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Abstract. 	Corpus luteum (CL) regression is required during the estrous cycle. During CL regression, luteal cells stop 
producing progesterone and are degraded by apoptosis. However, the detailed mechanism of CL regression in cattle has not 
been fully elucidated. The aim of this study was to evaluate autophagy, lysosome activity, and apoptosis during CL regression 
in cattle. The expression of autophagy-related genes (LC3α, LC3β, Atg3, and Atg7) and the protein LC3-II was significantly 
higher in the late CL than in the mid CL. In addition, autophagy activity was significantly increased in the late CL. Moreover, 
gene expression of the autophagy inhibitor mammalian target of rapamycin (mTOR) was significantly lower in the late 
CL than in the mid CL. Lysosome activation and expression of cathepsin-related genes (CTSB, CTSD, and CTSZ) showed 
significant increases in the late CL and were associated with an increase in cathepsin B protein. In addition, mRNA expression 
and activity of caspase 3 (CASP3), an apoptotic enzyme, were significantly higher in the late CL than in the mid CL. These 
results suggest simultaneous upregulation of autophagy-related factors, lysosomal enzymes and apoptotic mediators, which 
are involved in regression of the bovine CL.
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The corpus luteum (CL), a biological clock of the estrous cycle 
and pregnancy, is a temporary endocrine structure responsible 

for the production of high levels of progesterone [1]. If pregnancy 
does not occur, the CL regresses until the next estrous cycle [2]. 
During regression, the CL first undergoes functional changes, i.e., 
the inhibition of progesterone production [3], followed by structural 
changes to decrease its size and weight and finally transformation 
into a scar tissue known as the corpus albicans [4]. However, the 
mechanism by which luteal regression is initiated and controlled is 
still not fully understood.

Recent studies have suggested that luteal cell death in humans 
and primates is induced by autophagy [5, 6]. Autophagy is a basic 
cellular mechanism associated with the degradation of unnecessary 
cytoplasmic organelles by isolating targeted components to form 
an autophagosome [7], which fuses with lysosomes to degrade the 
engulfed materials [8]. Autophagy is regulated by autophagy-related 
genes (Atg) and their associated proteins [9]. During the process of 

autophagy, mammalian target of rapamycin (mTOR) inhibits initiation 
of the autophagy pathway and autophagosome formation [10].

In ewes, luteal cells in the regressing CL are correlated with 
characteristics of lysosome activation such as the increase in lysosomal 
content and release of lysosomal enzymes into the cytosol [11]. 
Lysosomes are membrane-bound organelles involved in endocytosis, 
phagocytosis and autophagy [12]. In addition, lysosomes play an 
important role in the execution of apoptosis via lysosomal proteases, 
especially cysteine cathepsins [13]. Among the cysteine cathepsins, 
cathepsins B, L and D are the most abundant and can be used 
as apoptosis markers [13]. Cathepsin B is involved in apoptosis 
via activation of the pro-apoptotic protein BID, a member of the 
Bcl-2 family [14], which stimulates the mitochondrial apoptotic 
pathway [15]. Cathepsin B is found in various organs, including 
the liver, ovaries, and cumulus-oocyte complexes [16]. Cathepsin 
D, which is mainly involved in the proteolysis of endocytosed or 
autophagocytosed proteins at low pH, is also associated with the 
induction and promotion of apoptosis [17].

Apoptosis is strongly implicated in structural CL regression, as 
evidenced by DNA fragmentation and the expression of apoptosis-
related genes [4, 18]. The pivotal apoptotic mediator caspase 3 
(CASP3) has been detected in the human CL [19], and it is highly 
involved in luteal regression in cows [20] and other species [21].

Although the role of apoptosis in CL degradation has been ex-
tensively investigated, the status of autophagy during regression of 
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the bovine CL has not been fully elucidated. The aim of this study 
was to evaluate autophagy and lysosome activity with respect to 
regression of the bovine CL.

