template brain around
these coordinates and then transformed into subject space using FSL FLIRT [59, 60]. Maxi-
mum percent signal change within an ROI was extracted with the FSL Featquery tool at the
subject level for each condition within a run. Differences in activation within specific ROIs
were tested with SAS mixed multiple regression models, with run and condition modeled as re-
peated measures and standard errors and test statistics of fixed-effect parameters adjusted
using the empirical option. Two separate types of mixed models were run for each ROI: (A)
“simple model,” comparing children without a history of anxiety as preschoolers to an ‘all anx-
ious’ group or to one anxiety disorder at a time, and (B) “comorbidity model,” which simulta-
neously modeled dichotomous variables representing preschool diagnoses of generalized
anxiety, separation anxiety and social phobia. Scanner, age at scan, sex, race, IQ, and school-
age emotional symptoms, were included as covariates in all ROI analyses. School-age emotional
symptoms were measured with the follow-up PAPA and include symptom counts for general-
ized anxiety, separation anxiety, social phobia, and depression, which is often comorbid with,
and shares commonalities with, anxiety disorders.

We employed statistical controls to account for comorbidity in our study. Specifically, we
used an additive main effect model, which provides marginal predictions for each anxiety dis-
order on brain activation. This approach accounts for non-independence between groups and
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identifies the unique contribution of each anxiety disorder in the presence of other anxiety dis-
orders (i.e. controls for comorbid disorders). As such, by including all diagnoses within the
same linear model, while simultaneously controlling for the effects of current symptomatology,
we were able to identify the specific contribution of each individual preschool diagnosis, over-
and-above the effect of current symptomatology.

Psychophysiological Interaction Analysis. A psychophysiological interaction (PPI) analy-
sis was used to investigate group differences in task-based functional connectivity between the
right and left amygdala and the rest of the brain. The PPI analysis was implemented in FEAT
using standard procedures [71]. Specifically, the timecourse was extracted from right and left
amygdala ROIs for each subject. The PPI utilized mixed effects GLM to explore the interaction
between the amygdala time course (physiological regressor), and a psychological regressor
comprised of the timing of the onset of either angry or fearful face blocks (analyzed separately),
convolved with a double-gamma hemodynamic response function where the baseline was the
blocks of colored stars. Regressors consisting of the timing for each of the other task conditions,
scanner, and school-age symptom counts were included as covariates. Similar to the ROI analy-
ses, comorbidity was modeled by simultaneously including regressors for generalized anxiety,
separation anxiety, and social phobia. By including regressors for all three disorders in the
same model, the GLM accounts for variance shared between the disorders, allowing us to detect
only those difference that are specific to each disorder and occur over-and-above the shared ef-
fects. Multiple comparisons were accounted for in the PPI analyses with a GRF-theory cluster-
corrected threshold of p<0.05 and a z-statistic threshold of 1.96 (p<0.05). After thresholding,
group comparison analyses were restricted to clusters identified in the main effect map from
the comparison group (e.g. the non-anxious>generalized anxiety comparison was masked by
the main effect of the non-anxious group and the generalized anxiety>non-anxious compari-
son was masked by the main effect of the generalized anxiety group). This ensured that be-
tween group differences represent differences in regions that are significantly connected to the
amygdala in the comparison group.

Anatomical Region ldentification

For both the whole brain and the PPI analyses, regions displaying significant effects were iden-
tified using the Harvard-Oxford cortical and subcortical probabilistic atlases [72-75], included
in the FSL Analysis package. Additionally, when available, Brodmann Area (BA) designations
were determined using the Talairach atlas [76-78], also included in the FSL Analysis package.

Results
Whole Brain and Region of Interest Analyses

To confirm there was no residual motion or data scrubbing artifacts, we first ran a whole brain
analysis collapsing across all subjects and face blocks. S2 Fig. demonstrates robust activation
across the face-processing network, including the amygdala, fusiform gyrus, and prefrontal
cortex.

