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Drug induced nephrotoxicity is a major clinical challenge, and it is always associated with
higher costs for the pharmaceutical industry and due to detection during the late stages of drug
development. It is desirable for improving the health outcomes for patients to distinguish
nephrotoxic structures at an early stage of drug development. In this study, we focused on
in silico prediction and insights into the structural basis of drug induced nephrotoxicity, based
on reliable data on human nephrotoxicity. We collected 565 diverse chemical structures,
including 287 nephrotoxic drugs on humans in the real world, and 278 non-nephrotoxic
approved drugs. Several different machine learning and deep learning algorithms were
employed for in silico model building. Then, a consensus model was developed based on
three best individual models (RFR_QNPR, XGBOOST_QNPR, and CNF). The consensus
model performed much better than individual models on internal validation and it achieved
prediction accuracy of 86.24% external validation. The results of analysis of molecular
properties differences between nephrotoxic and non-nephrotoxic structures indicated that
several keymolecular properties differ significantly, includingmolecular weight (MW),molecular
polar surface area (MPSA), AlogP, number of hydrogen bond acceptors (nHBA), molecular
solubility (LogS), the number of rotatable bonds (nRotB), and the number of aromatic rings
(nAR). These molecular properties may be able to play an important part in the identification of
nephrotoxic chemicals. Finally, 87 structural alerts for chemical nephrotoxicity wereminedwith
f-score and positive rate analysis of substructures fromKlekota-Roth fingerprint (KRFP). These
structural alerts can well identify nephrotoxic drug structures in the data set. The in silico
models and the structural alerts could be freely accessed via https://ochem.eu/article/140251
and http://www.sapredictor.cn, respectively. We hope the results should provide useful tools
for early nephrotoxicity estimation in drug development.
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INTRODUCTION

Drug induced nephrotoxicity (DIN) can be defined as any renal injury caused directly or indirectly by
medications (Sales and Foresto, 2020), which has been a major issue for patients and the pharmaceutical
industry. The real world data (RWD) showed that incidence of drug induced nephrotoxicity to be
approximately 14–26% in adult populations (Mehta et al., 2004; Uchino et al., 2005; Hoste et al., 2015).
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The syndrome always contributes to considerable morbidity,
mortality, and high costs, and it can lead to the development of
chronic kidney disease (CKD) or end-stage renal disease (ESRD).
Nephrotoxicity has become an important concern in modern drug
development. It is one of the major reasons for safety-related
failures at all phases of drug development and even marketed
drugs being restricted or withdrawn (Zhang et al., 2019).

The mechanisms of drug induced nephrotoxicity were very
complex andmay be different between various drug classes. Based
on the histological component of the affected kidney, the drug
induced nephrotoxicity should be categorized as three
mechanisms, including proximal tubular injury and acute
tubular necrosis (ATN), tubular obstruction by crystals or
casts containing drugs and their metabolites, and interstitial
nephritis induced by drugs and their metabolites (Nolin and
Himmelfarb, 2010; Kwiatkowska et al., 2021). On the other hand,
the mechanisms of drug induced nephrotoxicity can also be
classified according to the mode of action of the drugs,
including cytotoxicity (necrosis or apoptosis), immune injury,
and ischemic injury. With the help of transdermal transport
system, especially organic anion transporter 1 (OAT1), drugs
were accumulated in proximal convoluted tubule epithelial cells.
The cell necrosis or apoptosis would be caused when high
concentration was reached, then cell necrosis or apoptosis
would be caused (Sekine and Endou, 2009). It was reported
that drugs can act on mitochondria and block production of
adenosine triphosphate (ATP), resulting in cell necrosis or
apoptosis (Gai et al., 2020). Nephrotoxic drugs can also
increase superoxide free radical production and decrease
antioxidant free radical production in epithelial cells, which
can also lead to cell necrosis or apoptosis (Paller et al., 1984).
Ferroptosis was a type of cell death characterized by iron overload
and accumulation of toxic lipid peroxides (Li et al., 2020). In
recent years, studies have shown that ferroptosis was closely
related to drug induced nephrotoxicity, especially acute kidney
injury, but the exact molecular biological mechanism has not
been clarified, and this needs more research (Hu et al., 2019). The
immune response caused by some drugs acting as antigens or
haptens can result in inflammation of the blood vessels and
tubules of the kidney, such as penicillin-induced interstitial
nephritis (Spanou et al., 2006). This kind of immune damage
was related to individual hypersensitivity to drugs, so there were
significant individual differences. Besides, nephrotoxic drugs can
cause renal ischemia and injury by reducing blood perfusion in
renal tissues (Raza and Naureen, 2020). For example,
nonsteroidal anti-inflammatory drugs (NSAIDs) were able to
reduce renal blood flow by changing the resistance of glomerular
entry and exit arteries, and then induce renal ischemic injury
(Hörl, 2010). Unfortunately, there are few studies on the
structural characteristics of nephrotoxic drugs.

