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Mild cognitive impairment (MCI) is considered as a transition phase between normal aging and Alzheimer’s disease (AD). MCI
confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even
improvement back to normal cognition. We sought to determine the serum metabolomic profiles associated with progression to
and diagnosis of AD in a prospective study. At the baseline assessment, the subjects enrolled in the study were classified into
three diagnostic groups: healthy controls (n¼ 46), MCI (n¼ 143) and AD (n¼ 47). Among the MCI subjects, 52 progressed to AD
in the follow-up. Comprehensive metabolomics approach was applied to analyze baseline serum samples and to associate the
metabolite profiles with the diagnosis at baseline and in the follow-up. At baseline, AD patients were characterized by diminished
ether phospholipids, phosphatidylcholines, sphingomyelins and sterols. A molecular signature comprising three metabolites
was identified, which was predictive of progression to AD in the follow-up. The major contributor to the predictive model
was 2,4-dihydroxybutanoic acid, which was upregulated in AD progressors (P¼ 0.0048), indicating potential involvement
of hypoxia in the early AD pathogenesis. This was supported by the pathway analysis of metabolomics data, which
identified upregulation of pentose phosphate pathway in patients who later progressed to AD. Together, our findings primarily
implicate hypoxia, oxidative stress, as well as membrane lipid remodeling in progression to AD. Establishment of pathogenic
relevance of predictive biomarkers such as ours may not only facilitate early diagnosis, but may also help identify new
therapeutic avenues.
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Introduction

Alzheimer’s disease (AD) is a growing challenge to the health
care systems and economies of developed countries, with
millions of patients suffering from this disease and increasing
numbers of new cases diagnosed annually with the increasing
age of populations.1 Mild cognitive impairment (MCI) is
considered as a transition phase between normal aging and
AD.2 A subject with MCI shows cognitive impairment, primarily
in memory functions, yet has preserved activities of daily living
and does not fulfill the criteria of AD or any other dementia
disorder. MCI confers an increased risk of developing AD,3

although the state is heterogeneous with several possible
outcomes, including even improvement back to normal
cognition.4 Recent research has thus concentrated on
obtaining biomarkers to identify features that differentiate
between those MCI subjects who will develop AD (progressive
MCI, P-MCI) from stable MCI (S-MCI) and healthy elderly
control subjects.

Ideally, the AD biomarkers (1) would reflect the disease-
related biological processes and (2) may be measured non-
invasively, such as a blood test. The molecular markers
sensitive to the underlying pathogenic factors would be of high
relevance not only to assist early disease detection and
diagnosis, but also to subsequently facilitate the disease

monitoring and treatment responses. Promising, although non-
overlapping, results have been obtained in two independent
plasma proteomics studies aiming to identify potential markers
predictive of AD.5,6 Metabolomics is a discipline dedicated to
the global study of small molecules (i.e., metabolites) in cells,
tissues and biofluids. Concentration changes of specific groups
of metabolites may be sensitive to pathogenically relevant
factors such as genetic variation,7 diet,8 age,9,10 immune
system status11 or gut microbiota,12 and their study may
therefore be a powerful tool for characterization of complex
phenotypes affected by both genetic and environmental
factors.13 In the past years, technologies have been developed
that allow comprehensive and quantitative investigation of a
multitude of different metabolites.14

Among the metabolites, lipids have received most attention,
as all amyloid precursor protein-processing proteins are
transmembrane proteins.15 Lipids are major constituents
of cell membranes, and their composition is important to
maintain membrane fluidity, topology, mobility or activity
of membrane-bound proteins, and to ensure normal cellular
physiology.16 Investigations of disease-related ‘lipidome’
covering a global profile of structurally and functionally diverse
lipids provide an opportunity to pursue, accurately and
sensitively, studies profiling hundreds of molecular lipids in
parallel.17,18 The so-called lipidomics approach may not only
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provide information about the disease-related markers, but in
addition, deliver clues about the mechanisms behind the
control of cellular lipid homeostasis.16

Herein, we sought to determine the serum metabolomic
profiles associated with progression to and diagnosis of AD
in a well-characterized prospective study. At the baseline
assessment, subjects enrolled in the study were classified into
three diagnostic groups: healthy controls, MCI and AD. Global
metabolomics approach using two platforms with broad
analytical coverage, from lipids to small polar metabolites,
was applied to analyze baseline serum samples from subjects
involved in the study, and to associate the metabolite profiles
with the diagnosis at the baseline and in the follow-up.