Table 2 and S3 Fig. summarize the results from the ROI analyses. All ROI analyses represent
differences in response to either angry or fearful faces as compared to the baseline star condi-
tion. Compared to children without a preschool anxiety disorder, children with a preschool
anxiety had significantly less left dorsolateral prefrontal cortex activity in response to angry
faces (F(1,37) = 4.47, p = 0.0413). There were no other significant differences in the prefrontal
cortex to either face condition, nor were there differences in amygdala activation to either face
condition. Although not a focus of the current study, S1 Table summarizes the results from the
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Table 2. Percent signal change and mixed model results from ROI analyses.

Regions
Angry Amygdala L
Faces
R
vmPFC M
R
Lateral L
OFC
R
dIPFC L
R
VIPFC L
R
rACC R
dmPFC R
Fearful Amygdala L
Faces
R
vmPFC M
R
Lateral L
OFC
R
dIPFC L
R
VvIPFC L
R
rACC R
dmPFC R

* Due to comorbidity, some individuals are represented in more than one anxious sub-group.

MNI

Coordinates

-20, -6, -15

20, -4, -15

0, 38, -18

6, 40, -22

-24, 28, -14

26, 24, -22

-42, 13, 27

48, 17, 29

-42, 25,3

42,25,3

4,47,7

10, 54, 18

-20, -6, -15

20, -4, -15

0, 38, -18

6, 40, -22

-24, 28, -14

26, 24, -22

-42, 13, 27

48, 17, 29

-42, 25,3

42,25,3

4,47,7

10, 54, 18

Average Max Percent Signal Change

Non-Anx
0.88
(0.68)

1.12
0.77)

2.46
(1.86)

3.18
(2.71)

1.18(1.1)
2.7(2.03)

0.47
(0.39)

0.99
(0.93)

0.62
(0.53)

0.56
(0.43)

0.48
(0.56)

0.48
(0.36)

0.7(0.6)
0.96(0.7)
2.28(1.9)
3.42(2.9)

1.31
(1.27)

2.43
(1.78)
0.41
(0.37)
0.92
(1.18)
0.39
(0.42)
0.41
(0.38)
0.45
(0.58)
0.43
(0.43)

(Standard Deviation)

Any Anx

0.8(0.52)
0.9(0.72)

2.01
(1.87)

3.06
(2.87)

1.04
(0.86)

2.76
(2.24)

0.34
(0.27)

0.95(1.3)

0.51
(0.51)

0.51
(0.36)

0.46
(0.55)

0.57
(0.57)

0.87
(0.77)

1(0.74)
1.54(1.4)
2.29(2)

1.21
(1.43)

2.83
(1.85)

0.4(0.42)

0.89
(0.84)
0.45
(0.57)
0.51
(0.45)
0.56
(0.57)

0.51
(0.41)

GAD*
0.85
(0.52)
0.93
(0.7)
2.03
(1.78)
3.17
(2.92)
1.11
(0.82)
2.98
(2.32)
0.36
(0.29)
1.11
(1.5)
0.54
(0.58)
05
(0.41)
0.39
(0.53)
0.53
(0.56)
1.03
(0.85)
1.13
(0.76)
1.21
(1.01)
2.14
(2.09)
1.23
(1.53)
3.05
(2.04)
0.49
(0.43)
1.03
(0.92)
0.53
(0.62)
0.57
(0.51)
0.57
(0.58)

0.55
(0.44)

SAD*
0.8
(0.65)
0.95
(0.82)
2.22
(2.34)
2.93
(2.85)
0.72
(0.66)
3.05
(2.49)
0.3
(0.28)
0.52
(0.48)
0.67
(0.69)
0.44
(0.46)
0.36
(0.58)
0.47
(0.65)
0.89
(0.96)
1.16
(0.96)
1.34
(1.13)
2.17
(2.39)
1.09
(1.81)
2.86
(2.04)
0.34
(0.41)
0.71
(0.67)
0.54
(0.77)
0.45
(0.62)
0.45
(0.68)
0.56
(0.53)

SoPh*
0.69
(0.42)
0.98
0.77)
1.85
(1.92)
2.54
(2.99)
0.75
(0.81)
2.04
(1.88)
0.28
(0.25)
0.65
(0.45)
0.43
(0.35)
0.48
(0.25)
0.56
(0.55)
0.82
(0.53)
0.68
(0.53)
1.11
(0.78)
2.14
(1.6)
2.72
(1.84)
0.87
(0.94)
1.84
(1.25)
0.27
(0.28)
0.67
(0.4)
0.37
(0.42)
0.49
(0.36)
0.61
(0.51)
0.52
(0.33)

