
rsif.royalsocietypublishing.org
Research
Cite this article: Bonsall MB, Geddes JR,

Goodwin GM, Holmes EA. 2015 Bipolar

disorder dynamics: affective instabilities,

relaxation oscillations and noise. J. R. Soc.

Interface 12: 20150670.

http://dx.doi.org/10.1098/rsif.2015.0670
Received: 28 July 2015

Accepted: 20 October 2015
Subject Areas:
biomathematics

Keywords:
likelihood, mechacognition, mood variability,

mood dynamics
Author for correspondence:
Michael B. Bonsall

e-mail: michael.bonsall@zoo.ox.ac.uk
& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Bipolar disorder dynamics: affective
instabilities, relaxation oscillations
and noise

Michael B. Bonsall1,2, John R. Geddes3, Guy M. Goodwin3

and Emily A. Holmes4,5

1Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
2St Peter’s College, Oxford OX1 2DL, UK
3Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX1 7JX, UK
4Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
5Department for Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

MBB, 0000-0003-0250-0423

Bipolar disorder is a chronic, recurrent mental illness characterized by extreme

episodes of depressed and manic mood, interspersed with less severe but

highly variable mood fluctuations. Here, we develop a novel mathematical

approach for exploring the dynamics of bipolar disorder. We investigate how

the dynamics of subjective experience of mood in bipolar disorder can be

understood using a relaxation oscillator (RO) framework and test the model

against mood time-series fluctuations from a set of individuals with bipolar

disorder. We show that variable mood fluctuations in individuals diagnosed

with bipolar disorder can be driven by the coupled effects of deterministic

dynamics (captured by ROs) and noise. Using a statistical likelihood-based

approach, we show that, in general, mood dynamics are described by two

independent ROs with differing levels of endogenous variability among indi-

viduals. We suggest that this sort of nonlinear approach to bipolar disorder

has neurobiological, cognitive and clinical implications for understanding

this mental illness through a mechacognitive framework.

1. Introduction
Bipolar disorder is a chronic recurrent mental illness [1]. The global health

burden of bipolar disorder is dramatic: 1–4% of adults live with the condition

and current estimates suggest that this mental illness accounts for up to 10% of

the burden of all mental and substance use disorders (in terms of years lived

with the disability—YLDs) and that this equates to about 17.5 million YLDs

[2]. Bipolar disorder is characterized by pathological mood instability including

episodes of both extreme low (depressed) mood and elevated (manic) mood,

interspersed with less severe but still problematic mood fluctuations or, in

some people, relative mood stability [3]. Disproportionate numbers of teenagers

and young adults (15–24 years) are diagnosed with the disorder (compared to

other mental and/or substance use illnesses) [4]. Younger age of disease onset

is associated with higher suicidal risk, with lifetime suicide attempt rates esti-

mated between 20 and 47% [5] and as such bipolar disorder has the highest

rate of suicide across all psychiatric disorders [6]. The neurobiology of bipolar

disorder is poorly understood, and standard treatment involves long-term

pharmacological interventions often with poor clinical responses [3,7]. There

have been no significant clinical advances since the use of lithium in the

1950s. A better understanding of processes underlying the disorder is required.

There has been a traditional emphasis on extreme mood episodes both in

defining the disorder and developing treatments. This approach has underesti-

mated the inter-episode morbidity and ignored mood variability as a key

feature of bipolar disorder. We have previously argued that mood variability
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Figure 1. Analysis of a single oscillator in the presence of noise. (a) When noise is absent and jaj . 1 the system (equations (2.1) and (2.2)) is stable. Increasing levels of
noise lead to (b) increasing tendency for fluctuations in oscillators. This is characterized by increases in both (c) Lyapunov exponents (LLE) and (d ) coefficients of variation (CV)
as the strength of the noise increases (Parameters a ¼ 1.5, b ¼ 30).
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provides a potential focus both for understanding the

dynamic interactions that occur between mood elevation,

depression, anxiety and the environment [8] and that such

an understanding is important for experimental mani-

pulations with medicines or psychological treatments [9].