Methods

Participants. Within the PredictAD project (http://www.
predictad.eu/), focusing on predictors of conversion of MCI
to clinical AD dementia, 143 subjects diagnosed with MCI
were pooled from longitudinal study databases gathered in
the University of Kuopio, and their findings were compared
with those of 46 healthy control subjects and 37 AD
patients.19–21 The blood samples were taken during
morning hours and after fasting in most cases. A venous
blood sample was collected into heparin tubes and plasma
was separated using standard methods. The samples were
aliquoted and stored in polypropylene tubes at �70 1C until
analyses. Descriptive and clinical data of the study groups
are presented in Table 1.

Healthy control subjects included in this study were
volunteers from the population-based cohorts, and the
methods used for the identification of control subjects have
been described in previous studies.19,20 They had no history
of neurological or psychiatric diseases and showed no
impairment in the detailed neuropsychological evaluation.

MCI was diagnosed using the criteria originally proposed by
the Mayo Clinic Alzheimer’s Disease Research Center.22,23

These criteria have later been modified, but at the time this
study population was recruited, the MCI criteria required were
as follows: (1) memory complaint by patient, family or
physician; (2) normal activities of daily living; (3) normal
global cognitive function; (4) objective impairment in memory

or in one other area of cognitive function as evident by scores
41.5 s.d. below the age-appropriate mean; (5) Clinical
Dementia Rating (CDR) score of 0.5; and (6) absence
of dementia. As the subjects were pooled from different
study databases with slightly different neuropsychological
test batteries, two scales, which were done with all the MCI
subjects, were selected to describe their cognitive status,
mini-mental state examination (MMSE) and CDR sum of
boxes. Although the neuropsychological test battery used to
diagnose MCI varied slightly, all the MCI subjects were
considered having the amnestic subtype of the syndrome at
the time of recruitment.

Diagnosis of AD included evaluation of medical history,
physical and neurological examinations performed by a
physician, and a detailed neuropsychological evaluation.
The severity of the cognitive decline was graded according
to the CDR Scale.24 Brain magnetic resonance imaging scan,
cerebrospinal fluid (CSF) analysis, electrocardiography, chest
radiography, screening for hypertension and depression, and
blood tests were also performed to exclude other possible
pathologies underlying the symptoms. The diagnosis of
dementia was based on the criteria of the Diagnostic and
Statistical Manual of Mental Disorders, 4th edition25 and the
diagnosis of AD on the National Institute of Neurologic and
Communicative Disorders and Stroke, and Alzheimer’s
Disease and Related Disorders Association criteria.26 All
magnetic resonance images were also read by an experi-
enced neuroradiologist to exclude subjects with severe white
matter lesions or other abnormalities. The study subjects with
a history of stroke or transient ischemic attack were excluded
and accordingly, subjects with extensive confluent white
matter lesions.

MCI subjects who developed AD during the course of the
follow-up were considered as P-MCI subjects (n¼ 52) and
those whose status remained stable or improved (i.e., those
who were later diagnosed as controls) were considered
having S-MCI (n¼ 91). The follow-up time for the P-MCI
subjects (27±18 months, Table 1) was set to start at the
baseline date and considered completed at the time of AD
diagnosis. In the case of S-MCI subjects, the follow-up time
(28±16 months, Table 1) was calculated as the time from
baseline date to the last available evaluation date. For all
subjects magnetic resonance images were acquired with

Table 1 Descriptive statistics of the study population at baseline

Control Stable MCI Progressive MCI AD

N¼226 46 91 52 37
Gender, male/female (%) 21/25 (46/54) 32/59 (35/65) 15/37 (29/71) 17/20 (46/54)
Age at baseline, years (±s.d.) 71±6 72±5 71±6 75±4a

Education, years (±s.d.) 7±2 7±2 7±3 7±3
MMSE (±s.d.) 25.8±2.2 24.6±3.0b 23.7±2.7c 20.5±2.9d

Follow-up time, months (±s.d.) 31±17 28±16 27±18
APOE e2/e3/e4, % 0/87/13 4/74/22 3/59/38e 0/65/35f

Abbreviations: AD, Alzheimer’s disease; CI, confidence intervals; MCI, mild cognitive impairment.
aPo0.01 against control, stable MCI and progressive MCI.
bP¼ 0.03 against control.
cPo0.001 against control and P¼ 0.03 against stable MCI.
dPo0.001 against control, stable MCI and progressive MCI.
ew2-tests Po0.001 for e4 allele against control with odds ratio 4.0 (CI 2.0–8.3) and Po0.01 against stable MCI with odds ratio 2.2 (CI 1.3–3.7).
fw2-tests P¼0.001 for e4 allele against control with odds ratio 3.5 (CI 1.6–7.6) and P¼ 0.02 against stable MCI with odds ratio 1.9 (CI 1.1–3.5).