Materials and Methods

Collection of CL tissues
Bovine ovaries were collected from a local abattoir and transported 

to the laboratory. Stages of the estrous cycle were estimated based on 
the morphological features of the ovaries [22]. In brief, the mid and 
late CL stages were detected according to the internal and external 
morphology and the presence of a large follicle. The mid CL (1.6–2.0 
cm in diameter) is a fully formed CL with visible vasculature in 
the periphery and internal parts; the apex is initially red or brown, 
and the remainder of the gland is yellow or orange. The late CL is 
smaller (< 1.0 cm in diameter) and is characterized by a large follicle 
(> 1.0 cm in diameter); all the tissue is yellow or orange [23, 24].

Measurement of tissue progesterone
Progesterone (P4) was measured in luteal tissue homogenates as 

previously described [25] with some modifications. In brief, CL tissue 
samples were weighed and homogenized with a BioMasher I (Nippi, 
Tokyo, Japan) to prepare tissue homogenates. The homogenates were 
ultracentrifuged (12,000 rpm), and the supernatant was collected 
and adjusted to the required dilution ratio (100 µl/100 mg tissue 
homogenate) with phosphate-buffered saline (PBS). A 90-µl portion 
of each supernatant was stored at –20 C until analysis. P4 levels were 
measured by enzyme immunoassay as described previously [26]. 
The standard curve was constructed in the range of 0.391–100 ng/
ml, and the effective dose for 50% inhibition (ED50) was 4.5 ng/ml.

RNA isolation and quantitative real-time reverse transcription 
polymerase chain reaction (RT-PCR)

Total RNA from each sample was isolated and treated with DNase 
using a NucleoSpin RNA II Kit (Macherey-Nagel, Düren, Germany) 
according to the manufacturer’s instructions. The extracted RNA 
was then immediately used for RT-PCR or stored at –80 C until 
analysis. After standardizing the RNA quantity using a NanoDrop 
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA), 
cDNA was synthesized with ReverTra Ace qPCR RT Master Mix 
(Toyobo, Osaka, Japan). Conventional PCR was performed using 
GoTaq Hot Start Green Master Mix (Promega, Madison, WI, USA). 
To assess gene expression, quantitative (q) PCR was used. Primers 
specific for autophagy-related genes (LC3α, LC3β, ATG3, and ATG7), 
cathepsin B (CTSB) and cathepsin D (CTSD) were designed and 
commercially synthesized (Eurofins Genomics, Tokyo, Japan). Primers 
for the genes cathepsins Z (CTSZ) [16], caspase 3 (CASP3) [27], 
mTOR [28], steroidogenic cytochrome P450, family 11, subfamily A, 
polypeptide 1 (CYP11A1), and 3-beta-hydroxysteroid dehydrogenase 
(HSD3β) [29] were synthesized based on the reported sequences. All 
primer sequences are presented in Table 1. The reactions were carried 
out in 96-well PCR plates, in a total volume of 10 µl containing 1 µl 
of 10 pmol/µl of each primer, 5 µl of Thunderbird SYBR qPCR Mix 
(Toyobo), and 3 µl of cDNA. After centrifugation, the plates were 
placed into a Roche LightCycler 480 instrument II (Roche, Basel, 
Switzerland) and subjected to the following cycling conditions: a 

denaturation step at 95 C for 30 sec, an amplification step of 50 
cycles at 95 C for 10 sec, 57 C for 15 sec and 72 C for 30 sec, a 
melting-curve step at a gradient of 55–95 C with an increment of 2.2 
C/sec and continuous fluorescence acquisition, and a cooling step at 4 
C. The expression levels of the target genes were determined relative 
to that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Immunodetection of LC3-II
The CL samples (100 mg each) were homogenized with a 