The evaluation of the nephrotoxic potential of chemicals in
early stage is quite important and useful for reducing the failure of
drug development. The in vivo test for drug induced
nephrotoxicity evaluation is always very complicated, costly,
and time-consuming, and it is not suitable for screening a
large number of chemicals, and especially for virtual
structures. Besides, the experimental results are easily affected

by various factors such as model animals and technology and
environment. Compared with biological experimental methods,
the use of computational toxicology for nephrotoxicity estimation
of compounds has obvious advantages: (1) large quantities of
compounds can be rapidly processed and predicted; (2) the
toxicity of the compound can be predicted by computational
models as long as the structure is known, even if the compound
has not been synthesized; and (3) computational toxicological
methods can also contribute to the study of the mechanisms.
Consequently, it should make a lot of sense to develop fast and
accurate computational tools to estimate the risk of
nephrotoxicity. Over the past decades, many computational
models have been developed for toxicity prediction, but only a
few models reported related to kidney injury or urinary tract
toxicity, and due to the variety and complexity of the symptoms
and mechanisms. Lei et al. summarized the reported models
related to urinary tract toxicity until 2017 (Lei et al., 2017). Most
of them were established based on biomarker descriptors, and
only five models were based on theoretical descriptors with the
datasets of drugs in various development phases. In Lei et al.’s
study, they developed a series of qualitative and quantitative
structure activity relationship (QSAR) models for urinary tract
toxicity prediction using 258 compounds, the best regression
model reached q2ext of 0.845 for the test set, and the best
classification model gave global accuracy of 90.77% for the test
set. Zhang et al. developed an in silico prediction model for
chemical induced urinary tract toxicity using naïve Bayes
classifier based on mouse intraperitoneal data set (Zhang et al.,
2019). The model provided 84.2% overall accuracy for the external
test set. They also obtained several importantmolecular descriptors
and fragments. More recently, Sun et al. developed QSAR models
for screening nephrotoxicity of the ingredients in TCMs based on
natural product or mixed dataset (Sun et al., 2019). The models
performed well on external validation with 30 ingredients in the
TCMs. The published models related to nephrotoxicity always
provided high statistical performance. However, the structural
characteristics of nephrotoxic and non-nephrotoxic drugs were
rarely analyzed in these studies, and the usefulness of most
published models was restricted because of poor availability.
Besides, it should be more useful to develop the models based
on real world data with human nephrotoxicity, and due to the
species specificity in drug toxicity between rodent animals and
human beings.

In the present study, we focused on the in silico prediction and
insights into the structural basis of drug induced nephrotoxicity
based on the medications causing human nephrotoxicity in the
real world.

MATERIALS AND METHODS

Data Source and Preparation
In this study, only medications with human nephrotoxicity data
were included. The nephrotoxic structures were extracted from
the Side Effect Resource (SIDER) database (Kuhn et al., 2016).
SIDER is a widely used database of adverse drug reactions
(ADRs), which contained the information on approved drugs
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and the ADRs on humans. Herein, we retrieved the entire SIDER
database and collected those drugs with nephrotoxicity related
ADRs with frequency ≥0.1% in the real world. The corresponding
structures of included chemicals were downloaded in smiles
format from the PubChem database (Kim et al., 2016). The
non-nephrotoxic structures were extracted from Zhang’s work
(Zhang et al., 2019). They built the negative drug dataset with the
drugs without nephrotoxicity from the SIDER database. The
included structures were carefully prepared as follows: (1)
removing duplicate substances; (2) keep only the main
ingredients in mixtures; and (3) salts were converted to their
parent forms.

Principal Component Analysis for the
Definition of the Chemical Space
The sufficiently structural diversity was a key issue for global
QSAR models to ensure a reasonable predictive accuracy
(Ancuceanu et al., 2019). Principal component analysis (PCA)
is a well-known technique for reducing the dimensionality and
increasing interpretability, which can solve an eigenvector
problem by creating new uncorrelated variables that
successively maximize variance (Jolliffe and Cadima, 2016). In
this study, the chemical space of data sets was analyzed with the
first two principal components of CDK (Chemistry Development
Kit) Descriptors. The PCA was performed using SPSS
Statistics 26.