Metabolome in progression to Alzheimer’s disease
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1.5 T magnetic resonance imaging scan in the Department of
Clinical Radiology, Kuopio University Hospital.27 The Apolipo-
protein E (APOE) genotype of the study subjects was deter-
mined by using a standard protocol.28 The APOE allelic
distribution within the study groups is presented in Table 1.

Informed written consent was acquired from all the subjects
according to the Declaration of Helsinki, and the study was
approved by the Ethics Committee of Kuopio University Hospital.

Metabolomic analysis. Two analytical platforms for meta-
bolomics were applied to all samples from the estimation
cohort: (1) global lipidomics platform, based on ultra perfor-
mance liquid chromatography coupled to mass spectrometry
(MS), covers molecular lipids such as phospholipids,
sphingolipids and neutral lipids; (2) platform for global
profiling of small polar metabolites, based on compre-
hensive two-dimensional gas chromatography coupled to
time-of-flight mass spectrometry (GC�GC–TOFMS), covers
small molecules such as amino acids, free fatty acids, keto-
acids, various other organic acids, sterols and sugars.
Both platforms were recently described in detail29,30 and
are also described in Supplementary Methods. Raw ultra
performance liquid chromatography coupled to MS and
GC�GC–TOFMS data were processed with MZmine 231

and guineu30 software, respectively. The final data set
from each platform consisted of a list of metabolite peaks
(identified or unidentified) and their levels, calculated using
the platform-specific methods, across all samples. All meta-
bolite peaks were included in the data analyses, including the
unidentified ones. We reasoned that inclusion of complete
data as obtained from the platform best represents the global
metabolome, and the unidentified peaks may still be
followed-up later on with de novo identification, using
additional experiments if considered of interest.

Descriptive statistical analyses. Statistical analyses for
clinical data were performed by SPSS software release
14.0.1 for Windows (SPSS, Chicago, IL, USA). The
comparisons between the different study groups were done
by independent samples t-test. Otherwise, if the assumptions
for normality were not met, the non-parametric tests were
used. For the categorical data, the comparisons between
different groups were made using the w2-tests.

One-way analysis of variance (ANOVA), implemented in
Matlab (MathWorks, Natick, MA, USA), was applied to
compare the average within-cluster metabolite profiles bet-
ween the diagnostic groups. The statistical analyses at
individual metabolite level were performed using R version
2.13. The median values of metabolites across the three
diagnostic groups at baseline were compared using the
Kruskal–Wallis one-way ANOVA, whereas the medians of
P-MCI and S-MCI groups were compared by Wilcoxon test.
Individual metabolite levels were visualized using the bean-
plots,32 implemented in ‘beanplot’ R package. Beanplot
provides information on the mean metabolite level within
each group, density of the data-point distribution, as well as
shows individual data points.

Cluster analysis. The data were scaled to zero mean and
unit variance, to obtain metabolite profiles comparable to

each other. Bayesian model-based clustering was applied
on the scaled data to group lipids, which were similarly
expressed across all samples. The analyses were performed
using MCLUST33 method, implemented in R statistical
language34 as package ‘mclust’. In MCLUST, the observed
data are viewed as a mixture of several clusters and each
cluster comes from a unique probability density function.
A number of clusters in the mixture, together with the
cluster-specific parameters that constrain the probability
distributions, will define a model, which can then be
compared with others. The clustering process selects the
optimal model and determines the data partition accordingly.

A number of clusters ranging from 4–15 and all available
model families were considered in our study. Models were
compared using the Bayesian information criterion, which is
an approximation of the marginal likelihood. The best model is
the one that gives the largest marginal likelihood of data, that
is, the highest Bayesian information criterion value.