BioMasher (Nippi) and ultracentrifuged according to the manu-
facturer’s instruction. Then, 10 µl of homogenate was lysed as 
previously described [30] in buffer containing 90 µl of 2% sodium 
dodecyl sulfate (SDS; Wako Pure Chemical Industries, Osaka, Japan), 
5% 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA), 25% 
glycerol (Kanto Chemical, Tokyo, Japan), 0.5 M Tris-HCl (pH 6.8), 
and 0.5% bromophenol blue, and heated at 95 C for 5 min. Ten 
microliters of the sample was separated by SDS-polyacrylamide gel 
electrophoresis in a 15% polyacrylamide gel using an electrophoresis 
unit (Bio-Rad, Hercules, CA, USA). The separated proteins were 
transferred onto polyvinylidene fluoride membranes using an iBlot 
Gel Transfer System (Invitrogen, Carlsbad, CA, USA). The membrane 
was incubated with blocking solution containing 5% bovine serum 
albumin (BSA) (Sigma-Aldrich) in Tris-buffered saline containing 
0.1% Tween 20 (TBS-T) for 1 h at room temperature and washed three 
times in TBS-T. The membranes were then incubated overnight at 4 
C with an anti-LC3 rabbit polyclonal antibody (PM036Y, Medical 
& Biological Laboratories, Tokyo, Japan) and anti-GAPDH mouse 
monoclonal antibody (NB300-221SS; Novus Biologicals LLC, 
Littleton, CO, USA), both diluted 1:2000 with immunoreaction 
enhancer (Can Get Signal, Toyobo). After washing three times with 
TBS-T, the membranes were incubated with horseradish peroxi-
dase (HRP)-labeled donkey anti-rabbit immunoglobulin G (IgG) 
(NA934VS; GE Healthcare Life Sciences, Little Chalfont, UK) diluted 
1:25,000 in TBS-T to detect LC3. To detect GAPDH, HRP-labeled 
goat anti-mouse IgM (H+L) (bs-0368G; Bioss USA Antibodies, 
Woburn, MA, USA) was used (1:4000 dilution in TBS-T). After 
washing the membrane with TBS-T, chemifluorescence detection 
was performed with Immobilon Western Chemiluminescent HRP 
Substrate (P36599A; Merck Millipore, Billerica, MA, USA) and 
analyzed using a ChemiDoc System (Bio-Rad).

Immunohistochemistry of cathepsin B
Small pieces of CL tissue were collected, embedded in Optimal 

Cutting Temperature compound (Sakura Finetek, Tokyo, Japan), and 
stored at –80 C until use. Cross sections were prepared using a Leica 
CM3050 S Research Cryostat (Leica Biosystems Nussloch, Nussloch, 
Germany) and fixed in 4% (w/v) paraformaldehyde (pH 7.4). Then, 
the slides were washed in PBS and permeabilized by incubation 
with 0.25% (v/v) Triton-X100 in PBS (PBS-T) for 10 min. After 
washing with PBS-T, the samples were blocked with 1% (w/v) BSA 
in PBS-T for 30 min and incubated for 1 h at room temperature with 
the primary mouse monoclonal antibody to cathepsin B (ab58802; 
Abcam, Cambridge, UK) diluted 1:200 in 1% BSA-PBS-T. Slides 
were then washed three times in PBS-T for 5 min and incubated 
for 30 min at room temperature with the fluorescein-conjugated 
secondary antibody (CAPPELTM Research Products, Durham, NC, 
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USA) diluted 1:300 in 1% BSA-PBS-T:goat anti-mouse IgM (µ 
chain). The slides were washed in PBS-T three times for 5 min, 
covered with 10 µl of mounting solution (Vectashield with DAPI, 
Vector Laboratories, Burlingame, CA, USA), and examined under a 
BZ-9000 Biorevo fluorescence microscope (Keyence, Osaka, Japan) 
using a 550-nm excitation filter.