Algorithms For Model Building
The model building was performed on the online chemical
database and modeling environment (OCHEM), which is a
user friendly web-based platform for automatic and simple
QSAR modeling (Sushko et al., 2011). OCHEM supports the
typical steps of QSARmodeling, and the models can be published
and publicly used on the web (Oprisiu et al., 2013; Cui et al., 2019;
Pawar et al., 2019; Cui et al., 2021; Hua et al., 2021; Huang et al.,
2021; Ta et al., 2021). Among the many state-of-the-art modeling
methods available on OCHEM, we applied five widely used
traditional machine learning (ML) approaches and five
different deep learning (DL) algorithms. As an application of
artificial intelligence (AI), ML has been an effective tool for
modeling in computational toxicology. Five highly effective
and robust ML approaches were used in this study, including
associative neural network (ASNN) (Tetko, 2009), support vector
machine (SVM) (Chang and Lin, 2011), C4.5 decision tree
(WEKA J48) (Hall et al., 2009), random forest (RFR)
(Breiman, 2001), and extreme gradient boosting (XGBoost)
(Chen and Guestrin, 2016). DL is an extension of machine
learning, and its concept came from the research of artificial
neural networks. In this study, we used five different DL
approaches, including convolutional neural network
fingerprint (CNF) (Tetko et al., 2019), transformer
convolutional neural network (TRANSNN) (Karpov et al.,
2020), TEXTCNN algorithm available from DeepChem
(TEXTCNN) (Wu et al., 2017), Graph Isomorphism Network
(GIN) (Capela et al., 2019), and edge attention based multi-
relational graph convolutional networks (EAGCNG) (Shang

et al., 2018). The detailed descriptions of these ML and DL
approaches can be found in the corresponding literature.

The individual parameters for each model algorithm were
optimized automatically by the method itself in an inner loop of
cross-validation. For instance, the SVM algorithm used libSVM
(Chang and Lin, 2011) on OCHEM. There were two important
configurable options for this method, including SVM type (ε-SVR
and μ-SVR, etc.) and the kernel type (linear, polynomial, radial
basis function, sigmoid, etc.). In the OCHEM workflow, classic
ε-SVR and radial basis function kernels were used. The other
SVM parameters, namely cost C and width of the RBF kernel (γ,
g), were optimized using default grid search, and this was
performed according to the LibSVM manual (Tetko et al., 2013).

Molecular Description
For the machine learning modeling, the molecular descriptors
were served as the input of drug structures. We calculated eight
different descriptor packages, including Chemaxon descriptors
(Chemaxon, 499 descriptors), Fragmentor, GSFrag descriptors
(GSFrag, 1,138 descriptors), MORDRED descriptors
(MORDRED, 1826 descriptors), PyDescriptor (1,624
descriptors), QNPR descriptors (QNPR), RDKit descriptors
(RDKit), and alvaDesc descriptors (5,666 descriptors). The
details of these descriptor packages can be learned via http://
docs.ochem.eu//display/MAN/Molecular+descriptors.html. The
descriptors were filtered with pairwise de-correlation method
before the model building. There was no selection bias, since the
unsupervised filtering was totally independent.

For the deep learning models, the SMILES string of each
compound was served as the input without descriptors.

Consensus Modeling
Consensus modeling is to unify the prediction of unknown
samples by multiple individual models to achieve a unified
result, and then improve the prediction of the model. By
averaging the prediction of individual models, noise can be
reduced, thus, and the consensus model can provide better
predictive power than most individual models alone (Tapia
Garcı’a et al., 2012). Herein, the consensus model was built
with simple average of predictions from the best performed
individual models.

Applicability Domain Assessment
For QSAR models, it is important to estimate the applicability
domain (AD) to determine whether the test compound is suitable
for the specific model. In this study, we determined the AD with
distance to model (DM) in OCHEM proposed by Sushko (Sushko
et al., 2011). The DM assesses the distance from the target
compound to the model. The larger DM means the lower
applicability for the target compound.

Analysis of Molecular Properties
Differences Between Nephrotoxic and
Non-nephrotoxic Structures
The molecular properties of compounds always can make a
significant difference in the toxicity. In this study, the analysis
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of differences of molecular properties between nephrotoxic and
non-nephrotoxic structures was performed, in order to
investigate the relevance of these molecular properties with
drug induced nephrotoxicity. Several commonly used physical-
chemical properties which have been widely adopted in the
analysis for other endpoints were calculated and analyzed,
including molecular weight (MW), molecular polar surface
area (MPSA), AlogP, molecular solubility (LogS), the number
of hydrogen bond acceptors (nHBA) and donors (nHBD), the
number of rotatable bonds (nRotB), and the number of aromatic
rings (nAR). These properties are relative to the molecular size,
lipophilicity and solubility, and hydrogen bonding ability and
complexity, respectively. The comparison between groups was
tested by T-test, and the p value <0.05 was considered to indicate
statistical significance. The molecular properties were calculated
with PaDEL-Descriptor package (Yap, 2011).