Diagnostic model. The best marker combination was
searched for in two phases: in the first phase, penalized,
generalized linear models35 were used to pre-screen a
prominent marker set, and in the second phase, a step-wise
optimization algorithm was used to optimize the marker
combination. In both phases, 1000 cross-validation runs
were performed. In each run, two out of three and one out of
three of the samples were selected at random to the training
and test sets, respectively. In the first phase, markers leading
to lowest coefficient of variation errors were selected.

In the second phase, logistic regression model implemen-
ted in R was applied to discriminate the groups of interest. The
best marker combination in the logistic regression model was
selected by step-wise algorithm using Akaike’s information
criterion.36 The best model was then applied to the test set
samples to calculate their predicted classes. The optimal
marker combinations in each of the cross-validation runs,
receiver-operating characteristic curves with area under the
curve (AUC) statistics, odds ratios and relative risks were
recorded. Different biomarker signatures were then compared
on the basis of the number of times they were selected as the
best performing models. The performance of the top-ranking
signature was then reported using the same procedure as
above, but only considering the selected combination of
metabolites. Receiver-operating characteristic curves with
AUC statistics, prediction accuracy, odds ratios and relative
risks were recorded on the basis of the performance in the
independently tested data (one out of three of the samples) for
each of the 2000 cross-validation runs.

Different models, for example, model based on metabolites
alone versus model based on APOE genotype, as well as
metabolites, were compared using the likelihood ratio test,
which expresses how many times more likely the data are
under one model than the other to compare their fit with the
data.37

Pathway analysis. MPEA (metabolic pathway enrichment
analysis)38 is a tool for functional analysis and biological
interpretation of metabolic profiling data generated by GC–
MS. The concept of MPEA is the same as that of widely-
accepted gene set enrichment analysis.39 MPEA accepts a
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ranked list of mass spectra and tests whether metabolites
belonging to some metabolic pathway tend to occur toward
the top (or bottom) of this ranked mass chromatogram.
Herein, MPEA was applied using the default parameters:
permutations¼ 100, kselection¼ 1, penalty_mode¼ 0,
organism¼HSA, gsea¼ 1, direction¼ 2, list_size¼ all,
column¼VAR5, column_width¼ 25, dotproduct¼ 0.05,
euclideandist¼ 0.05, hammingdist¼ 50, jaccarddist¼ 0.6,
binarydist¼ 0.6.

Results

Metabolomics in a prospective cohort. Using the two
analytical platforms, a total of 139 molecular lipids and
544 small polar metabolites were measured, respectively,
from 226 serum samples (Table 1). Due to a high degree of
co-regulation among the metabolites,40 one cannot assume
that all the 683 measured metabolites are independent.
For this reason the global metabolome was first surveyed by
clustering the data into a subset of clusters, using the
Bayesian model-based clustering.33 Such an approach
decomposes the metabolome into specific clusters of co-
varying metabolites. The so-obtained clusters and their
average levels across different sample groups provide a
global view of the main metabolic changes. As a potential
disadvantage, such analysis may miss potentially interesting
outlier metabolites, which greatly vary between the diag-
nostic groups, but are not well represented by any of the
average cluster profiles.

Lipidomic platform data was decomposed into seven (LCs)
and the GC�GC—TOFMS-based metabolomic data into six
clusters (MCs), respectively

Description of each cluster and the representative metabo-
lites are shown in Table 2. As expected, the division of clusters
to a large extent follows different metabolite functional or
structural groups. As shown in Figure 1a (and in Figure 1b for
selected representative identified metabolites), several of
the clusters had different average metabolite profiles across
the three diagnostic groups at the baseline. Specifically, there

was an overall trend towards lower lipid levels in AD, with the
highest levels in the control group (LCs 3–7). The differences
of average within-cluster profiles between the three groups
reached the significance level in LC1, LC3 (both containing
predominantly phosphatidylcholines (PC)) and LC4 (consist-
ing predominantly of ether phospholipids, including plasmalo-
gens). When corrected for age and APOE genotype, only the
LC4 remained statistically significant, whereas LC1 was
marginally significant (P¼ 0.07). Among the metabolites,
MC3 was different between the diagnostic groups at baseline
at a marginal significance level, but was not significant
after correction for age and APOE genotype. The two large
clusters, MC1 and MC2, did not change on average between
the groups, but did contain several significantly changing
metabolites.