Detection of autophagy activity
Autophagy activity was detected as described previously [31] with 

some modifications. Cyto-ID Green Autophagy Detection Reagent 
(Enzo Life Sciences, Farmingdale, NY, USA), a novel amphiphilic 
autophagosome tracer dye that measures the autophagic vacuoles 
and monitors autophagic flux in live cells, co-localizes with LC3 
and has negligible nonspecific staining of lysosomes [32], was used 
according to the manufacturer’s protocol. In brief, small pieces (less 
than 2 × 2 × 2 mm) of CL tissue samples were incubated in 1× Assay 
Buffer (Enzo) at 37 C for 30 min in the presence of 2 μl/ml reaction 
mix. After rinsing in PBS, the stained samples were mounted onto 
a glass slide and observed immediately under a BZ-9000 Biorevo 
fluorescence microscope (Keyence) using a 550-nm excitation filter. 
Images were captured, and fluorescence intensity was analyzed using 
the ImageJ Software (National Institutes of Health, Bethesda, MD, 
USA). For the image analysis, the tissues were selected by setting 
the threshold above the background level as constant for all analyzed 
images, and the average fluorescence intensity was calculated to 
evaluate the autophagy activity.

Detection of cathepsin B and lysosomal activities
Cathepsin B activity was detected by using a Magic Red Cathepsin 

B Assay Kit (MR-RR) 2 (Immunochemistry Technologies, LLC, 
Minneapolis, MN, USA) according to the manufacturer’s protocol with 
a slight modification. In brief, small pieces (less than 2 × 2 × 2 mm) 
of each sample were incubated in 300 µl of serum-free Dulbecco’s 
modified Eagle medium (DMEM) containing 1 µl reaction mix in 
a humidified atmosphere of 5% CO2 at 38.5 C for 30 min. Active 
lysosomes were detected by incubating the CL tissues with 1 µM of 
LysoTracker Red (L-7528, Molecular Probes, Eugene, OR, USA) 
in DMEM supplemented with 10% fetal calf serum in a humidified 
atmosphere of 5% CO2 at 38.5 C for 30 min. After rinsing in PBS, 
the stained samples were mounted onto a glass slide and observed 
immediately under a fluorescence microscope using a 590-nm 
excitation filter. Images were captured and analyzed as described 
above by measuring the fluorescent intensity of cathepsin B (active 
form) and the average size of lysosomes.

Detection of caspase 3 activity in CL tissues
To evaluate the apoptotic status, caspase 3 activity in the CL 

tissues was detected using caspase 3 Magic Red-(DEVD)2 substrate 
reagent (Immunochemistry Technologies, LLC) according to the 
manufacturer’s protocol. Small pieces (less than 2 × 2 × 2 mm) of 
CL tissue were incubated in 300 µl of serum-free DMEM containing 
2 µl reaction mix in a humidified atmosphere of 5% CO2 at 38.5 C 
for 30 min. After rinsing in PBS, the stained samples were mounted 

Table 1.	 List of oligonucleotide primers used for RT-PCR

Target gene Primer sequence GenBank accession number
CYP11A1 5’-AGGCAGAGGGAGACATAAGCA-3’ (Atli et al. 2012)

5’-GTGTCTTGGCAGGAATCAGGT-3’  NM_176644.2 
HSD3β 5’-CCAAGCAGAAAACCAACGAC-3’ (Atli et al. 2012)

5’-ATGTCCACGTTCCCATCATT-3’ NM_174343.3 
LC3α 5’-TGTCAACATGAGCGAGTTGGT-3’ NM_001046175.1 

5’-AGGAAGCCATCCTCGTCCTT-3’
LC3β 5’- CGAGAGCAGCATCCTACCAA -3’ NM_001001169.1

5’- TGAGCTGTAAGCGCCTTCTT -3’
ATG3 5’-AAGGGAAAGGCACTGGAAGT-3’ NM_001075364.1

5’-GTGATCTCCAGCTGCCACAA-3’
ATG7 5’- ATTGCTGCATCAAGAGACCCA -3’ NM_001083795.2

5’- CCTTCTGGCGATTATGGTCA  -3’
CTSB 5’- CACTTGGAAGGCTGGACACA-3’ NM_174031.2

5’- GCATCGAAGCTTTCAGGCAG-3’
CTSD 5’- CCCGTGGAACACCTGATCGCCAA-3’ NM_001166521.1

5’- CCCGATGCCGATCTCCCCGTA -3’
CTSZ 5’- GGGAGAAGATGATGGCAGAAAT -3’ (Bettegowda et al. 2008)

