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We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous
thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to
the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze
scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of
bending waves from an object in the near and far-field regions can be suppressed significantly by covering it
with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in
protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle
industry.

I
n the past few years, metamaterials have become an attractive research focus for physicists and engineers due to
their ability to control electromagnetic, acoustic, and elastic waves in ways that cannot be achieved using
‘‘regular’’ materials. Consequently, exciting applications of metamaterials ranging from sub-wavelength

imaging to cloaking have been reported1–22. Soon after the advent of negative refraction and sub-wavelength
imaging1, it has been shown that dielectric or conducting objects could be made ‘‘invisible’’ to electromagnetic
waves by coating them with plasmonic materials2,3. A promising route to electromagnetic invisibility relies on the
scattering cancellation phenomenon, where the fields scattered from a coating with negative (local) polarizability
are specifically designed to cancel the fields scattered from the object2,4–7. The scattering cancellation technique
has been proven relatively robust to changes in the design parameters, geometry, losses, and frequency of
operation8,9. It has also been used to make electrodes or metal films transparent to THz10 or GHz11 radiation.
Experimental evidence of such invisibility devices has recently been demonstrated in the microwave regime12–14.
An alternative route to designing invisibility devices makes use of coordinate transformations15,16 to mold the
wave flow in desired manners17–22. It should also be mentioned here that with their possible applications in stealth
technology, noninvasive probing, and sensing, electromagnetic invisibility cloaks open promising avenues for
new technologies in medicine, defense, and telecommunications23,24.

Cloaking ideas and designs for acoustic waves have also been developed. The possibility of two-dimensional
acoustic cloaking for pressure waves in transversely anisotropic fluids has recently been shown25. Subsequent
investigation of this cloaking idea for concentric layers of solid lattices behaving as artificially anisotropic fluids in
the homogenization limit has been provided26. Following a similar approach, a micro-structured metallic struc-
ture has been designed as a cloak for surface liquid waves; the design has been validated experimentally around
10 Hz27. Additionally, three-dimensional acoustic cloaking for pressure waves in fluids has been envisaged; this
cloak makes use of the fact that the scalar wave equation retains its form under geometric transforms28,29. Like in
electromagnetic cloaking, the scattering cancellation technique offers an alternative path towards acoustic cloak-
ing30–32. However, cloaking fully coupled pressure and shear elastodynamic waves in solids is a more elusive task,
since the Navier-Stoke’s equations do not retain their form under geometric transforms33,34. Although the
theoretical foundation of these cloaking effects is well established35,36, the inherent requirement of singular bulk
metamaterial properties that can hardly be met in practice still hinders the practicality of cloaking devices37,38.

In this Report, a biharmonic wave equation with appropriate boundary conditions, which describes the
propagation of bending waves, is derived from the generalized elasticity theory39,40 and is used in designing a
cloak that operates in thin plates. The idea behind the cloak design is to choose a coating material with density rc

satisfying rc , r0 or rc , 0 and to conceal an object with density rs . r0. Here, r0 represents the density of the
surrounding medium.
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The parameters of the cloak are deduced using the scattering
cancellation technique applied to a platonic metamaterial coating2.
Note that the term ‘‘platonic’’ was coined by McPhedran in reference
to thin plates while investigating wave propagation in complex thin
plate elastic artificial materials41–43. Recent advances in the field of
high frequency homogenization in platonics provide a theoretical
foundation for understanding frequency dependent effective mass
density taking negative or less than unity values44.

We then analyze the response of the platonic cloak concealing a
cylindrical obstacle in the presence of a plane wave elastic excitation
(harmonic vibration of the plate in the vertical z-direction). It is
assumed that the out-of-plane dimension of the obstacle is negligible
compared to its in-plane dimensions41,42. We show that in the quasi-
static limit, i.e. for k0as=1, where k0 is the bending wavenumber in
the surrounding medium and as is the in-plane dimension of the
scatterer, the scattering is dominated by the zeroth-order multipole,
unlike in the electrodynamics case where the first significant order is
the dipolar one. This is not the only fundamental difference between
electrodynamic/acoustic and elastic wave scattering phenomena: the
fourth order biharmonic partial differential equation, which typically
describes the propagation of bending waves in ultra-thin plates, is not
equivalent to the vector/scalar wave equations that describe electro-
magnetic or acoustic wave propagation. For instance note that prop-
agating and evanescent waves coexist even in homogeneous thin
plates. Consequently, one can anticipate that a new cloaking method
and new relevant physics are introduced following this route.