Our understanding of this complex and dynamic temporal

mood variability in bipolar disorder may be advanced by

the use of quantitative analytic methods such as those devel-

oped through the application of nonlinear dynamics to

physical, social and biological systems (e.g. [10]).

Descriptive patterns of the dynamics of bipolar disorder

[9,11] reveal that simple time-series approaches may provide

a robust way to characterize and corroborate clinical judge-

ment on bipolar disorder mood stability. However, a more

mechanistic theory for bipolar disorder is clearly warranted

in order to develop a more deductive approach to developing

testable hypotheses rather than simply describing patterns.

As noted, bipolar disorder is conventionally characterized

by depressive and manic episodes although inter-episodic

mood instability is increasingly recognized. This variability

in mood provides a basis for developing mathematical

approaches based on limit cycle oscillators [12–15] to under-

stand the dynamics of this mental health disorder. However,

the depressive and/or manic symptoms do not seem to be

simple oscillatory swings between two states of ‘mania’ and

‘depression’, and the functional outcome of the disorder is not

simply related to recovery from the acute changes in mood

but also to the high levels of inter-episodic mood instability

[16–18]. In particular, our recent analyses of mood instabilities

in 23 individuals [9] highlighted that dynamics above and

below a threshold of ‘average’ levels of mood are described dif-

ferently. To build on this initial work, in this study we develop

a mechanistic framework to understanding the dynamics of

bipolar disorder using relaxation oscillators (ROs).

ROs comprise a class of nonlinear periodic dynamic sys-

tems. Importantly, such cyclic systems are characterized on
different timescales; intervals of time during which there is

little change in state are interspersed with rapid periods of

change in state (e.g. [19]; figure 1). In comparison to other math-

ematical approaches modelling bipolar disorder, ROs provide a

relevant context in which to describe ongoing changes in mood

state—periods of high and/or low mood are interspersed with

periods of relative mood stability or instability [20,21].

If multiple oscillatory processes operate at the molecular level

in bipolar disorder, modelling the interactions of ROs at higher

levels of organization (such as the mood level) might provide

additional insight into the dynamics of bipolar disorder within

and among individual patients. That is, by using mathematical

approaches to move down a hierarchy from mood fluctuations

to candidate, molecular processes may allow insights through

a mechanistic approach to cognition which will be generally

necessary for thoroughly comprehending mental illnesses [22].

This mechacognitive approach may, by developing descriptions

of affective instabilities, lead to novel approaches to understand

the underlying biological instabilities.

Characterizing coupling in the nonlinear dynamics of mood

also necessitates a thorough consideration of noise. In dynami-

cal systems, stochastic fluctuation or variability is an integral

component of the dynamics and can be generated by internal

fluctuations or by external perturbations. Internal fluctuations

arise through the stochastic sampling of the parameters and

processes driving the deterministic dynamics; external stochas-

tic effects operate to affect the change in mood from one time

point to the next. The effects of noise have been well explored

in other contexts (e.g. [23–25]) and often involve establishing

the most appropriate way in which to combine both variability

and deterministic dynamics. In understanding bipolar disorder

dynamics, mood fluctuations have been characterized as noisy

and nonlinear [9,26]. Understanding the interplay between sto-

chastic fluctuations and deterministic mood signal requires

greater and more detailed scrutiny of the dynamics associated

with individual mood profiles.



Table 1. Socio-demographic and clinical characteristics of participants for
the AR and RO analysis. The demographic and clinical statistics are only
given for the majority (19/25) of participants where two independent ROs
were needed to describe their mood fluctuations—see Results for further
explanation.

characteristics

AR analysis
(n 5 42)

RO analysis
(n 5 19)

mean s.d. mean s.d.

age at study intake,

years

41.3 11.8 40.2 13.2
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Here, we investigate how the dynamics of subjective experi-

ence of depressed mood (the dominant mood state) in bipolar

disorder can be understood using a RO framework and test

the model against mood time-series fluctuations from a series

of individual participants who reported their mood symptoms

weekly using a standardized measure of depressed mood.