Comorbidity Model Adjusted

GAD
0.697

0.334

0.932

0.98

0.536

0.67

0.197

0.516

0.741

0.674

0.481

0.255

0.035

0.262

0.017

0.391

0.278

0.181

0.253

0.952

0.229

0.052

0.358

0.369

p-Values
SAD SoPh
0.847 0.068
0.613 0.4
0.573 0.745
0.809 0.492
0.171  0.359
0.412 0.069
0.63 0.003
0.015 0.343
0.095 0.087
0.636 0.313
0.489 0.598
0.035 0.001
0.509 0.563
0.407 0.569
0.032 0.04
0.346 0.29
0.672 0.247
0.191  0.008
0.804 0.129
0.388 0.338
0.248 0.588
0.949 0.853
0.758 0.573
0.649 0.492

Current

0.264

0.159

0.521

0.216

0.291

0.582

0.255

0.461

0.598

0.565

0.579

0.103

0.978

0.137

0.071

0.211

0.091

0.175

0.569

0.908

0.292

0.067

0.794

0.521

Any Anx vs
Non-Anx
(p-values)

0.398

0.147

0.688

0.522

0.787

0.9

0.041

0.755

0.827

0.499

0.727

0.586

0.135

0.613

0.228

0.309

0.377

0.406

0.851

0.647

0.394

0.257

0.447

0.453

All models account for (1) scanner, (2) sex, (3) race, (4) age at scan, (5) IQ, and (6) current emotional symptom scale scores. Comorbidity models include
all anxiety disorders and current symptoms entered into the same model. Key: Current = current symptoms; Anx = Anxiety; GAD = Generalized Anxiety

Disorder (N = 15); SAD = Separation Anxiety Disorder (N = 10); SoPh = Social Phobia (N = 11); vmPFC = Ventromedial Prefrontal Cortex; OFC = Orbital
Frontal Cortex; rACC = Rostral Anterior Cingulate Cortex; dmPFC = Dorsomedial Prefrontal Cortex.

doi:10.1371/journal.pone.0116854.t002
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comparisons between the children without a preschool anxiety disorder and each individual
preschool anxiety disorder.

In the “comorbidity model,” which included each preschool anxiety diagnosis and school-
age emotional symptom score, preschool social phobia and separation anxiety predicted differ-
ent activation in both the dorsolateral and the dorsomedial prefrontal cortices in response to
angry faces. In the dorsolateral prefrontal cortex, both preschool social phobia (left hemi-
sphere; F(1,35) = 9.89, p = 0.003) and preschool separation anxiety (right hemisphere; F(1,35)
=6.50, p = 0.015) predicted less activation as compared to the non-anxious group. Both separa-
tion anxiety and social phobia also predicted differences in dorsomedial prefrontal cortex acti-
vation to angry faces, with less activation in separation anxiety (F(1,35) = 4.83, p = 0.035) and
greater activation in social phobia (F(1,35) = 12.74, p = 0.001). In response to fearful faces, pre-
school generalized anxiety predicted greater activation in the left amygdala (F(1,35) =4.83,p =
0.035) at school-age as compared to the non-anxious group, while controlling for other pre-
school anxiety disorders and school-age symptomatology.

All three anxiety disorders also predicted significantly different ventromedial prefrontal cor-
tex activation to fearful faces. However, whereas both preschool generalized anxiety (F(1,35) =
6.29, p = 0.017) and separation anxiety (F(1,35) = 5.02, p = 0.032) predicted less activation, pre-
school social phobia predicted greater activation (F(1,35) = 4.53, p = 0.040). Finally, in the
right lateral orbitofrontal cortex, preschool social phobia predicted less activation (F(1,35) =
7.99, p = 0.008) to fearful faces.