Feasibility of diagnosis and prediction of AD. To assess
the feasibility of diagnosis, we performed a model selection in
multiple-cross validation runs as described in the ‘Methods’
section. The best model derived from logistic regression
analysis was obtained by combining four metabolites: two PC
(PC (18:0/18:2) from LC1 and PC (16:0/20:4) from LC5),
lactic acid (MC2; PubChem CID 61503) and ketovaline
(MC3; PubChem CID 49). This combination was selected in
248 out of 1000 cross-validation runs. The next three strongly
performing models, which were together selected in 275 out
of 1000 cross-validation runs, were closely related, as they
contained the subsets of two or three metabolites of the top-
ranking model. The model performed reasonably well, with
AUC¼ 0.77, 90% CI¼ (0.66, 0.88). Sensitivity and specificity
on the basis of optimal cut-off point were 0.64, 90% CI¼
(0.40, 0.85) and 0.72, 90% CI¼ (0.56, 0.86), respectively.
Supplementary Figure S1 shows the receiver-operating
characteristic curve of the diagnostic model comprising the
four metabolites, based on the independently tested data
taken from 2000 samplings.

We also included age and APOE genotype (APOE e4
genotype present or absent) in the diagnostic model. APOE or
age alone performed worse than metabolic signature
(Po0.001). For the model based on APOE genotype alone,

Table 2 Metabolome and lipidome cluster descriptions

Cluster
name

Cluster
size

Cluster description P baseline
diagnosisa

Examples of metabolites

LC1 14 PCs containing linoleic acid (C18:2n6) 0.0345 PC (16:0/18:2), PC (18:0/18:2)
LC2 10 LysoPCs 0.9365 LysoPC (16:0), lysoPC (18:0)
LC3 31 Palmitate and stearate containing PCs 0.0188 PC (16:0/18:1), PC (16:0/20:3), PC (16:0/16:0), PC (18:0/18:1)
LC4 29 Ether PCs 0.0135 PC (O-18:1/16:0), PC (O-18:1/18:2)
LC5 6 AA containing PCs and PEs 0.1190 PC (16:0/20:4), PC (18:0/20:4), PE (18:0/20:4)
LC6 13 EPA and DHA containing PCs 0.2776 PC (16:0/22:6), PC (18:0/22:6), PC (16:0/20:5)
LC7 32 Sphingomyelins 0.1106 SM (d18:1/24:1), SM (d18:1/16:0)
MC1 176 Diverse, including free fatty acids,

TCA cycle metabolites
0.5900 2-ketobutyric acid, citric acid, succinic acid, myristic acid, stearic

acid, oleic acid, threonic acid
MC2 299 Diverse, including amino acids, sterols 0.2693 Cholesterol, sitosterol, campesterol, lactic acid, pyruvic acid,

glycine
MC3 31 Amino acids, ketoacids 0.0516 Ketovaline, glutamine, ornithine
MC4 3 Branched-chain amino acids 0.5491 Valine, leucine, isoleucine
MC5 32 Diverse 0.2169 Histamine, pyroglutamic acid, glutamic acid
MC6 3 Unknown 0.1392

Abbreviations: AA, arachidonic acid; DHA, docosahexanoic acid; EPA, eicosapentanoic acid; lysoPC, lysophosphatidylcholine; PC, phosphatidylcholine.
aANOVA across the control, MCI and AD diagnostic groups at baseline.
Po0.05 marked in bold.
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AUC¼ 0.61, 90% CI¼ (0.49, 0.73; Supplementary Figure 2).
Combining metabolic signature and APOE genotype
did not improve the model (P¼ 0.48) (Supplementary Figure
3). However, combining age alone, or age and APOE
genotype together with the metabolic signature did
improve the model (P¼ 0.006 and P¼ 0.019, respectively;
Supplementary Figures 4 and 5). The best performing
model was based on the metabolite signature together with
age, with AUC¼ 0.81, 90% CI¼ (0.69, 0.91), sensitivity of
0.67, 90% CI¼ (0.44, 0.90) and specificity of 0.76, 90%
CI¼ (0.60, 0.89).

We also tested if any of the patients in the progressive MCI
group had the AD metabolic profile. When applying the AD
versus control group classification to the P-MCI group, 12 MCI
patients (24%) who later progressed to AD were identified as
having the AD metabolic signature.