We begin by outlining the mathematical model and analysis

of the model. Building on these results, we show how the

dynamics of ROs can be linked to empirical patterns in individ-

ual participant mood fluctuations. We show how deterministic

patterns and stochastic volatility vary among individuals and

we discuss the results in the light of recent advances in under-

standing the dynamics of non-communicable dynamical

diseases such as bipolar disorder.

age at illness onset,

years

20.4 8.7 20.9 11.8

duration of illness, years 21.0 11.8 19.9 14.0

number % number %

male 11 26.2 1 5.3

female 31 73.8 18 94.7

ethnic origin

mixed 2 4.8 1 5.3

White 38 90.5 17 89.5

Chinese 1 2.4 1 2.4

Asian 1 2.4 0 0

educational level, years

without diploma

equivalent

1 2.4 0 0

high school graduate 7 16.7 4 21.1

college graduate 33 78.6 15 78.9

unrecorded 1 2.4 0 0

bipolar I disorder 29 69.0 15 78.9

bipolar II disorder 13 31.0 4 21.1

Interface
12:20150670
2. Methods: mathematical model and
time-series analysis

We use a RO framework to explore the dynamics of bipolar

disorder [27]. The model shows a range of dynamics and, as

a set of ordinary differential equations, is of the general form:

dx
dt
¼ yðtÞ � fðxÞ ð2:1Þ

and

dy
dt
¼ �x� a

b
, ð2:2Þ

where x and y are state variables, a and b are (unknown) par-

ameters and f(x) is of the form 2x 2 (x3/3). This oscillator

(equations (2.1) and (2.2)) is a based on a van der Pol type

RO [19,27] and in the absence of noise and coupling has the

following fixed points:

x� ¼ �a ð2:3Þ

and

y� ¼ a3

3
� a: ð2:4Þ

Linear stability analysis of this RO reveals that the eigen-

values are l ¼ ð1� a2Þ=2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 1Þ2b� 4

q
=2

ffiffiffi
b
p

and (local)

stability holds if as b! 0, a . 1.
2.1. Mood model formulation
To explore how this RO can be used to understand patterns of

mood fluctuations, we begin by assuming that mood fluctu-

ations through time (t) are assumed to be an unknown

function of at least two processes (X) and (Z) (tacitly we

might assume that these processes might represent states of

high and low mood). If average mood (M ) varies through

time such that:

M ¼ at, ð2:5Þ

and mood is related to the first process (X) by:

M ¼ bX, ð2:6Þ

and the second process (Z) by:

M ¼ gZ, ð2:7Þ

then the overall changes in mood through time can be
represented by a total derivative:

dM
dt
¼ @M

@t
þ @M
@X

dX

dt
þ @M
@Z

dZ

dt
: ð2:8Þ

So from equations (2.5)–(2.7):

dM
dt
¼ aþ b

dX

dt
þ g

dZ

dt
, ð2:9Þ

where X and Z represent (in vector form) the ordinary

differential equations (equations (2.1) and (2.2)) for two

independent oscillators.

Additionally, oscillators are likely to be coupled and noisy.

Extending equations (2.1) and (2.2), the ordinary differential

equations for the ith oscillator follow the general dynamics:

dxi ¼ ðyi � fðxiÞ þ heiÞdtþ nðxiÞdW ð2:10Þ

and

dyi ¼ ð�ðxi þ aÞb�1Þdtþ nðyiÞdW , ð2:11Þ

where xi and yi are state variables. As defined for equations

(2.1) and (2.2), fðxiÞ ¼ �xi � ðx3
i =3Þ, and a and b are par-

ameters. h is a coupling weighting and for k ¼ 1, 2; k = i,
coupling strength (ei) is

P
ð1Þ=ð1þ expðuxkÞÞ: nðxiÞdW and

nðyiÞdW are noise terms acting on the ith RO.
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2.2. Bipolar time-series data
Forty-two participants (table 1) with bipolar disorder from a

local mood disorders clinic were recruited for this study—

further demographic and clinical details are given in

table 1. All participants gave their written informed consent

and completed standardized questionnaires for baseline

assessment; these assessments measured levels of depression

(QIDS-SR16 (Quick Inventory of Depressive Sympto-

matology); [28]), mania (Altman self-rating scale for mania;

[29]) and trait anxiety (Spielberger state anxiety inventory;

[30]) (table 1).