Functional Connectivity (PPI) Analysis

PPI results are illustrated in Fig. 2 and selected results are presented in Tables 3-5. Full results
are included in S2 and S3 Tables. When controlling for comorbidity between disorders, each of
the three anxiety disorders predicted different patterns of amygdala-prefrontal connectivity.
Compared to children without a preschool anxiety disorder, children with preschool social
phobia (Table 3; Fig. 2A) showed less school-age negative connectivity between the bilateral
amygdalae (Left: z33=5.35, p = 0.045; Right: 35 = 4.11, p = 0.034) and both the right lateral
orbitofrontal and the ventromedial prefrontal cortices to angry faces, but not fearful faces.
Thus, in non-anxious children, there was an inverse relationship between activity in the amyg-
dala and the prefrontal cortex to fearful faces and the strength of this correlation was decreased
in children with a history of social phobia. Preschool generalized anxiety (Table 4; Fig. 2B) pre-
dicted less school-age negative connectivity between the left amygdala (z5; = 3.81, p = 0.002)
and both the dorsomedial prefrontal and the ventrolateral/dorsolateral prefrontal cortices in
response to fearful, but not angry faces. Similar to social phobia, preschool separation anxiety
predicted less school-age negative connectivity to angry faces as compared to non-anxious chil-
dren (Table 3; Fig. 2C). This less negative connectivity was between each amygdala (Left:
23,=4.62, p<0.001; Right: z3,=4.6, p<0.001) and the anterior cingulate, lateral orbitofrontal,
and ventromedial prefrontal cortices. Unlike the other anxious groups, preschool separation
anxiety also predicted greater positive connectivity between each amygdala (Left: z;,=4.68,
p<0.001; Right z3,=5.43, p<0.001) and both the dorsolateral and the dorsomedial prefrontal
cortices to angry faces at school-age (Table 5).

As highlighted in Table 1, there were 3 non-anxious children and 13 anxious children who
met criteria for a non-anxiety psychiatric disorder, including depression, ADHD, oppositional
defiant disorder, or conduct disorder, during preschool. In order to ensure that our findings
were not accounted for by these other comorbid disorders, we reran our analyses controlling
for other disorders. Our findings remained unchanged. Compared to children without a pre-
school anxiety disorder, children with preschool social phobia still showed less school-age
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Figure 2. Amygdala-prefrontal connectivity in school-age children who met criteria for preschooler anxiety compared to non-anxious children. All
groups were included in the model, thus these images depict the unique contribution of each disorder controlling for comorbidity with the other disorders.

(A) Ventral prefrontal regions, including the ventromedial prefrontal cortex and orbital frontal cortex, displaying less negative connectivity with the amygdala
to angry faces in social phobia (N = 11). (B) Dorsal prefrontal regions, including the dorsomedial, dorsolateral, and ventrolateral prefrontal cortex, displaying
less negative connectivity with the amygdala to fearful faces in generalized anxiety disorder (N = 15). (C) Ventral prefrontal regions, including the
ventromedial and orbital frontal cortices, depicting less negative connectivity (blue) with the amygdala and dorsomedial prefrontal regions depicting greater
positive connectivity (yellow) with the amygdala to angry faces in separation anxiety disorder (N = 10). (D) Summary of PPI connectivity pattern, with an up-
facing arrow denoting regions where there is an increase in the strength of the positive or negative connection in the anxiety subgroup, as compared to non-
anxious children, and regions where there is a decrease in the strength of the positive or negative connection in the anxiety subgroup denoted with a down-
facing arrow.

doi:10.1371/journal.pone.0116854.g002

negative connectivity between the bilateral amygdalae (Left: z353 = 5.33, p = 0.046; Right:
233=3.92, p = 0.048) and both the right lateral orbitofrontal and the ventromedial prefrontal
cortices to angry faces, but not fearful faces. Preschool generalized anxiety still predicted less
school-age negative connectivity between the left amygdala (z5; = 4.01, p<0.001) and both the
dorsomedial prefrontal and the ventrolateral/dorsolateral prefrontal cortices in response to
fearful, but not angry faces. Finally, as compared to non-anxious children, preschool separation
anxiety predicted less school-age negative connectivity between each amygdala (Left: z3, =
4.55, p<0.001; Right: z3, = 4.58, p<0.001) and the anterior cingulate, lateral orbitofrontal, and

PLOS ONE | DOI:10.1371/journal.pone.0116854 January 27, 2015 13/24



@'PLOS ‘ ONE

Preschool Anxiety and Brain Connectivity

Table 3. Selected Clusters from Psychophysiological Interaction Analysis of Negative Connectivity to Angry Faces.