We then investigated the feasibility of prediction of AD by
comparing stable and progressive MCI groups on the basis of
metabolomics profiles at baseline. Using the same approach
as above, the best model contained three metabolites: PC
from LC3 (PC (16:0/16:0)), an unidentified carboxylic acid
(MC2) and 2,4-dihydroxybutanoic acid (MC1; PubChem CID
192742). The top model was selected in 195 out of 1000
cross-validation runs. Other best-selected models contained
the two metabolites (carboxylic acid and 2,4-dihydroxybuta-
noic acid), but with varying lipids (including lysoPC (16:0), PC
(16:0/20:5), PC (18:0/20:4) or PC (O-18:1/16:0)), or without.

The metabolic signature obtained predicted AD reasonably
well, with AUC¼ 0.77, 90% CI¼ (0.65, 0.87), sensitivity of
0.77, 90% CI¼ (0.53, 1.00), specificity of 0.70, 90%
CI¼ (0.53, 0.86) and odds ratio of 8.0, 90% CI¼ (2.7, 27.6).
Figure 2 shows the receiver-operating characteristic curve of

PC(16:0/18:2) [LC1] PI(18:0/20:4) [LC3] PC(O-18:0/18:2) [LC4] 
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Figure 1 Metabolomic profiles across the three diagnostic groups at baseline. (a) Mean metabolite levels within each cluster. Error marks show s.e.m. (*Po0.05). When
correcting for age and ApoE genotype, only LC4 remained statistically significant, whereas LC1 was marginally significant (P¼ 0.07). (b) Profiles of selected representative
metabolites from different clusters in control and Alzheimer’s disease (AD) groups at baseline. The metabolite levels are shown as beanplots,32 which provide information on
the mean level (solid line), individual data points (short lines), and the density of the distribution. The concentration scale in beanplots is logarithmic for some metabolites.
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the combined diagnostic model comprising three metabolites,
based on the independently tested data taken from 2000
samplings. Supplementary Figure 6 shows the levels of
the three metabolites included in the biomarker across all
four patient groups included in the study. Interestingly, the
increase of 2,4-dihydroxybutanoic acid concentration appears
to be specific to the P-MCI group, whereas none of the
metabolites display the progressive changes from healthy
controls to AD.

APOE genotype alone was a poor predictor of progression
from MCI to AD in comparison with the predictive metabolic
biomarker (Po0.001), with AUC¼ 0.59, 90% CI¼ (0.47,
0.70). Addition of APOE genotype to the metabolic signature
did not significantly improve the predictive model (P¼ 0.15),
with AUC¼ 0.75, 90% CI¼ (0.63, 0.85; Supplementary
Figure 7).

Metabolic pathways behind progression to AD. Next, we
investigated which metabolic pathways may be behind the
observed metabolic profile changes found to be associated
with AD and with progression to AD. We applied the pathway
analysis of GC�GC–TOFMS data using MPEA,38 aiming to
identify sets of metabolites belonging to specific metabolic
pathways, which are significantly different between (1)
controls and AD groups at baseline (Figure 1 and Supple-
mentary Figure S1) or (2) S-MCI and P-MCI groups at
baseline (Figure 2). The results are shown in Table 3. The

only significantly altered pathway following the P-value
correction was pentose phosphate pathway when com-
paring P-MCI and S-MCI groups. Of relevance to this path-
way, concentration of ribose-5-phosphate was decreased in
the P-MCI group (P¼ 0.046), whereas lactic acid (P¼ 0.040)
and pyruvic acid (P¼ 0.058) were increased.

Discussion

Our findings, based on a well-phenotyped population,
associate specific metabolic abnormalities with progression
to AD. Our non-targeted methods cover a representative part
of the main metabolic pathways, thus allowing the determina-
tion of main intermediates of lipid metabolism, energy
metabolism (tricarboxylic acid cycle, gluconeogenesis, keto-
genesis) and nitrogen metabolism.