Identification of Structural Alerts
Responsible for Nephrotoxicity
Structural alert (SA), or privileged substructure, was defined as
the substructure which can cause the chemicals to become toxic.
It has been well accepted in toxicity assessment, because of the
direct derivation from mechanistic knowledge. SAs have been
commonly used for toxicity assessment of many different
endpoints (Claesson and Minidis, 2018; Yang et al., 2018;
Wedlake et al., 2020). In this study, we identified the
structural alerts for nephrotoxicity by calculating f-score and
positive rate of each fragment from Klekota-Roth fingerprint
(KRFP, 4,860 bits). The specific substructure should be regarded
as a SA if presented more frequently in nephrotoxic drugs than
non-nephrotoxic drugs. The positive rate (PR) of a substructure
was defined as below:

PR � Nfragment positive

Nfragment
(1)

where Nfragment_positive was the number of nephrotoxic drugs
containing the fragment, and Nfragment was the total number of
drugs containing the fragment.

Validation and Evaluation of Models
All theML andDLmodels were first internally validated with 5-fold
cross validation, and the best performed models were further
validated with the external validation set. The structural alerts
were assessed with the whole dataset. The classifiers and SAs
were evaluated based on the counts of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN). Several
statistical parameters were calculated to evaluate the classifiers,
including the total accuracy (Q), sensitivity (SE), specificity (SP),
enrichment factor (EF), and Matthews correlation coefficient
(MCC), which were calculated with Eqs (2–6).

Q � TP + TN

TP + FN + TN + FP
(2)

SE � TP

TP + FN
(3)

SP � TN

TN + FP
(4)

EF � TN/(TN + FN)
(TN + FP)/(TP + FN + TN + FP) (5)

MCC � TPpTN − FPpFN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (6)

Additionally, the receiver operating characteristic (ROC)
curve was also plotted for the QSAR models, and the values of
area under the ROC curve (AUC) were provided, too.

RESULTS AND DISCUSSION

Data Set Analysis
In the study, 565 diverse structures were kept after preparation,
including 287 nephrotoxic drugs and 278 non-nephrotoxic drugs.
As shown in Table 1, the whole data set was randomly divided
into a training set with 456 chemicals (232 nephrotoxic and 224
non-nephrotoxic) and an external validation set with 109
chemicals (55 nephrotoxic and 54 non-nephrotoxic). The
structures of the drugs can be found in Supplementary Table S1.

The diversity of structures is a crucial factor for the applicability
of global models. Thus, we performed the principal component
analysis (PCA) based on CDK descriptors to analyze the chemical
space of the included compounds. PCA can simplify the
complexity in high-dimensional data while retaining trends
and patterns by transforming the data into fewer dimensions,
which act as summaries of features (Ringnér, 2008). The first
two principal components were kept and used for the definition
of the chemical space of compound in the training and
validation sets in this study. As shown in Figure 1, the
distribution scatter diagram illustrated that the data sets
shared a similar chemical space. In addition, the Tanimoto
similarity index (TSI) was also calculated based on the ECFP-4
fingerprint to evaluate similarities among the structures. The
average value of the entire data set was 0.13, which indicated an
evidently chemical diversity of the entire data set.

Results of ML and DL Models
Combined with five different ML algorithms and eight molecule
descriptor packages, 40 MLmodels were developed. Meanwhile, five
DL models were developed with different algorithms using chemical
SMILES-string as input. The performances ofML andDLmodels on
5-fold cross validation were shown in Table 2. The prediction
accuracy (Q) of the models ranged from 58.54 to 73.90%. Among
them, threemodels performedmuch better on 5-fold cross validation
than others, including a DL model (CNF) and two ML models
(XGBoost_QNPR and RFR_QNPR). These models all provide good
predictive ability with Q value ≥ 70.00% and AUC value ≥0.80.

The consensus approach has been proved able to improve the
accuracy of models. In this study, a consensus model was
developed based on the three best models. The consensus
model performed much better than the individual models. As
shown in Table 2, it provided the Q value of 75.88% and the AUC
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value 0.83; the values of SP, SE, EF, and MCC were 72.84, 79.01,
1.50, and 0.52%, respectively.

External Validation of Models
Due to the complete independence from the model training, the
external validation set could be well used for evaluating the
predictive ability of models objectively. As shown in Table 3;
Figure 2, the best performed individual models also achieved
good predictive results on external validation. The model
developed with RFR algorithm and QNPR descriptors
performed best with Q value 87.16% and AUC value 0.91. The
DL model developed with CNF algorithm also provided good
predictive ability, with Q value 83.49%, and AUC value 0.89. The
consensus model did not perform better than RFR_QNPR model
onmost of the statistical parameters, except for AUC value (0.93).
It provided a Q value of 86.24% and MCC value of 0.82 on
external validation, and the values of SE, SP, and EF were 85.45,
87.04, and 1.72%, respectively.