Social Phobia

Separation Anxiety Disorder

Seed Region

Left Amygdala

Right Amygdala

Left Amygdala

Right Amygdala

Main Cluster
Local Maxima

Temporal Pole/Amygdala

Orbital Frontal
Frontal Medial
Orbital Frontal
Orbital Frontal
Frontal Pole
Subcallosal
Orbital Frontal
Frontal Pole
Subcallosal
Subcallosal
Frontal Medial

Anterior Cingulate, rostral
Anterior Cingulate, rostral
Anterior Cingulate, dorsal
Anterior Cingulate, rostral
Anterior Cingulate, rostral
Anterior Cingulate, dorsal
Anterior Cingulate, dorsal

Caudate
Frontal Medial

Anterior Cingulate, rostral

Insular
Subcallosal

R
R
L
R
R
R
L
R
R
R
L
L
L
L
R
L
L
R
R
R
R
L
L
R

BA

28

47
47

47

24

24

25

X

27
22
-4
36
34
26
-9
37
25
4
-6
-10
7
-9
4
-10

Y

4
21
39
35
34
36
29
34
37
28
31
34
37
36
22
38
40
19
20
15
37
37
22
12

z

-11

Max Z*

5.35
4.02
3.64
3.64
3.64
3.6

4.11
3.88
3.87
3.83
3.79
3.61
4.62
4.56
4.44
4.39
4.36
4.23
4.6

4.29
4.19
4.18
4.16
4.16

Size

15048

15562

51080

90284

Corrected p-value

0.0453

0.0342

6.62E-06

2.67E-09

*Positive Z-scores represent regions where the Non-anxious group showed stronger connectivity than the Separation Anxiety Disorder or Social Phobia

groups. Full tables of results can be found in supplementary materials.

doi:10.1371/journal.pone.0116854.t003

ventromedial prefrontal cortices. Preschool separation anxiety also predicted greater positive

connectivity, compared to non-anxious children, between each amygdala (Left: z3, = 4.57,
p<0.001.; Right z3, = 5.47, p<0.001) and both the dorsolateral and the dorsomedial prefrontal
cortices to angry faces at school-age.

Table 4. Selected Clusters from Psychophysiological Interaction Analysis of Negative Connectivity to Fearful Faces.

Generalized Anxiety Disorder

Seed Region

Left Amygdala

Main Cluster

Local Maxima

Frontal Pole
Frontal Pole
Frontal Pole
Frontal Pole
Frontal Pole
Frontal Pole

T T T T IV I

BA

10

X

27
33
27
24
30
26

Y

55
53
57
55
53
54

z

0
19
20
11
11
2

Max Z*

3.81
3.74
3.72
3.67
3.63
3.62

Size

27106

Corrected p-value

0.00153

*Positive Z-scores represent regions where the Non-anxious group showed stronger connectivity than the Generalized Anxiety Disorder group. Full tables

of results can be found in supplementary materials.

doi:10.1371/journal.pone.0116854.t004
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Table 5. Selected Clusters from Psychophysiological Interaction Analysis of Positive Connectivity to Angry Faces.

Separation Anxiety Disorder

Left Amygdala Frontal Pole

Right Amygdala  Frontal Pole

Seed Region Main Cluster BA X Y Y4 Max Z*  Size Corrected p-value
Local Maxima
R 9 60 19 -4.68 85995 9.08E-09
Frontal Pole R 14 63 20 -4.67
Anterior Cingulate, rostral L 24 -7 37 10 -4.62
Frontal Pole R 13 57 19 -4.56
Anterior Cingulate, rostral L -9 36 9 -4.56
Anterior Cingulate, dorsal R 4 22 18 -4.44
R 15 58 21 -5.43 123648 1.05E-11
Frontal Pole R 9 59 22 -5.05
Frontal Pole R 7 61 15 -4.89
Frontal Pole R 18 48 22 -4.75
Frontal Pole R 21 44 22 475
Frontal Pole L 26 63 15 -4.71