At the baseline, patients diagnosed with AD had decreased
concentrations of several lipid classes, including PC, plas-
malogens, sphingomyelins and sterols. Plasmalogens are
ether phospholipids, which are enriched in polyunsaturated
fatty acids, and are abundant in the brain.41,42 They have been
found diminished in AD in multiple previous studies,43–45 as
well as in normal aging.9 Also diminishment of sphingomyelins
and sterols is in line with earlier findings implicating altered
sterol and sphingomyelin metabolism in AD.46–48 Recent
study suggests that e4 allele of APOE (APOE4), a major risk
allele of AD,49 is associated with disruption of sterol and
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Figure 2 Feasibility of predicting Alzheimer’s disease (AD), based on concentrations of three metabolites (2,4-dihydroxybutanoic acid, unidentified carboxylic acid,
phosphatidylcholine (PC (16:0/16:0)) in subjects at baseline, who were diagnosed with mild cognitive impairment (MCI). (a) The characteristics of the model were determined
by independent testing in one out of three of the sample across 2000 cross-validation runs. (b) Beanplots of the three metabolites included in the model. (c) Two-dimensional
gas chromatography coupled to time-of-flight mass spectrometry (GC�GC–TOFMS) spectra of the two metabolites included in the model, 2,4-dihydroxybutanoic acid and an
unidentified carboxylic acid. Acc¼ classification accuracy; AUC¼ area under the receiver operating characteristic (ROC) curve; OR¼ odds ratio.

Metabolome in progression to Alzheimer’s disease
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sphingolipid metabolism.50 Given the affected lipids are major
constituents of lipid membranes, their compositional variation
with age and in disease is likely affecting the membrane
fluidity and protein mobility.41,51,52 This is particularly relevant
given recent evidence that truncated amyloid b fragments
may dynamically form ion channels and may so affect the
uptake of ions such as calcium into the cells.53 The membrane
lipid milieu may thus be an important contributing factor
modulating the dynamics of Ab self-assembly.54

Plasmalogens via the vinyl-ether bond also act as endo-
genous antioxidants to protect cells from reactive oxygen
species, and their diminishment in AD is in line with the
hypothesis implicating the role of oxidative stress in AD
pathogenesis.55,56 In agreement with earlier studies, circulat-
ing histamine was elevated in patients diagnosed with
AD.57,58 Histamine stimulates production of nitric oxide59

and thus, the activation of the histaminergic system may also
contribute to the pathology of AD.60

The metabolite biomarker signature was identified, which
was predictive of progression to AD (Figure 2). The major
contributing metabolite in the marker panel separating P-MCI
and S-MCI patients was 2,4-dihydroxybutanoic acid. Interest-
ingly, this organic acid is a major component of CSF,61,62 but
is found in plasma at nearly two orders of magnitude lower
concentrations as in CSF.61 Very scarce data is available on
the biochemistry of 2,4-dihydroxybutanoic acid. In one report,
this metabolite was overproduced under low oxygen condi-
tions from D-galacturonic acid,63 a uronic acid, which is a
stereoisomer of glucoronic acid. Concentration of glucoronic
acid was decreased at a marginal significance level in the
P-MCI group in our study (P¼ 0.10). In support of this
interpretation, there were significant differences in the
pentose phosphate pathway as shown by pathway analysis,
including decrease of ribose-5-phosphate and increase of
lactic acid, an end product of glycolysis. It is known that under
hypoxic conditions in the brain, more glucose is metabolized
via the pentose phosphate pathway.64 Studies in APP23
transgenic mice have in fact shown that hypoxia facilitates
progression to AD.65

The study setting with a prospective cohort of carefully
characterized and followed-up subjects is a definitive strength
of the present study. This allowed us to identify the patients

diagnosed with MCI, who later progressed to AD, and in
deriving the molecular signature, which can identify such
patients at baseline. In a health care setting, application of
such a biochemical assay could therefore complement the
neurocognitive assessment by the medical doctor and could
be applied to identify the at-risk patients in need of further
comprehensive follow-up. As a potential limitation of our
study, the relatively small sample size did not allow us to split
our sample into two independent cohorts. As an alternative,
we performed an implicit validation by performing a model
selection over a large number of randomly selected subsets of
samples, then each time, independently validating the model
in the rest of the sample. The most commonly selected model
was then selected as our metabolic signature. This approach
allowed us to estimate and report the distribution of model
performances and not only of the most optimistic model,
therefore providing a reasonable estimate of how the
model may perform in the independent validation setting.