The present analysis focuses on depression ratings

measured with the QIDS-SR16 scale. QIDS-SR16 consists

of a 16-item questionnaire measuring severity of depression,

covering the nine DSM-5 major depressive disorder symp-

toms (e.g. sadness, loss of pleasure and weight change).

Participants were asked to choose the response that best

described themselves over the past 7 days on a four-point

scale (0–3) anchored at all points by a description. For

example, Question 5, ‘feeling sad’ is anchored at 0 ¼ ‘I do

not feel sad’, 1 ¼ ‘I feel sad less than half the time’, 2 ¼ ‘I

feel sad more than half the time’ and 3 ¼ ‘I feel sad

nearly all the time’. While scores on the QIDS-SR16 can

be clinically grouped into five severity levels: none (0–5),

mild (6–10), moderate (11–15), severe (16–20) and very

severe (21–27), here we consider that scores vary continu-

ously across this scale. The QIDS-SR16 has established

psychometric properties for rating depressive symptom

severity in individuals with bipolar disorder as well as

chronic major depressive disorder. This rating system is

known to be strongly (positively) correlated with clinician-

reported scales [28,31].

Weekly mood score data on the QIDS-SR16 were collected

through True Colours (https://truecolours.nhs.uk/www/),

a system using SMS (cell phone short messaging service)

and e-mail/Web interfaces developed in a local mood dis-

orders clinic [21,32] to capture individual reported outcome

measures. Participants were given credit card-sized versions

of the QIDS-SR16 scale to carry in daily life and consult

when making ratings. A bespoke computer program auto-

matically sent out weekly text messages to participants’ cell

phones to prompt them to submit their self-rating. To do

this, participants simply replied with a text message contain-

ing a list of numbers corresponding to their self-rating on

each of the QIDS-SR16 items.

Infrequently, participants replied with more than one text

per week. The first valid response to the weekly prompt was

used in the analysis, and subsequent responses within the

week removed. If no valid response was received within the

week following the prompt, this was coded as missing data

up until an individual’s last actual response to the system.

In addition, the SMS system occasionally did not send

prompts (e.g. if a participant requested, temporarily, to take

a break from texting). Weeks in which no prompt was sent

were also coded as missing data.

2.3. Time-series analysis
We investigate the descriptive properties of the individual

participant time series using autoregressive (AR) and

threshold AR statistical models (following Bonsall et al. [9])

and use results from RO analysis (see above) to explore the

nonlinear dynamics of mood variability in individuals.
2.4. Likelihood framework
Based on our previous analysis, the distribution of mood

scores is well characterized by a gamma distribution [9].

This probability distribution function is described by two

parameters: a rate (r) and a shape (s) parameter:

f ðc; r, sÞ ¼ cr�1srexpð�scÞ
GðrÞ , ð2:12Þ

where c is the observation and G(r) is a gamma function

(G(r) ¼ (r 2 1)!). The expectation from this distribution is

m ¼ r/s and the variance is s2 ¼ r/s2. From a time series of

N mood scores, we use this probability distribution function

to construct an appropriate likelihood L where the first point

in the series is conditioned on the mean and subsequent

points on the previous observation:

LðPjYÞ ¼
Yr�1

1,j ðr=�m1Þ
rexp(�ðr=�m1ÞY1,jÞ
GðrÞ

YN
k¼2

Yr�1
k,j ðr=mkÞ

rexp(�ðr=mkÞYk,jÞ
GðrÞ , ð2:13Þ

where P is an unknown parameter set, Y is a set of obser-

vations, �m1 is the mean of the jth series and Yk,j is the kth

mood score (out of N ) for the jth participant. r is an

additional (nuisance) parameter associated with the likeli-

hood function. mk is the expected mood score for the kth

time point derived from the underlying dynamical model

(equation (2.9)). This expected mood score at each time

point (k) is determined by numerically integrating the

model over the weekly census interval (T ) of the participant’s

mood time series:

mk ¼
ðk

k�T
[aþ bX½n� þ gZ½n�]dn, ð2:14Þ

where X and Z represent two different oscillators (which

may be coupled, e.g. equations (2.10) and (2.11)). We fit this

likelihood to each participant’s mood time series. Computa-

tionally, to minimize the negative log-likelihood, we use

an expectation-maximization method to deal with missing

values within a modified simplex algorithm [9]. Goodness

of fit between model predictions and mood observations is

evaluated through the use of Akaike information criterion

(AIC) scores (a penalized likelihood metric based on

the magnitude of the likelihood and the number of estima-

ted parameters: AIC ¼ �2� loglikelihoodþ 2� number of

parameters—with lower AICs giving greater concordance

between model and data) [33] and measures of RMSEs (the

square-root of the mean squared difference between an

observed data point and model prediction for each time

point: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðobservation� predictionÞ2Þ

q
).
3. Results
3.1. Relaxation oscillators
In this section, we investigate the dynamical patterns

expected with noisy, coupled oscillators. As noted, the RO

(equations (2.1) and (2.2)) is stable if as b! 0, a . 1. In

figure 1a, we illustrate that stable dynamics (when a ¼ 1.5).

Noise-induced instabilities give rise to fluctuations in the

oscillators (figure 1b–d). Characterization of the local

Lyapunov exponents for stochastic systems [34] illustrate

https://truecolours.nhs.uk/www/
https://truecolours.nhs.uk/www/
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Figure 2. Analysis of two-coupled oscillators in the presence of noise. (a) In the absence of noise, coupled oscillators show regular fluctuations and are in phase at
coordinates (22,22) and (2,2). In the presence of increasing levels of noise (c), this regular trajectory is disrupted and there is more time where oscillators are in
phase. Unstable fluctuations are characterized by increases in both the (b) Lyapunov exponent (LLE) and (d ) coefficients of variation (CV) with increasing noise levels
(Parameters a ¼ 1.5, b ¼ 20, e ¼ 0.5).
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that close-by trajectories diverge with increasing levels of

noise and there is a critical noise threshold (determined

from estimates of the coefficient of variation in the magnitude

of the fluctuations) beyond which the system has an

increased tendency to fluctuate.

Increasing levels of coupling in the presence of noise gives

rise to increasing tendencies for the system to oscillate and

also affects the degree of synchrony observed between ROs:

increases in the noise increases the degree of synchrony

between coupled ROs (figure 2).

3.2. Descriptive time-series models
To test the hypothesis that mood dynamics are noisy and

nonlinear, we fit linear and threshold AR models to the indi-

vidual (42 participants with bipolar disorder) time series.

Based on AIC scores, the overall best-fitting model was the

AR(1) model (57% of time series). The other models, AR(2),

TAR(1) and TAR(2) are best fits for 29%, 7% and 7% of the

time series, respectively. One-step ahead predictions and

goodness of fit of these models to individual participant

time series are shown in figure 3.

3.3. Mechanistic bipolar disorder models
To explore the correlative patterns identified by this prelimi-

nary, descriptive time-series analysis, we fit dynamic ROs to

a subset of the individual time series. Based on 25 participants

(with a range of time-series lengths (79–233 weeks) and
proportion missing values (0–0.44)), the RO analysis revealed

(based on AIC rankings) three individual time series described

by a single RO, three individual time series described by two

deterministically coupled ROs and the majority of mood time

series (19) described by two independent ROs.

Focusing on these 19 mood time series described by two

independent ROs, the predicted dynamics for the two inde-

pendent ROs for participant mood time series are shown in

figure 4. Using model predictions (based on using a current

QIDS observation and the parametrized total derivative to

predicted the next observations), these ROs together with

average mood levels and strength of oscillators predict the

observed QIDS time series (figure 4a–c).