*Negative Z-scores represent regions where the Non-anxious group showed weaker connectivity than the Separation Anxiety Disorder group. Full tables
of results can be found in supplementary materials.

doi:10.1371/journal.pone.0116854.t005

Discussion

In this study we explored whether preschool generalized anxiety, separation anxiety, and/or so-
cial phobia were associated with amygdala-prefrontal dysregulation at school age. As a second-
ary, exploratory goal, we explored whether differences in patterns of amygdala-prefrontal
dysregulation underlie phenotypic differences between specific anxiety disorders. We found
that anxiety in the preschool period predicted neurobiological differences at school-age, even
when accounting for concurrent school-age emotional symptoms. We also found preliminary
evidence suggesting that preschool anxiety disorders are differentiated at the level of brain
function based on both the stimuli that elicit the brain response and the dorsal-ventral distribu-
tion of the prefrontal regions atypically connected to the amygdala. Together, these data pro-
vide preliminary evidence that the early onset of impairing anxiety disorders may impact brain
functioning in later childhood and that there may be a neurobiological basis for phenotypic dif-
ferences between specific anxiety disorders.

Our findings support previous studies in older children that have shown abnormal func-
tioning of the amygdala-prefrontal emotion regulation networks in anxiety [29-31]. In our
“simple model” which did not account for comorbidity between anxiety disorders, meeting cri-
teria for any anxiety disorder as a preschooler predicted school-age functional activation differ-
ences in one region: the dorsolateral prefrontal cortex, a region where dysregulation has been
implicated in the cognitive regulation of emotional responses [37] which is a shared character-
istic of all anxiety disorders. A similar pattern has been demonstrated for preschool depression,
which is often comorbid with anxiety disorders and shares features with generalized anxiety
[15, 20, 79]. Barch and colleagues have reported that a history of preschool onset depression
predicts differences in amygdala and prefrontal responses to emotional faces that can be mea-
sured at school-age and which persist despite controlling for concurrent emotional symptoms
[80]. As in our study where not all children who met criteria for a preschool anxiety disorder
still met criteria at school age, not all children who met criteria for depression as preschoolers
still met criteria for the disorder at school-age in their study. Together our results suggest that a
history of either anxiety or depression in the preschool period is associated with
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neurodevelopmental processes that start early in life, specifically in amygdala and prefrontal
circuitry, and that persist into school-age even if some children no longer meet criteria for the
disorder.

In addition to providing evidence for the presence of enduring neural effects associated with
impairing preschool anxiety disorders, our ROI analyses provide preliminary evidence for
neurobiological differences between generalized anxiety, separation anxiety, and social phobia
in early childhood. For example, in our “comorbidity model” we found that the decreased dor-
solateral prefrontal cortex activation reported for the “all-anxious” group only remained in the
subset of children with social phobia, suggesting that atypical dorsolateral prefrontal cortex de-
velopment may specifically reflect early childhood social phobia, not anxious distress in gener-
al. The different activation patterns that emerged when we controlled for comorbidity between
disorders provide preliminary evidence that unmodeled between-anxiety comorbidity may
mask interesting, disorder-specific differences.

In addition to regional activation differences for the specific anxiety disorders when we con-
trolled for comorbidity between disorders, we found preliminary evidence for anxiety disorder-
specific differences in (1) the pattern of amygdala-prefrontal connectivity and (2) the negative
face condition (i.e., angry or fearful faces) that elicited the difference in connectivity response.
Previous work suggests that fearful and angry faces depict different types of information, with
angry faces imparting information about a directed social threat and fearful faces imparting in-
formation about ambiguous threats in the environment [81]. In our study, fearful and
angry faces elicit disorder-specific patterns of amygdala-prefrontal connectivity. Differences
in the pattern of disruptions in amygdala-prefrontal connectivity may result in disruptions in
different aspects of emotion regulation, resulting in different patterns of anxious distress
that are reflected in the unique phenotypic expression associated with our anxiety disorder
sub-types.