5’- TCTTTTCGGTTGCCATTATGC -3’ NM_001077835.1 
CASP3 5’-AGCCATGGTGAAGAAGGAATCA-3’ (Ushizawa et al. 2006)

5’-GGTACTTTGAGTTTCGCCAGGA-3’ AY575000 
mTOR 5’-ATGCTGTCCCTGGTCCTTATG-3’ (Nan et al. 2014)

5’-GGGTCAGAGAGTGGCCTTCAA-3’ XM_001788228.1
GAPDH 5’-ACAGTCAAGGCAGAGAACGG-3’ NM_001034034.2

5’-CCACATACTCAGCACCAGCA-3’
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onto a glass slide and observed under a fluorescence microscope 
using a 590-nm excitation filter. Images were captured and analyzed 
as described above.

Statistical analysis
Each experiment was performed using more than 3 different CL 

tissues for each analysis, and the data are expressed as means ± SEM. 
The statistical significance of differences between the tissues was 
analyzed with Student’s t-tests for independent samples using the 
SPSS version 16.0 software (SPSS, Chicago, IL, USA); P < 0.05 
was considered statistically significant.

Results

Evaluation of CL regression status
To evaluate the stage of CL regression, the CL tissue samples 

were analyzed for P4 levels, expression of the genes involved in 
progesterone synthesis and the activity of caspase-3, an apoptotic 
indicator. P4 production was significantly lower in the late CL than 
in the mid CL (P < 0.05; Supplementary Fig. 1A: online only), and 
this decrease was correlated with a decrease in the expression of the 
steroidogenic CYP11A1 and HSD3β genes (P < 0.05; Supplementary 
Fig. 1B and C). To further confirm the CL regression status, the 
expression and enzymatic activity of the apoptotic mediator caspase 
3 was analyzed in the mid and late CL. The results revealed that 
caspase 3 activity was significantly higher in the late CL stage than 
in the mid CL stage (Supplementary Fig. 2A and B: online only); 
strong signals of caspase 3 activity were observed in late CL sample 
(Supplementary Fig. 2B). Quantitative assessment showed that the 
fluorescent signal indicative of the cleaved caspase 3 substrate was 
significantly stronger in the late CL stage (P < 0.05; Supplementary 
Fig. 2C). These results were substantiated by markedly higher CASP3 
expression in the late CL stage compared with the mid CL stage 
(P < 0.01; Supplementary Fig. 2D).

Assessment of expression and activity of autophagy-related 
genes and protein

To evaluate autophagy status during regression of the bovine 
CL, the expression levels of LC3α, LC3β, Atg3, Atg7 and mTOR 
were analyzed by qPCR. The expression levels of all genes were 
significantly higher in the late CL stage than in the mid CL stage 
(Fig. 1 A–D). Expression of mTOR, an autophagy inhibitory factor, 
was significantly decreased in late CL stage (Fig. 1E). LC3 has 
inactive LC3-I and active LC3-II forms. LC3-II localizes inside and 
outside the mature autophagosome and can therefore be considered 
an autophagy marker [33]. To assess the active membrane-bound 
LC3 form, LC3-II protein was detected by western blot analysis. 
Significantly higher LC3-II expression was observed in the late 
CL than the mid CL (Fig 2A and B). For further confirmation, 
autophagy activity was evaluated in mid and late CLs by detecting the 
autophagosomes with Cyto-ID dye. Clear and strong spots indicating 
autophagosomes were observed in the late CL (Fig. 2C and D). The 
fluorescence intensity of active autophagosomes was significantly 
higher in the late CL than in the mid CL (Fig. 2E).