In conclusion, we have identified metabolic profile changes
of potential pathogenic relevance in progression to and overt
AD. Our findings primarily implicate the roles of hypoxia,
oxidative stress, as well as membrane lipid remodeling in AD.
Given the key metabolite from the metabolic signature
predictive of progression to AD is abundant in CSF, further
investigations should, in addition to its validation in other
cohort studies, also include metabolomic studies in CSF, as
well as in experimental models. Establishment of pathogenic
relevance of predictive biomarkers such as ours may not only
facilitate early diagnosis, but may also help identify new
therapeutic avenues.
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Table 3 Pathway analysis of metabolomics data from the GC�GC–TOFMS platform

KEGG ID Pathway name Size P-MCI versus S-MCI AD versus controls

N/Nall Medium-K P Pcorr N/Nall Medium-K P Pcorr

map00030 Pentose phosphate pathway 28 2/(32) 2 0.000130 0.09 15/(434) 3 0.000580 0.46
map00051 Fructose and mannose metabolism 28 18/(466) 2 0.017702 0.91 10/(281) 2 0.007617 0.43
map00052 Galactose metabolism 33 18/(466) 2 0.024189 0.93 14/(359) 2 0.054227 0.50
map00061 Fatty acid biosynthesis 48 19/(489) 3 0.005718 0.99 19/(538) 2 0.019644 0.99
map00520 Amino sugar and nucleotide sugar metabolism 66 18/(466) 2 0.085056 0.87 4/(159) 2 0.002265 0.71
map00710 Carbon fixation in photosynthetic organisms 22 18/(466) 2 0.011108 0.91 18/(511) 3 0.004883 0.82
map01040 Biosynthesis of unsaturated fatty acids 48 19/(489) 3 0.005718 0.99 15/(434) 2 0.007750 0.63
map01100 Metabolic pathways 1059 7/(120) 3 0.661475 0.25 15/(434) 3 0.986924 0.91
map01110 Biosynthesis of secondary metabolites 472 5/(81) 2 0.253492 0.15 15/(434) 3 0.585593 0.60

‘KEGG ID’ is the KEGG identifier of the pathway, ‘Pathway name’ is the name of the pathway given by KEGG and ‘Size’ is the number of metabolites that belong to
a particular pathway. ‘Medium-K’ is the number of metabolites within the data set assigned to the pathway, after pathway inconsistencies has been corrected, and
‘N/Nall’ is the rank at which the minimum P-value was obtained using features associated to KEGG (N) and all features (Nall), respectively. P is the P-value given by
hypergeometric distribution and Pcorr is the corresponding permutation-corrected P-value.
P-values for Pcorro0.1 marked in bold.
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comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.
Anal Chem 2011; 83: 3058–3067.

31. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: Modular framework for
processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
BMC Bioinformatics 2010; 11: 395.

32. Kampstra P. Beanplot: a boxplot alternative for visual comparison of distributions. J Stat
Soft 2008; 28(Code Snippet 1): 1–9.

33. Fraley C, Raftery AE. Model-based methods of classification: Using the mclust software in
chemometrics. J Stat Soft 2007; 18: 1–13.

34. Dalgaard P. Introductory Statistics with R. Springer Verlag: New York, 2004.
35. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via

coordinate descent. J Stat Softw 2010; 33: 1–22.
36. Yamashita T, Yamashita K, Kamimura R. A stepwise AIC method for variable selection in

linear regression. Commun Stat Theory Methods 2007; 36: 2395–2403.
37. McCullogh P, Nelder JA. Generalized linear models. Chapman & Hall/CRC: New York,

1989.
38. Kankainen M, Gopalacharyulu P, Holm L, Orešič M. MPEA—Metabolite Pathway
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M Orešič et al

9

Translational Psychiatry

http://www.nature.com/tp

	Metabolome in progression to Alzheimeraposs disease
	Introduction
	Methods
	Participants

	Table 1 Descriptive statistics of the study population at baseline
	Metabolomic analysis
	Descriptive statistical analyses
	Cluster analysis
	Diagnostic model
	Pathway analysis

	Results
	Metabolomics in a prospective cohort
	Feasibility of diagnosis and prediction of AD

	Table 2 Metabolome and lipidome cluster descriptions
	Figure 1 Metabolomic profiles across the three diagnostic groups at baseline.
	Metabolic pathways behind progression to AD

	Discussion
	Figure 2 Feasibility of predicting Alzheimeraposs disease (AD), based on concentrations of three metabolites (2,4-dihydroxybutanoic acid, unidentified carboxylic acid, phosphatidylcholine (PC (16:0sol16:0)) in subjects at baseline, who were diagnosed with
	Conflict of interest
	Acknowledgements
	Table 3 Pathway analysis of metabolomics data from the GCtimesGC-TOFMS platform