Our data suggests that early childhood generalized anxiety may reflect disruption of effortful
emotion regulation processes, such as suppression and reappraisal, involve regulation of the
amygdala by the dorsal prefrontal cortices [37-39]. We found that a history of preschool gener-
alized anxiety disorder predicted decreased school-age negative connectivity between the
amygdala and both the dorsomedial and ventrolateral/dorsolateral prefrontal cortices in re-
sponse to fearful face, but not to angry faces. These amygdala-dorsal prefrontal systems have
been implicated in worry [35, 36], and disrupted amygdala-dorsal prefrontal connectivity has
been found in adults with generalized anxiety disorder [82, 83], suggesting that dysregulation
between the amygdala and the dorsal prefrontal cortices underlies the worries and rumination
that characterize generalized anxiety. The atypical connectivity between the amygdala and dor-
sal prefrontal networks associated with generalized anxiety disorder may contribute to the in-
creased amygdala activation to negative faces reported previously [49, 50, 84] and replicated in
our ROI analyses. Our data suggest that dysregulation of this amygdala-dorsal prefrontal net-
work and generalized anxiety symptoms can emerge early in development.

Our data suggest that early childhood social phobia may reflect dysregulation of automatic
emotional regulation and fear extinction processes that result in the hypervigilance to social in-
formation and the inability to regulate the resulting fear response that is characteristic of this
disorder. In our study, preschool social phobia predicted less school-age negative connectivity
between the amygdala and a ventral prefrontal network, including the lateral orbitofrontal cor-
tex, ventromedial prefrontal cortex, and anterior cingulate cortex, which previous studies have
shown are associated with automatic emotion regulation and fear extinction processes [37-39].
Our finding in young children replicates previous reports of less amygdala-ventral prefrontal
cortex connectivity in adults with social phobia [85-87], and suggests that atypical develop-
ment of this network emerges early in development.
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Our data suggest that early childhood separation anxiety may reflect HPA axis dysregula-
tion. We found that a history of preschool separation anxiety predicted a unique pattern of
amygdala-prefrontal connectivity, with less negative amygdala-ventromedial prefrontal cortex
connectivity and greater positive amygdala-dorsomedial prefrontal cortex (BA10/46) connec-
tivity to angry faces at school-age. The dorsal prefrontal cortex imparts its influence on the
amygdala via shared connections with more ventral portions of the prefrontal cortex [88, 89].
Greater activation in the dorsomedial prefrontal cortex and negative correlations between the
ventromedial prefrontal cortex and the amygdala are associated with better HPA axis regula-
tion [90, 91]. Our results, while preliminary, provide some evidence suggesting that dysregula-
tion of the pathway from the dorsomedial to the ventromedial prefrontal cortex and the
associated inhibition of the amygdala response may underlie previous reports of HPA-axis dys-
regulation in separation anxiety [51]. This interpretation is consistent with non-human pri-
mate studies of the neural circuits activated by separation distress [52] and thus provides a
possible neurobiological mechanism for the developmentally inappropriate and excessive sepa-
ration distress characteristic of this disorder.

Both preschool separation anxiety and social phobia predicted different school-age connec-
tivity in response to angry faces, but not fearful faces as found with preschool generalized anxi-
ety. These anxiety phenotype-specific atypical activation responses to different types of
negative emotional stimuli suggest that children with early generalized anxiety respond atypi-
cally to ambiguous environmental threats (e.g. fearful faces) whereas children with separation
anxiety and social phobia respond atypically to direct social threats (e.g. angry faces). These dif-
ferences in neural connectivity by stimulus type are consistent with the phenotypic differences
between the social fears and avoidance that characterize separation anxiety and social phobia
and the ruminative worries characteristic of generalized anxiety.

Although our finding of decreased negative amygdala-prefrontal connectivity in generalized
anxiety and social phobia replicate several previous studies (there are no imaging studies of sepa-
ration anxiety), other groups report increased positive amygdala-prefrontal connectivity in these
disorders [82, 92, 93]. Our data suggest that decreased negative connectivity is not associated with
a concomitant increase in positive connectivity, as there were no networks in which children with
a history of either preschool generalized anxiety or social phobia displayed increased positive con-
nectivity as compared to non-anxious children (see S3 Table). One explanation for these different
findings is our use of the star stimuli as the baseline condition. Many previous studies have used
neutral faces as a baseline condition, which controls for emotion-general effects, but may result in
unintended bias based on evidence that neutral faces are not processed the same in social phobia
as they are in unaffected individuals [62]. A more compelling explanation for these differences is
that many of the previous studies ignored the influence of between-anxiety comorbidity, which,
as shown in our ROI analyses, may mask important differences between the disorders. Because of
our modest sample size and high levels of comorbidity between anxiety disorders, we were under-
powered to test whole-brain differences between specific anxiety disorders. Thus, it was impossi-
ble to test whether the patterns of amygdala-prefrontal dysregulation between each disorder and
the non-anxious children was also different between anxiety disorders and therefore our specifici-
ty results represent exploratory, preliminary findings needing replication.