In the absence of noise, from the stability analysis of inde-

pendent ROs, the expected dynamics of each oscillator are

dependent on the magnitude of a key parameter (a). Again,

focusing on the 19 mood series identified to be described by

two independent ROs, figure 5 shows regions of the expected

deterministic dynamics (in the absence of noise) of the indepen-

dent ROs (stable and unstable) based on statistical estimates of

this key parameter (a from equations (2.1) and (2.2)). The

dynamics, as noted, are expected to reach a stable point if in

both jaj . 1. In 12 out of 19 (2/3) of these mood time series,

the underlying deterministic dynamics of each of the indepen-

dent ROs are expected to oscillate. In six out of 19 (1/3), one

RO is expected to be stable while the other cycles. In one case

(1/19), both independent ROs are expected to be stable

(figure 5).
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The total derivative (equation (2.9)) shows that changes in

mood through time are a function of both average mood (a)

and the changes that are driven by the strength of the ROs

(b(dX/dt), g(dZ/dt)). To evaluate the importance of average

mood versus the RO, we compute ratios of magnitudes of

effect for RO versus average mood (b : a and g : a). Figure 6

shows these relative effects of average mood (a) to that of the

effect of the ROs (b : a, g : a) on overall mood dynamics for

the 19 mood series identified to be described by two indepen-

dent ROs. In the majority of cases (12/19), average mood is

the predominant driver of mood variability. In these cases, as

illustrated in figure 6, the ratios of b : a and g : a are both less

than one. ROs are the major driver of mood dynamics in

seven out of 19 cases. In six of these cases, only one of the ROs

predominates in driving the mood fluctuations (either the

ratio b : a or g : a is greater one), while in a single case, both

ROs drive mood dynamics (the ratios of b : a and g : a are

both greater than one).

Furthermore, the shape parameter (s) from the gamma like-

lihoods (see Methods) for the best-fitting RO to each time series

reveals that relative variability in mood between the

participants to be large (figure 7). The observed variability in

shape parameters suggests that in addition to the deterministic

dynamics driven by the ROs, mood fluctuations for each par-

ticipant are subject to stochastic volatility. From the range of

probability distributions observed in figure 7, some individual

time series are subject to much more variability than others and
this has implications for characterizing the mood profile

dynamics and broader clinical implications.
4. Discussion
Here, we have shown that mood fluctuations in bipolar dis-

order are driven by coupled effects of deterministic dynamics

(captured by ROs) and stochastic variability. Using an appro-

priate likelihood framework, we show that, in general, mood

dynamics are described by two independent ROs. Moreover,

individual average levels of depression and stochasticity

(variability) are also important and essential drivers of mood

dynamics and fluctuations. As this variability is an integral

part to these dynamics, transitions between states driven by

stochasticity [35] have implications for predictive limits in

these sorts of nonlinear systems.

However, details matter. Both qualitative and quantita-

tive differences among individual participants highlight the

drivers of mood variation and fluctuations. In contrast to

recent suggestions that mental illnesses such as depression

can be captured with simple time-series metrics (e.g. measures

of the degree of autocorrelation and/or coefficient of variation)

indicative of critical slowing down [35–37], we argue that bipo-

lar disorder dynamics are better explained by developing

appropriate dynamical models coupled to robust statistical

methods of analysis. As noted, relaxation oscillations predict
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Figure 4. Illustration of predicted RO dynamics. Observed mood fluctuations (QIDS scores), predicted RO dynamics and predicted fit to QIDS scores for six participants
(whose dynamics are described by two independent ROs). (a) Time series of observed mood dynamics (QIDS scores). (b) Predicted RO dynamics from numerically
integrating equations (2.1) and (2.2). Parameters a and b are derived from the maximum-likelihood fitting of equation (2.9) to the observed mood dynamics.
(c) Predicted mood dynamics (from the total derivative (equation (2.9))) determined by using each observed QIDS score to predict the next mood score.
Again, parameters (a, b and g) are derived from the maximum-likelihood fit of equation (2.9) to the overall observed mood dynamics.
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long periods of dynamics in a (low or high) state with a rapid