The results of ML model building and validation suggested
that ML models developed with the QNPR descriptor performed
much better than others. The QNPR descriptors were derived
directly from the chemical SMILES strings. For each structure
either canonical SMILES or IUPAC name would be split into
fragments of a specified length determined by the configuration
(Thormann et al., 2007). For the different ML algorithms,
XGBoost and RFR performed better than others. XGBoost is a
scalable end-to-end tree boosting system, which has been widely

used in many application scenarios. It supports multi-thread
computation and uses regularization enhancement technology
to reduce over-fitting, so as to ensure the robustness of the model.
Meanwhile, it has the advantages of flexibility, fast calculation
speed, and good robustness. Therefore, XGBoost is not easy to be
disturbed by outliers. It can achieve state-of-the-art results on

TABLE 1 | The number of structures in the data set.

Nephrotoxic structures Non-nephrotoxic structures Total

Training set 232 224 456
Validation set 55 54 109
Total 287 278 565

FIGURE 1 | Chemical space defined by the first two principal
components of CDK descriptors. Red squares stand for the training set, blue
circles stand for the validation set.

TABLE 2 | Performances of models on 5-fold cross-validation.

Model Q (%) SE (%) SP (%) EF MCC AUC

XGBOOST_QNPR 72.81 71.98 73.66 1.46 0.46 0.80
WEKA_J48_QNPR 67.11 69.83 64.29 1.37 0.34 0.67
RFR_QNPR 72.15 71.98 72.32 1.45 0.44 0.80
libSVM_QNPR 68.20 66.81 69.64 1.36 0.36 0.68
ASNN_QNPR 69.30 68.97 69.64 1.39 0.39 0.75
XGBOOST_PyDescriptor 63.82 62.07 65.63 1.27 0.28 0.70
WEKA_J48_PyDescriptor 60.09 60.78 59.38 1.21 0.20 0.60
RFR_PyDescriptor 68.86 69.83 67.86 1.39 0.38 0.74
libSVM_PyDescriptor 63.38 58.19 68.75 1.25 0.27 0.63
ASNN_PyDescriptor 63.38 62.07 64.73 1.27 0.27 0.68
XGBOOST_MORDRED 64.04 65.09 62.95 1.29 0.28 0.69
WEKA_J48_MORDRED 67.32 70.69 63.84 1.38 0.35 0.67
RFR_MORDRED 67.98 67.67 68.30 1.37 0.36 0.75
libSVM_MORDRED 67.54 66.81 68.30 1.35 0.35 0.68
ASNN_MORDRED 66.01 65.09 66.96 1.32 0.32 0.71
XGBOOST_GSFrag 63.86 64.32 63.39 1.28 0.28 0.68
WEKA_J48_GSFrag 62.53 60.79 64.29 1.24 0.25 0.63
RFR_GSFrag 63.86 61.23 66.52 1.27 0.28 0.70
libSVM_GSFrag 64.75 57.27 72.32 1.26 0.30 0.65
ASNN_GSFrag 63.41 57.27 69.64 1.24 0.27 0.67
XGBOOST_Fragmentor 63.16 62.07 64.29 1.26 0.26 0.70
WEKA_J48_Fragmentor 58.77 55.17 62.50 1.17 0.18 0.59
RFR_Fragmentor 67.54 65.95 69.20 1.35 0.35 0.73
libSVM_Fragmentor 67.76 66.38 69.20 1.35 0.36 0.68
ASNN_Fragmentor 64.47 63.36 65.63 1.29 0.29 0.69
XGBOOST_ECFP4 63.82 63.36 64.29 1.28 0.28 0.70
WEKA_J48_ECFP4 59.21 56.03 62.50 1.18 0.19 0.59
RFR_ECFP4 66.45 63.79 69.20 1.32 0.33 0.73
libSVM_ECFP4 65.79 63.79 67.86 1.31 0.32 0.66
ASNN_ECFP4 65.57 64.66 66.52 1.31 0.31 0.67
XGBOOST_Chemaxon 62.97 64.63 61.26 1.27 0.26 0.67
WEKA_J48_Chemaxon 61.64 57.64 65.77 1.22 0.23 0.62
RFR_Chemaxon 64.30 61.57 67.12 1.28 0.29 0.71
libSVM_Chemaxon 64.30 58.52 70.27 1.26 0.29 0.64
ASNN_Chemaxon 64.97 65.07 64.86 1.31 0.30 0.70
XGBOOST_alvaDesc 64.04 64.22 63.84 1.29 0.28 0.69
WEKA_J48_alvaDesc 63.38 64.66 62.05 1.28 0.27 0.63
RFR_alvaDesc 70.18 68.97 71.43 1.40 0.40 0.75
libSVM_alvaDesc 65.13 68.53 61.61 1.33 0.30 0.65
ASNN_alvaDesc 70.61 68.97 72.32 1.41 0.41 0.73
CNF 73.90 69.83 78.13 1.45 0.48 0.81
TRANSNNI 69.45 65.80 73.21 1.37 0.39 0.74
GNN GIN 67.11 67.24 66.96 1.35 0.34 0.74
EAGCNG 58.54 52.42 64.73 1.15 0.17 0.62
DEEPCHEM 70.42 53.39 80.83 1.19 0.36 0.74
Consensus 75.88 72.84 79.02 1.50 0.52 0.83
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many machine learning challenges (Chen and Guestrin, 2016).
RFR is an ensemble learning method by constructing a multitude
of decision trees (DT) at training time (Breiman, 2001). It can
help to improve the accuracy by reducing overfitting in decision
trees and automating missing values present in the data. CNF
contributed to the best DL model. CNF is one of the state-of-the-
art deep learning methods, which is based on ideas of text
processing. It could achieve the high prediction accuracy due
to the augmentation technique employed during both training
and inference steps.