Results
It has been recently shown that the elasticity equations are not invari-
ant under coordinate transformations33. Indeed, equations describ-
ing the propagation of elastodynamic waves under a time harmonic
dependence e2ivt read (in a weak sense)

+:C : +uzr0v2u~0: ð1Þ
Here, r0 is the (scalar) density of an isotropic heterogeneous elastic
medium, C is the rank-four symmetric elasticity tensor (which has up
to 34 entries even for thin plates), v is the wave angular frequency,
and u is the associated three-component vector displacement field. In
most practical applications, the lateral dimension is significantly
larger than the plate thickness making the Kirchhoff assumption
for thin plates applicable39,40. Under this assumption, shear deforma-
tion and rotary inertia are negligible. For such a structure, Eq. (1)
reduces to the scalar fourth order biharmonic equation

+: E(r)1=2+ ½r(r)=r0�{1=2+: E(r)1=2+U(r,h)
� �h in o

{

½r(r)=r0�1=2k4
0U(r,h)~0,

ð2Þ

where U(r, h) is the displacement in the vertical z-direction (assum-
ing a cylindrical coordinate system due to the symmetry of the struc-
ture), E(r) is the relative Young modulus, r(r) is the density,
k4

0~v2r0h=D0, D0, and r0 are the bending wavenumber (to the
power four), rigidity and density in the thin plate, respectively, and
h is the plate thickness. Consider the structure shown in the inset of
the Fig. 1. An object of radius as is coated with a shell of outer radius
ac. For r , as (inside the object), r(r) 5 rs and the bending wave-
number is ks. For as , r , ac (inside the shell), r(r) 5 rc and the
bending wave number is kc. Object, shell, and thin plate all have the
same rigidity D(r) 5 D0, same relative Young modulus E(r) 5 1, and
same Poisson’s ratio v(r) 5 v0. Without loss of generality, we assume
that this structure is illuminated by a plane wave propagating in the
x-direction. The displacement field of the incident plane wave is
expressed as U inc(r,h)~eik0r cos h, equivalently it can be expanded as

U inc(r,h)~
X?
n~0

eninJn(k0r)cosnh, where the coefficients e0 5 1 and

en 5 2, n $ 2. The scattered field, Usca(r, h), must be finite at r 5 0 and
it satisfies the radiation condition at r R ‘. Thus, it is expressed as

U sca(r,h)~
X?
n~0

enin½AnH(1)
n (k0r)zBnKn(k0r)�cosnh, rwac: ð3Þ

Similarly, fields inside the shell and the object are expressed as

Ucloak(r,h)~
X?
n~0

enin½CnYn(kcr)zDnKn(kcr)zEnJn(kcr)

zFnIn(kcr)�cosnh, asvrvac,

U int(r,h)~
X?
n~0

enin½GnJn(ksr)zHnIn(ksr)�cosnh, rvas,

ð4Þ

respectively. Here, H(1)
n (:), Jn(.)and In(.), and Yn(.)and Kn(.)are cylin-

drical Hankel functions of the first kind, Bessel and modified Bessel
functions, and Bessel and modified Bessel functions of the second
kind, respectively. To solve for the coefficients in the above equa-
tions, continuity of the field U, its derivative in radial direction hU/hr,
the bending momentum Mr, and the radial component of the gen-
eralized Kirchhoff stress Vr is enforced at the boundaries at r 5 as and
r 5 ac, for each azimuthal order n (see supplemental materials45 for
explicit expressions of the bending momentum and the generalized
Kirchhoff stress in cylindrical coordinates). This yields a matrix sys-
tem of equations in scattering unknown coefficients An and Bn. The
far-field scattering amplitude (or differential scattering cross-sec-
tion) f hð Þ~

ffiffiffiffiffi
2r
p

e{i k0r{p=4ð Þ lim
r??

U sca r,hð Þ is a measure of the

cloaked object’s visibility in direction h46. The total scattering
cross-section, ssca, is the integral of f(h) over all angles, i.e.

ssca~1=2
ð2p

0
dh f hð Þj j2. It may thus be expressed as

ssca~
4
k0

X?
n~0

en Anj j2: ð5Þ

Note that coefficients Bn are absent in Eq. (5) since the modified
Bessel functions Kn(k0r) have no contribution to the scattered field
as r R ‘. Generally speaking, the possibility for an observer to detect
the object in the far-field is determined by the value of ssca. As a result,
minimizing or completely canceling ssca would lead to the undetect-
ability (invisibility) of the object in the far-field, independent of the
observer’s position. This can be achieved by canceling the coefficients
An~~An=dn that significantly contribute to the scattering. Here, ~An is
given by the determinant:

Figure 1 | Geometry under investigation: An object at the center of a thin
elastic plate lies on the trajectory of a planar bending wave, incident from
right to left in presence of a cylindrical shell that may act as a platonic
cloak. Inset shows a top view of the cloak and object.
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{Jn(k0ac) Kn(k0ac) {Yn(kcac) {Kn(kcac)

0 0 Yn(kcas) Kn(kcas)

k0J 0n(k0ac) k0K 0n(k0ac) {kcY 0n(kcac) {kcK 0n(kcac)

0 0 kcY 0n(kcas) kcK 0n(kcas)

SJn (k0ac) SKn (k0ac) {SYn (kcac) {SKn (kcac)

0 0 SYn (kcas) SKn (kcas)

TJn (k0ac) TJn (k0ac) {TYn (kcac) {TKn (kcac)

0 0 TYn (kcas) TKn (kcas)

�������������������

{Jn(kcac) {In(kcac) 0 0

Jn(kcas) In(kcas) {Jn(ks as) {In(ksas)

{kcJ 0n(kcac) {kcI 0n(kcac) 0 0

kcJ 0n(kc as) kcI0n(kcas) {kJ 0n(ksas) {kI0n(ks as)

SJn (kcac) SIn (kcac) 0 0

SJn (kcas) SIn (kcas) {SJn (ksas) SIn (ksas)

TJn (kcac) TIn (kcac) 0 0

TJn (kcas) TIn (kcas) {TJn (ksas) TIn (ksas)

�������������������
ð6Þ

where

SZn (kir)~D0½n2(1{n0)(kir)2�Zn(kir){D0(1{n0) kir Z0n(kir),

TZn (kir)~D0½n2(1{n0)�Zn(kir){D0½n2(1{n0)(kir)2� kir Z0n(kir),
ð7Þ

where ki[fks,kc,k0g and Zn(:)[fJn(:),Yn(:),H(1)
n (:),Kn(:),In(:)g.

Upper and lower signs in Eq. (7) should be selected for
Zn(:)[fJn(:),Yn(:),H(1)

n (:)g and Zn(:)[fKn(:),In(:)g, respectively. The
expression of dn could be obtained from Eq. (6) by replacing Jn(.) by
Hn(.) in the first column (see supplemental materials45). Given the
general complexity of this expression, it is instructive to analyze the
low frequency limit corresponding to elastically small obstacles and
shells, i.e. kcac=1, ksas=1, k0ac=1, and k0as=1. Note that with the
parameters in our study, it is sufficient to impose only k0as=1 and
k0ac=1. Under this assumption, ssca in Eq. (5) is dominated by the
monopole term A0:

ssca<
4
k0

A0j j2<
p2(k0ac)

4

16k0
rc{r0zc2 rs{rcð Þ
� �2

, c~as=ac: ð8Þ

Note that here, terms scaling with (k0ac)m, m $ 3, in expressions of
An, n $ 0, are safely assumed to be zero for k0acvv1. It is clear from
Eq. (8) that ssca of elastically small obstacles in a thin plate scales with
k3

0a4
c . Also, as c R 1 and rc R r0 (no shell, only bare object), Eq. (8)

reduces to

ssca<
p2(k0as)

4

16k0
rs{r0½ �2: ð9Þ

By enforcing A0 5 0, i.e. ssca < 0, in Eq. (8), we can derive the
quasistatic design rule for cloaking:

c2~
rc{r0

rc{rs
, ð10Þ

which relates rc, rs, as, and ac. It is found that, to satisfy Eq. (10), rc

must take negative values for rs . r0 and values larger than r0 for
rs , r0.

For larger objects, retardation effects become important and
numerical calculations using the full 8 3 8 matrix in Eq. (6) are
necessary to analyze the problem.

It is interesting to investigate two additional types of obstacles,
namely when a ‘‘clamped’’ and a stress-free boundary conditions are
set on the inner boundary of the system (r 5 as), while the same
conditions of continuity of U, hU/hr, Mr and Vr as before are hold on
the outer boundary (r 5 ac). For the first case, we have U 5 hU/hr 5 0
whereas Mr and Vr are unconstrained. The 8 3 8 system in Eq. (6)
reduces thus to a 6 3 6 system (see supplementary materials45).
Applying the analysis described before to this case reveals that the
monopole scattering coefficient A0 < 21 in the quasistatic limit
regardless of the cloak’s parameters. This means that the resulting
scattering amplitude f hð Þ<{2=

ffiffiffiffiffiffi
pk
p

(or the scattering cross-section
ssca < 4/k) becomes singular in the quasistatic limit (all other scatter-
ing coefficients tend to zero). This is unique to elastic waves, because
a very small object would scatter infinitely and it has no equivalent in
electromagnetics or acoustics46. This discussion shows that it is not
possible to use shells of tailored density, in the quasistatic limit, to
cancel the monopole scattering of a clamped obstacle since their
corresponding coefficients differ by a factor (k0ac)2.