switch to the alternative state. It is unlikely that these dynami-

cal changes will be captured with simple time-series statistical

metrics. Furthermore, statistical metrics are unlikely to be suf-

ficiently robust or indicative of the sorts of drivers of

alternating dynamical states. We argue that more work on

mechanistic modelling approaches such as those we develop

here and elsewhere [9] are clearly warranted. This is necessary

as idiosyncratic (individual-level) patterns give rise to classes

of dynamics of mood variation and hence a wide range of

affective instabilities (figures 4–7).

ROs have been widely applied to problems across a range

of specific disciplines including cell biology (e.g. [38]), neuro-

sciences (e.g. [39]), cardiology (e.g. [40]) as well as synthetic

biology (e.g. [41]). We have focused on the idea that an oscil-

lator describes mood dynamic departures from an average

state through relaxation to an episodic state and that these

oscillators could be coupled either directly or indirectly

through noise. Coupling oscillators has implications for

better understanding the biological or psychological and

even social rhythms of bipolar disorder (e.g. [42]), and this

is exactly what we need to be better able to measure mood

to make improved clinical progress.

Originally, Winfree [43] argued that oscillators that inter-

act weakly, either deterministically [44] or through correlated

noise effects [45], can generate rhythmic patterns in biological

systems and this can influence the dynamical state between

oscillators (e.g. degree of synchrony). As the variation or

difference among oscillators gradually reduces, there is a

critical transition past which dynamics are identical (e.g. syn-

chronous). Knowing this coupling effect or its drivers is likely

to have important implications for mental illnesses such as

bipolar disorder. If, as the data suggest, the general condition

is that noisy ROs capture mood dynamics then it is natural to

ask about the number of oscillators and their overlap and/or

strength of coupling, needed to influence dynamical
outcomes [44]. More importantly, from a clinical perspective,

will be whether the degree of critical coupling strength has

implications for treatment effects and prospective predictions

on disease progression. Alterations in the amplitude and/or

phase of the oscillators could have important consequences

for understanding the dynamical instabilities that drive bipolar
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disorder episodes (see below: information flow). Further work

should aim to identify the drivers of these instabilities (at the

various levels of mechanism including both the molecular

and behavioural scales) as it could allow clinicians to both

assess and track changes in mood patterns underlying bipolar

disorder episodes, and allow a better test of response to

treatment or much needed treatment innovation.

Using theory to explain affective instability phenomena has

parallels with classic theory on the spread of communicable

diseases such as measles, cholera or malaria. In classic epide-

miology, the specific details of any particular disease are

collapsed (at the population level) into classes of susceptible,

infected and recovered individuals, and key mathematical par-

ameters (e.g. [46]). A key parameter in this epidemiological

theory is the disease transmission rate: how effective is the

disease at spreading. This parameter subsumes many of the

intricacies and details of disease biology. Yet, this sort of

theory has proved successful for understanding general and

specific disease dynamics, spread and control [46]. Similar

principles can also be applied to the theory we develop here

for the dynamics of non-communicable mental illnesses

(such as bipolar disorder). For instance, the importance of

mean levels of depression and the influence of oscillators)

coupled to endogenous variability, may turn out to be of real

practical significance as a treatment target. Currently, pre-

vention of relapse is the objective of long-term treatment.

Average inter-episode sub-syndromal symptom levels are not

routinely a key target of treatment. The models reported here

predict that average levels of mood have a major impact on

longer-term mood stability and this is consistent with the find-

ing (in the wider cohort of participants) that mean depression

ratings predict direct treatment costs in a cost of illness study.

The precise physical or biochemical equivalents of the

ROs are of course not established by studies of this kind.