Expression of cathepsin genes and cathepsin B protein
To evaluate the expression of the CTSB, CTSD, and CTSZ genes 

during CL regression, qPCR analysis was performed. Significantly 
higher mRNA levels of CTSB, CTSD and CTSZ were detected in 
the late CL than in the mid CL (Fig 3A–C). The increase in CTSB 
expression was further confirmed by evaluating the cathepsin B 
protein using immunohistochemistry (Fig. 4A and B) and cathepsin 
B activity (Fig. 4C and D) in the late CL. The relative florescent 
intensity of cathepsin B was significantly higher in the late CL tissues 
than that in the mid CL tissues (Fig. 4E)

Evaluation of active lysosomes
To evaluate the relationship between lysosomal activity and 

CL regression, detection of active lysosomes was performed. Red 
fluorescent signals indicative of active lysosomes were clearly 
observed in the late CL tissue (Fig. 4F and G). The average lysosomal 
size was significantly larger in the late CL tissues than that in the 
mid CL tissues (Fig. 4H).

Discussion

In the present study, we performed a) a molecular evaluation of 
autophagy, b) investigated the association between the expression 
of autophagy markers and apoptotic mediators, and c) investigated 
the possible role of lysosomal activity and proteases expressions 
during CL regression. The overall results strongly suggest that 
the expression of autophagy-specific genes and lysosomal activity 
associated with the lysosome cathepsin expression pattern are highly 
related to apoptosis in the process of CL regression.

In the molecular evaluation of autophagy during CL regres-
sion, higher expression of Atg3 and Atg7 was observed in the 
late CL, possibly owing to their role in the formation of an LC3-
phosphatidylethanolamine complex, which plays an essential role 
in membrane dynamics during autophagy [34, 35]. In addition, we 
detected increases in expression of LC3α and LC3β, which encode two 
LC3 forms, and in the expression of the activated membrane-bound 
derivative LC3-II (an autophagy marker [33]) in the regressing CL 
tissues. These findings are in agreement with a previous study in rats 
that showed upregulation of LC3 and the membrane-bound LC3-II 
in the late-luteal CL stage [36]. Upregulation of autophagy-related 
genes and proteins in the late CL is supported by the significant 
decrease in mTOR expression, which has an inverse relationship 
with autophagy [10]. The inhibitory effect of mTOR on autophagy 
depends on prevention of the induction stage [37, 38]. In addition, 
autophagy activity was significantly increased in the late CL after 
autophagosomes were detected. The increases in both activity and 
mRNA expressions of autophagy and autophagy-related factors 
were accompanied by a decrease in expression of mTOR in the 
late CL, suggesting that autophagy participates in the process of 
bovine luteolysis.

We also investigated the association between the expression 
of autophagy markers and apoptotic mediators. Upregulation of 
autophagy-related factors was associated with higher expression and 
activity of the apoptotic initiator caspase 3. The correlation between 
autophagy and apoptosis has been reported previously [39]. It has been 
demonstrated in a rat model in which an increase in apoptotic death 
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in granulosa cells paralleled the accumulation of autophagosomes 
in luteal cells during CL regression [36]. In bovine CL regression, 
the extrinsic apoptosis pathway has been shown to be particularly 
important for the onset of regression [40], at which point caspase 3 
activation and transduction of cell death signals occur via the tumor 
necrosis factor alpha (TNFα) pathway [41, 42]. TNF-α was identified 
as the predominant immune regulatory factor for macroautophagy 
in the skeletal muscle [43]. In addition, TNF-α treatment has been 
shown to induce macroautophagy in Ewing sarcoma cells [44]. Taken 
together, it can be concluded that TNF-α can promote autophagy and 

may act as a link between extrinsic apoptosis and autophagy during 
CL regression, thus explaining the synchronized elevation of LC3 
expression and caspase 3 activity observed in our study.

We also evaluated lysosomal activity and protease expression levels. 
Our findings demonstrate an increased number of active lysosomes 
in the late CL. Lysosomes contain enzymes that break down unused 
intracellular materials, such as acid hydrolases synthesized in the 
endoplasmic reticulum and packaged in the Golgi complex into 
so-called primary lysosomes. These lysosomes fuse with endosomes 
to form endolysosomes or secondary lysosomes; hydrogen ions then 

Fig. 1.	 Expression of autophagy-related genes during bovine CL regression. Relative mRNA levels of LC3α (A), LC3β (B), Atg3 (C), Atg7 (D) and mTOR 
(E). All data are normalized to GAPDH expression and shown as means ± SEM. *P < 0.05. **P < 0.01. n, total number of analyzed tissues.