For the stress-free boundary conditions, Mr and Vr are set to zero
on r 5 as whereas the same continuity conditions hold for the other
parameters. We obtain here also a 6 3 6 system (see supplementary
materials45). By applying the analysis above, we show that the mono-
pole scattering coefficient of a stress-free hole of radius as cloaked
with a shell of density rc and radius ac 5 as/c, is given by

A0<
{ip

8
1zc2 nz1ð Þ= n{1ð Þz c2{1

� 	
rc=r0

� �
. We see then that

it is possible to find values of the density of the shell rc and ratio c that
make A0 vanish thereby canceling the scattering from the cloaked
object in the quasistatic regime. This condition is found to be
rc=r0~ 1zc2 nz1ð Þ= n{1ð Þ

� �
= 1{c2
� 	

.
In all the results presented in the rest of the Report, in-plane

dimension of the object is set to as 5 1 m. Figure 2 shows the
dependence of the scattering amplitude jf(h)j on k0as for rs/r0 5

0.1 [Figs. 2(a), 2(b) and 2(c)] and rs/r0 5 10 [Figs. 2(d), 2(e) and
2(f)]. We show here that curves of scattering amplitude jf(h)j vs. h in
logarithmic scale contain angular information about the scatterer
[Figs. 2(a), 2(b) and 2(d), 2(e)] and curves of normalized backward
scattering amplitude f pð Þj j= ffiffiffiffi

as
p

vs. k0as [Figs. 2(c) and 2(f)] give
insight into the spectral dependence of the object visibility for an
observer placed at the angular position of the illumination (mono-
static scattering). The simulations are carried out for the first scen-
ario (soft object e.g. soil) for k0as 5 0.1 (quasistatic limit) and k0as 5

1 (Mie scattering). It is clearly seen that, for the soft object with rs/r0

5 0.1 [Figs. 2(a) and (d)] and the rigid object with rs/r0 5 10,
[Figs. 2(b) and 2(e)], the scattering amplitude jf(h)j is circularly
symmetric for k0as 5 0.1. This is due to the fact that scattering is
dominated by the monopole term A0. The scattering behavior of soft
and rigid objects is quite different for different values of k0as. For the
soft object [Figs. 2(a), 2(b), solid red lines] A0 is still dominant for
k0as 5 1, and no significant angular dependence is observed. For the
rigid object, [Figs. 2(e), solid red line], higher order multipoles start
to contribute quite significantly to the overall scattering when the size
is increased to k0as 5 1. This has consequences on cloaking behavior.
Consider the soft and rigid objects cloaked with shells with rc 5 1.3r0

and rc 5 22r0, respectively. For both shells, c 5 0.5, i.e. ac 5 2as.
Note that these values satisfy Eq. (10). Scattering amplitude jf(h)j and
normalized backward scattering amplitude f pð Þj j= ffiffiffiffi

as
p

of the
cloaked objects are shown in Fig. 2 (dashed blue lines). Scattering
reduction is clearly observed for both objects in the long wavelength
limit while in the Mie scattering regime only the soft object gets
cloaked in every direction.

Also, curves of f pð Þj j= ffiffiffiffi
as
p

vs. k0as in Figs. 2(c) and 2(f) show that
the scattering from the rigid object undergoes a more dynamic vari-
ation in k0as-range [0, 1], contrary to the scattering from the soft
object, where only one broad maximum is observed in the same k0as-
range. This is associated with the fact that higher densities corre-
spond to smaller effective wavelengths in the object, thus causing
several internal resonances even for moderately sized objects. In
addition, scattering reduction is more pronounced and broader for
cloaking of the soft object [Fig. 2(c) and 2(f)].