Indeed, we have limited mechanistic insight into the specific

neurobiological drivers of mental disorders at the level of

neurons, within-brain or cortex dynamics that lead to the

manifestations of disease. However, alterations in physiology

(e.g. decreased pH levels) and modification of mitochondrial

activity [47–49] have been hypothesized to be associated

with episodes of depression [47]. Molecular genetic studies

have also implicated genes such as CACNA1c [50] encoding

calcium channels and other pathways that impact Ca2þ regu-

lation and affect individual metabolism and activity [51,52].

Alterations in calcium metabolism are predicted to affect

mania and rapid cycling in bipolar disorder [47]. Recently,

mathematical modelling approaches have been developed

to investigate these more causal links between the biological

mechanism and fluctuations of bipolar disorder [14,15].

Goldbeter [15], using sets of coupled ordinary differential

equations, explored how inhibition and feedbacks can drive

bistability, oscillations and higher-order nonlinear dynamics

in bipolar disorder. The critical aspect of this work by

Goldbeter [15] was to link the mutual drivers of inhibition

(described by Hill functions) to propensities for mania and

depression. This work has strong parallels with our study.

Although, we adopt a broader mechanistic approach, our

RO model (equation (2.9)) has the propensity to show a

range of dynamics that can be (putatively) linked to the

biological mechanism and we use mood fluctuations to charac-

terize model parameters and hence dynamics. Constructing

relevant mathematical approaches that link different scales

(e.g. molecules to neurons to behaviour) through a
mechacognitive understanding may be a fruitful approach in

understanding the dynamics of mental disorders.

Affective instability [53] is seen in a range of psychiatric

conditions. Indeed, it has been argued that affective instabil-

ity is a trait [53] that, as in our case, leads to significant

fluctuations in mood (without necessarily leading to the full

blown episodes of depression and/or mania as in bipolar

disorder). Marwaha et al. [53] informally identified four com-

ponents of affective instability: (i) the rapid oscillation and

intensity of affect, (ii) a capacity to control affect, (iii) its be-

havioural consequences, and (iv) triggers that stimulate

affect change. As developed in our time-series studies ([9]

and here), it is important to operationalize the measurement

of these attributes. We have obviously explored the first:

rapid oscillation and intensity of affect. This provides a fra-

mework to examine the generality of this feature across

different clinical conditions and its status as a trait. Using a

novel statistical framework for the mechanism associated

with bipolar disorder dynamics, we develop an approach

for integrating hierarchical information flow [54] within the

paradigm of mechacognition. By describing mood dynamics

in terms of coupled ROs, we build mechanism into the under-

standing of (cognitive) mood variability. This differs from the

descriptive approaches used elsewhere (e.g. [9,37]) that might

be argued useful in characterizing affective instabilities in

terms of the phenomenology of mood fluctuations.

In summary, we have proposed a framework for linking

across scales of organization associated with bipolar disorder

dynamics and, more broadly, affective instability. We develop

an approach for integrating hierarchical information flow

[54] within the paradigm of ‘mechacognition’. By describing

mood dynamics in terms of coupled ROs, this extends

the descriptive approaches used elsewhere (e.g. [9,37]).

As Rabinovich et al. [54] further highlighted the hierarchy of

interactions and how dynamics within the brain (at the

neuron level) scale-up to influence broad cortex dynamics

requires a greater understanding of information flow across

different scales of organization [54]. Disruption and disturb-

ances to this information flow are predicted to lead to

cognitive disorders (such as in bipolar disorder). Developing

an appropriate framework is required to describe information

flow up and down the ladder of mechanistic cognition (from

neuroscience, psychology and pharmacology and beyond) and

is likely to help fuel innovation and novel clinical treatments.

While the ideal of individualized treatments [55] is an

aspirational goal, a more pragmatic path might be to develop

novel hierarchical approaches to understanding mood disorders

[56]. Our insights from repeated mood monitoring, and the sort

of preliminary analyses of the data that we have completed here,

opens the possibility that linking accurate phenotypic measure-

ment with genes, neural activity, physiology and cognition

within a mathematical framework might be a fruitful approach

in both understanding the neurobiology and the clinical impli-

cations of potential treatment targets in many different mental

disorders in which affective instabilities are a feature.
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