The DL model in our study did not show significant better
predictive power compared with the ML model. However,
considering that the DL models did not require additional
molecular description, as long as SMILES are provided, the DL
algorithms still showed obvious advantages over ML algorithms.

The Differences of Molecular Properties
Between Nephrotoxic and Non-nephrotoxic
Drugs
The molecular physical-chemical properties could provide useful
information for biological activities. Herein, we analyzed the
differences of several commonly used physical-chemical
properties between nephrotoxic and non-nephrotoxic drugs.
The distributions of these descriptors for nephrotoxic and
non-nephrotoxic drugs can be seen in Figure 3.

The characteristics MW and MPSA can simply assess the size
and complexity of compounds. For the entire data set in the
study, the values of MW were distributed between 59.04 and
4,491.88, with a mean of 416.86. The mean value was 459.71 for
nephrotoxic drugs and 372.63 for non-nephrotoxic drugs. The
difference between the mean MW of nephrotoxic and non-
nephrotoxic drugs was not significantly different (p < 0.01).
The values of MPSA were distributed from 0 to 1902.88, with
a mean of 119.80 for the entire dataset. The mean value was
137.52 for nephrotoxic drugs and 101.51 for non-nephrotoxic
drugs (p < 0.01). These results suggested that it may be
significantly different in structure size and polar surface area
between nephrotoxic and non-nephrotoxic compounds.

The AlogP is commonly used to represent the lipophilicity of
compounds. For the entire data set, the values of AlogP ranged from
−32.81 to 10.25, with a mean of 1.48. The mean value of AlogP was
1.34 for nephrotoxic chemicals and 1.64 for non-nephrotoxic drugs.
As can be seen in Figure 3, the distributions were not significantly
different between nephrotoxic and non-nephrotoxic drugs with
p-value 0.34. The result indicated that chemical lipophilicity may be
weakly correlated with drug induced nephrotoxicity.

Chemical hydrogen bonding ability also is an important character
for its activity and toxicity, and it was usually in terms of nHBA and

nHBD. In this data set, mean values of nHBA for nephrotoxic and
non-nephrotoxic drugs were 7.06 and 5.41, respectively, and the
difference was significant (p < 0.01). Meanwhile, the nephrotoxic
and non-nephrotoxic drugs hadmean values of nHBDwith 3.29 and
2.47, respectively, and the difference is not significant (p � 0.07). The
data indicated that nHBA was obviously associated with drug
induced nephrotoxicity while nHBD was not.

LogS is an estimation of molecular solubility in water. For the
entire data set, the values of LogS were distributed from −35.86 to
2.45, and the mean value was −4.52. For nephrotoxic structures, the
mean value of LogS was −4.81, and it is −4.21 for non-nephrotoxic
drugs. The difference also proved statistical significance (p � 0.03).
This result demonstrated that there was difference of molecular
solubility between nephrotoxic and non-nephrotoxic drugs.

As shown in Figure 3, drug induced nephrotoxicity was also
obviously associated with nRotB (the mean values were 8.05 for
nephrotoxic chemicals, and 5.78 for non-nephrotoxic drugs, and
with p-value 0.01) and nAR (the mean values were 1.70 for
nephrotoxic chemicals and 1.08 for non-nephrotoxic drugs, with
significant difference (p < 0.01).

Through the analysis of molecular properties, several physical-
chemical properties have obvious differentiating effect on drug
induced nephrotoxicity. Nevertheless, nephrotoxicity is a complex
endpoint yet. It’s not easy to explain themechanism of drug induced
nephrotoxicity with individual simple chemical descriptors.

Structural Alerts Responsible for
Nephrotoxicity
The structural alerts (SA) responsible for nephrotoxicity were
identified using f-score and positive rate analysis of each fragment
from KRFP fingerprint. Only the fragments existing in 6 or more
drugs were kept. The fragments with f-score ≥0.005 and positive rate
≥0.75 were identified. Finally, 87 representative fragments were
filtered and listed in Supplementary Table S2. Among them, 16
substructures presented in nephrotoxic active chemicals only, which

TABLE 3 | Performances of models on external validation.