Our study has a number of limitations. Although our sample is drawn from a larger com-
munity pediatric primary care study, not a clinical sample, the sample size for this first wave of
our imaging study is modest, although similar to other neuroimaging studies in young children
[80]. Our relatively small sample size reflects the challenge of conducting fMRIs with children
under the age of seven, many of whom are anxious. We achieved a significantly better success
rate of 76% at our second functional MRI time point, where we scanned older children (ages
6-10 years old) on an almost identical paradigm to the one used in the present paper. One
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solution for increasing our power would have been to use continuous symptom counts, as op-
posed to the dichotomous diagnostic variables, in our analyses. We chose against this option
because the number of symptoms comprising each anxiety sub-type is variable, with social
phobia in particular being comprised of fewer symptoms. This would have introduced an un-
desirable bias in our analyses. Another limitation is that we did not have the power to examine
differences between children who “outgrow” their preschool anxiety diagnosis and those who
maintain or develop anxiety in later childhood. Finally, without concurrent eye-tracking during
the scans, it is impossible to ensure that the participants were fully engaged with the stimuli
throughout the scan. In an effort to keep the children engaged, we asked them to press a button
to faces wearing glasses. While this helped ensure that the children were attending to the sti-
muli, it necessarily drew the children’s attention to the eye area of the face. Previous eye-
tracking studies demonstrate that children with anxiety display different attentional bias to
emotional faces (reviewed in [94]). Future studies using concurrent eye-tracking are needed to
determine whether differences in attention to the eye area of the faces drove our imaging find-
ings. While our study provides the first glimpse into the neurobiological correlates of preschool
anxiety disorders, the results must be interpreted with caution in light of these limitations until
they are replicated in a larger cohort of children.

In summary, we found support for our hypothesis that impairing anxiety in the preschool
period is associated with neural effects at school age that occur over-and-above the effects of
school-age emotional symptoms. We also found preliminary support for our exploratory hy-
pothesis that phenotypic differences between anxiety disorders may be associated with disor-
der-specific regulation of amygdala-prefrontal networks. By understanding the neurobiological
mechanisms that contribute to the development of, and the phenotypic distinction between,
impairing anxiety disorders in early childhood, we may be able eventually to identify biomark-
ers for early risk and early symptoms, and to develop measurable, disorder-specific targets for
intervention. Early identification and intervention may enable us to decrease distress and im-
pairment in young children with clinically significant anxiety, to alter children’s neurodevelop-
mental trajectory during a period when they are developing the neurobiological pathways
supporting emotion regulation skills [27] and thus to decrease young children’s risk for impair-
ing emotional disorders in adolescence and adulthood.

Supporting Information

S1 Fig. Location of each of the region of interests. ROIs consisted of 6mm spheres formed
around coordinates from meta-analyses of the neural bases of face-processing, emotion percep-
tion, emotion regulation, and threat appraisal [72-75].

(TTF)

S2 Fig. Activation in the entire sample of children (N = 45) in response to face stimuli. Sig-
nificant activation clusters were identified in the face-processing network, including the (A)
amygdala, as well as the (B) fusiform gyrus and prefrontal cortex. For reference, panel (C) in-
cludes the posterior probability map produced from a query of “faces” in the NeuroSynth
meta-analysis atlas [95].

(TIF)

S3 Fig. Graphs of significant ROI findings. All data points represent model corrected predic-
tive values. *Note: some individuals are represented in more than one anxiety group, namely
generalized anxiety disorder (GAD), separation anxiety disorder (SAD), or social phobia
(SoPh).

(TTF)
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