Fig. 3.	 Expression of cathepsin-encoding genes during bovine CL regression. Relative mRNA levels of CTSB (A), CTSZ (B) and CTSD (C). The data are 
normalized to GAPDH expression and are shown as means ± SEM. *P < 0.05. **P < 0.01. n, total number of analyzed tissues.
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Fig. 2.

Fig. 4.
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create an acidic environment and activate the enzymes. Thus, a 
mature lysosome characterized by a highly acidic pH and activated 
hydrolytic enzymes is formed [45]. In our experiments, a higher 
intensity of the acidic probe in the late CL tissues indicates an 
increased number and size of mature lysosomes with low pH and 
activated hydrolytic enzymes.

Lysosomal number and enzymatic activity are strongly related to 
CL regression; lysosomes appear to be more numerous in small luteal 
cells than in large luteal cells before the initiation of luteolysis in 
sheep [46]. Moreover, the activity of lysosomal enzymes increases 
at the beginning of the progesterone decline and regression of the 
CL in ewes [47]. During structural luteolysis, luteal cells undergo 
apoptosis [4, 18], and lysosomes participate in the execution of 
apoptosis via lysosomal enzymes, including cysteine proteases and 
the aspartic protease cathepsin D [13]. Lysosomes play an important 
role in macroautophagy via formation of autophagolysosomes [8], 
which are increased in response to PGF2α in sheep luteal cells 
[48]. These findings may explain the lysosome accumulation and 
upregulation of the associated protease cathepsin B in bovine luteal 
cells during CL regression.

Higher expression of the CTSB gene may be related to the induc-
tion of apoptosis via the activation of a pro-apoptotic protein, BID. 
Truncated BID participates in the mitochondrial apoptotic pathway 
involved in the activation of procaspase 9 [49]. The simultaneous 
increase in cathepsin B and LC3 has been observed in a previous 
study in which excessive activation of autophagy led to the elevation 
of cathepsin B production, which could stimulate intracellular inflam-
masomes, activate NOD-like receptors and subsequently activate 
proinflammatory caspases [50]. These results suggest that cathepsin 
B activity during mitochondrial apoptosis may link autophagy with 
a proinflammatory response [51]. In our study, the observed high 
expression and activity of cathepsin B in the late CL stage may be 
related to its role in apoptosis and autophagy.

Similarly, higher expression of the CTSD gene in the late CL stage 
may be attributed to its role in the regulation of both intrinsic and 
extrinsic apoptotic pathways. It was suggested that the increase in 
CTSD in the regressing CL is related to the redox events that lead 
to cell death and suggests a caspase-independent apoptotic pathway 
[52]. A synchronous increase in CTSD expression and autophagy 
activity may be attributed to the role of cathepsin D in the proteolysis 
of endocytosed or autophagocytosed proteins at low pH [17].

The high level of CTSZ in the late CL might be due to the presence 
of macrophages in the regressing CL observed in many species [53]. 
Macrophages play a role in luteolysis via phagocytosis of decaying 
luteal cells or secretion of cytokines and reactive oxygen species [54]. 

Given that cathepsin Z is expressed predominantly by monocytes 
and macrophages, the accumulation of these cells in late CL tissues 
may explain elevated CTSZ expression.

In conclusion, our study suggests that autophagy and apoptosis 
are involved in the regression of the bovine CL, as evidenced by a 
simultaneous increase in the expression of apoptotic caspase 3 and 
ubiquitin-like LC3. Additional evidence includes the upregulation 
of lysosomal activity, synthesis of lysosomal cathepsins, and forma-
tion of autophagolysosomes. Therefore, this study suggests cross 
talk between lysosomal function, autophagy, and apoptosis during 
regression of the CL in bovine.
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