Model Q (%) SE (%) SP (%) EF MCC AUC

RFR_QNPR 87.16 87.27 87.04 1.76 0.74 0.91
XGBOOST_QNPR 83.49 85.45 81.48 1.71 0.67 0.90
CNF 83.49 80.00 87.04 1.64 0.67 0.89
Consensus 86.24 85.45 87.04 1.72 0.72 0.93

FIGURE 2 | ROC curve of models on external validation. Each color line
represents a model.
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FIGURE 3 | Distributions of the commonly molecular properties for nephrotoxic and non-nephrotoxic drugs.
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TABLE 4 | Structural alerts only presented in nephrotoxic drugs.

ID Bit SMARTS Positive Negative Representative
structure

1 KR413 [!#1][CH2][CH2]c1[cH][cH][cH][cH][cH]1 9 0

2 KR848 [!#1][NH]C(�O)[CH]([CH3])[NH]C(�O)[!#1] 7 0

3 KR1798 [!#1]c1[cH][cH]c(F)[cH][cH]1 8 0

4 KR2444 [!#1]N1[CH2][CH2]N([CH3])[CH2][CH2]1 6 0

5 KR3206 c1nc2ccccc2[nH]1 7 0

6 KR3280 CC(�O)c1ccc(N)cc1 8 0

7 KR3540 Cc1ccc(cc1)c2ccccc2 7 0

8 KR3548 Cc1ccc(F)cc1 8 0

9 KR3586 Cc1cccc(F)c1 12 0

(Continued on following page)
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covered 76 nephrotoxic drugs. Details of each fragment and the
representative structures were shown in Table 4.

We analyzed the structural characteristics of drugs in the entire
data set, and 75.04% structures (424/565) were correctly classified.
Among the 290 drug structures contained at least one identified
substructure, 218 structures were true nephrotoxic. The classification
accuracy was 75.17%. For the drug structures that did not contain
any identified substructure, 206 of 275 drugs (74.91%) were true
non-nephrotoxic. The frequencies of these substructures were much
higher in nephrotoxic drugs than non-nephrotoxic drugs, and
showed a good ability to distinguish nephrotoxic drugs in the
whole data set. To a certain degree, these fragments could be
considered as the structural alerts responsible for nephrotoxicity.
If a structure contains one or more structural alerts, it is more likely
to be nephrotoxic than non-nephrotoxic.

Fluorine is widely used in medicinal chemistry to improve a
molecule’s potency and permeability. However, the metabolism
of fluorinated compounds may produce fluoride and other toxic
metabolites (Pan, 2019). As shown in Table 4, several selected

structural alerts contained phenyl fluoride (Nos 3, 8, 9, 11, 12, and
14). Since the kidney is a main target organ of mammalian
fluoride systemic exposure and renal toxicity can occur after
acute and chronic fluoride intoxication (Quadri et al., 2016). The
kidney plays a vital role in fluoride metabolism, since 50–80% of
fluoride is removed via urinary excretion. Fluorinated
compounds can be toxic to the kidneys in a number of ways.
It has widely been reported that fluorinated compounds can
increase the generation of reactive oxygen species (ROS) and
free radicals, cause extensive oxidative stress and excessive lipid
peroxidation, and reduce antioxidant enzyme activities in vivo or
in vitro (Quadri et al., 2016). Thus, numerous renal structural,
ultrastructural, and functional may be changed after receiving
increased amounts of fluorinated compounds exposure.
Certainly, this is not meant to sound the alarm on all
fluorinated compounds, we suggest raising the awareness of
common drug instability and metabolism issues leading to
defluorination, as well as the resulting reactive/toxic metabolite
(Pan, 2019). Polyamines and their derivatives (Nos 2 and 15)

TABLE 4 | (Continued) Structural alerts only presented in nephrotoxic drugs.

ID Bit SMARTS Positive Negative Representative
structure

10 KR4029 CS(c1nc2ccccc2[nH]1) 6 0

11 KR4064 Fc1cccc(C�O)c1 8 0

12 KR4065 Fc1cccc(F)c1 8 0

13 KR4081 N#Cc1ccccc1 6 0

14 KR4252 Nc1ccc(F)cc1 11 0

15 KR4556 O�CNCCCCNC � O 8 0

16 KR4651 OC(�O)C1CCCN1 8 0
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widely existed in aminoglycosides and the other nephrotoxic
drugs. Polyamines catabolism can be stimulated through
oxidation, which will lead to the generation of ROS and low
abundance of free polyamines with antioxidant capacity (Pegg,
2013; Murray Stewart et al., 2018). Consequently, this process is
associated with a number of pathologies, including cancer,
neurological disorders, and kidney dysfunction. Recent studies
have also suggested a role for polyamines derivatives in the p53-
mediated ferroptotic response to ROS stress. It is an iron-
dependent and nonapoptotic mode of cell death and has been
associated with drug-induced nephrotoxicity recently (Ou et al.,
2016; Murray Stewart et al., 2018). Benzimidazoles derivatives
were always proposed as new bioreductive prodrugs with the
potential anticancer activity, due to their effect on the DNA
destruction and growth inhibition into selected tumor cell lines
(Błaszczak-Świątkiewicz et al., 2014). Besides, benzimidazoles
derivatives also can induce concurrent apoptotic and
pyroptotic cell death (Ren et al., 2021). However, when these
processes take place in kidney cells, kidney damage can occur.
Toluene-contained structures (Nos 1 and 7) were also selected as
structural alerts for drug induced rhabdomyolysis (Cui et al.,
2019), which always associated to oliguric renal failure. In the
setting of toluene intoxication, electrolyte disturbances may play
important roles on causing rhabdomyolysis (Camara-Lemarroy
et al., 2015). Toluene has also been associated with direct
induction of acute tubular necrosis and acute oliguric renal
failure. Among the SAs we identified, there were several
fragments that also could cause the formation of ROS (Nos 6
and 16, etc.), which may contribute to the nephrotoxicity.

In the present study, the SAs were identified with the f-score
and frequency analysis of defined substructures. These methods
have been widely used for the SA discovery for many other
endpoints. In fact, these methods have some shortcomings. They
are not able to characterize the spatial arrangement of identified
substructures, and they cannot make a good distinction when
more than one SA presented in the same structure. In spite of this,
these structural alerts were able to well distinguish chemical
structures with renal toxicity, and they can help to understand
the specific fragments which lead to nephrotoxicity. Therefore,
these SAs should be severed as a useful tool to visually evaluate the
nephrotoxicity of chemicals.

Availability of QSAR Models and Structural
Alerts
For ease of use, the QSAR models were made available at
OCHEM. The consensus model could be accessed via https://
ochem.eu/article/140251. The three best individual models
(RFR_QNPR, XGBOOST_QNPR, and CNF) were also
available with the corresponding model IDs. Users can predict
chemical nephrotoxicity by using the “Apply the model to new
compounds” link. In addition, the data sets for modeling could be
downloaded by using the “Export this basket” link.

The structural alerts responsible for nephrotoxicity have been
integrated as part of ourWeb server SApredictor, which is a structural
alert based expert system for drug toxicity prediction and freely
available at http://www.sapredictor.cn. With the help of SApredictor,

people can quickly evaluate whether the query chemicals are
nephrotoxic, and the specific structural fragments that lead to the
nephrotoxicity of the compounds will be intuitively shown to provide
valuable reference for the modification of the structures.

CONCLUSION

In this study, we collected 287 drug structures which were proved
nephrotoxic on humans in the real world. A comparable amount of
non-nephrotoxic structures was also extracted from approved
drugs. Then, in silcio models were developed using OCHEM
tools. A total of 40 ML models were developed using 5 different
machine learning algorithms along with 8 descriptor packages.
Besides, 5 DL models were also developed using different deep
learning methods. Among them, twoMLmodels (RFR_QNPR and
XGBoost_QNPR), and one DL models (CNF) provided best
predictive ability. A consensus model was developed based on
them, which performed much better on internal validation, and
provided good predictive ability on external validation. The
consensus model and the best individual models were freely
available at https://ochem.eu/article/140251. Moreover, the
differences of several commonly used physical-chemical
properties between nephrotoxic and non-nephrotoxic drugs were
investigated. The results indicated that several key molecular
properties differ significantly between nephrotoxic and non-
nephrotoxic structures, including molecular weight (MW),
molecular polar surface area (MPSA), AlogP, number of
hydrogen bond acceptors (nHBA), molecular solubility (LogS),
the number of rotatable bonds (nRotB), and the number of
aromatic rings (nAR). Thus, these molecular descriptors may be
associated to drug-induced nephrotoxicity and could play an
important role in the identification of nephrotoxic chemicals.
Finally, we identified the structural alerts responsible for
nephrotoxicity using f-score and positive rate analysis. There
were 87 structural alerts identified from the fragments of KRFP
fingerprint. A compound would be classified as nephrotoxic if it
contains one or more such SAs. These structural alerts showed a
good ability to distinguish nephrotoxic drugs in the entire data set.
They have been integrated as part of our web server SApredictor,
which is freely available at www.sapredictor.cn. The in silicomodels
and the structural alerts could be useful tools for estimation of
nephrotoxicity in drug discovery.
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