We now analyze how introducing a suitably designed negative
density shell can drastically lower the overall scattering. We schem-
atically indicate the scattering, in analogy with the polarization in the
electromagnetic case, with vertical arrows of opposite direction: the
positive (solid) arrow stands for ‘positive’ scattered wave, whereas the
negative (dashed) one corresponds to scattering with opposite phase
[inset of Fig. 3(b)]. Figure 3(a) shows the contours of jrc/r0j (in
logarithmic scale) that fulfill Eq. (10) for varying values of rs/r0

and c. The solid blue line in the figure represents the case rc 5 0
and 1 or - sign indicates whether the required shell density is positive
or negative. Let esca represent the scattering efficiency computed by
the ratio of scattering cross-sections of the cloaked and bare objects.
Figure 3(b) plots esca vs. rc/r0 for a cloaked object with rs/r0 5 10 for
various values of c and for k0as 5 0.1 (the quasistatic limit). Figure 3

ð6Þ

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4644 | DOI: 10.1038/srep04644 3



clearly shows that for certain values of rc, significant scattering
reduction is achieved, and this is also obtained for different values
of c. We notice that, for an ultrathin cloak (in the limit of c < 1), there
is no dip in esca; instead the scattering reduction can be quite broad-
band for thicker shells. For instance, the shell with c 5 0.5 and rc/r0

5 22 significantly suppresses the scattering. This agrees well with
the result given by Eq. (8), which considers only the zeroth-order
multipole. As schematized in the inset of Fig. 3(a), a platonic cover
with relative density less than unity may induce an out-of-phase
monopolar mode with respect to the local elastic displacement field,
thus permitting dramatic cancellation of the field scattered from the

object. For other values of c, different values of rc/r0 ranging from
negative values to low positive (less than unity), are required to
achieve significant cancellation of scattering.

In reality, while modeling the frequency response of the cloaking
phenomenon, one needs to take into account the inherent dispersion
characteristics of the shell material since it is not possible to have a
negative and frequency independent density due to causality con-
siderations47. A negative density metamaterial may be achieved in
acoustics by mimicking the way we achieve negative permittivity in
electromagnetics with low frequency homogenization in high con-
trast periodic media47–52, or high frequency53 and high order homo-

Figure 2 | Scattering amplitude | f(h) | in logarithmic scale for the soft object (rs/r0 5 0.1) with (a) k0as 5 0.1 and (b) k0as 5 1 and for the rigid object
(rs/r0 5 10) with (d) k0as 5 0.1 and (e) k0as 5 1. The dashed blue line represents the cloaked scenario whereas the solid red line stands for the bare

object. Plots in (c) and (f) are the normalized backward scattering amplitude f (p)j j= ffiffiffiffi
as
p

vs. k0as for soft and rigid objects, respectively.

Figure 3 | (a) Contour plot of the solutions of Eq. (10). (b) Scattering efficiency esca of the cloaked object with rs/r0 5 10 vs. rc/r0 for various values of c

and k0as 5 0.1. The inset gives the sketch of cloaked object with arrows marking opposite phase of scattered wave in core and shell.

www.nature.com/scientificreports
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genization54 in moderate contrast media. For elasticity, spring mass
or inertial resonator metamaterials could lead to the desired effect
near the resonance frequencies55. We suppose in the following that
the material comprising the shell follows a classic Drude-like model

of the type rc(k0)=r0~rinf {
k4

p

k2
0 k2

0ziceð Þ [notice the fourth order

dependence on k0 stemming from the nature of the biharmonic
equation], where rinf 5 1, and kp and ce are the plasma wavenumber
and Ohmic loss, respectively. This model can be obtained via a homo-
genization applied to a composite shell with high contrast inclusions,
and is in all ways analogous to that derived in56. This Drude disper-
sion is plotted in Fig. 4(a) with parameters kpas 5 0.15 and
ce~10{2k2

p. Figure 4 (b) plots scattering efficiency esca of an object
cloaked with a shell made of Drude material vs. k0as for various
values of ce. For this example, rs/r0 5 10 and c 5 0.5. Here,
ce~10{4k2

p, (blue solid line), ce~10{2k2
p, (green dashed line), and

ce~10{1k2
p, (orange dotted line) correspond to small, moderate, and

high Ohmic losses, respectively.
These curves are obtained using Eqs. (2) and (3), consistent with

rigorous elastic scattering theory46 and validated against results

obtained using a finite elements commercial software57. It is clear
that the presence of a cloak with negative effective density may allow
for a drastic reduction of the overall scattering at a desired wave-
number (k0as 5 0.11 in this example), independently of the angle of
observation. It is stressed here that the scattering cross-section can be
reduced by over five orders of magnitude compared to the uncloaked
scenario and by six orders of magnitude compared to the case of an
obstacle of the same size and density rc/r0 5 10. A slight broadening
of the cloaking dip and a corresponding deterioration of the effect
may be noticed when elastic loss ce is increased.

Discussion
We have put forward a technique to cloak objects from elastic waves
governed by the scalar fourth order biharmonic equation. The func-
tionality of the obtained cloak could be seen in Fig. 5, where we plot
the amplitude distribution of the scattered elastic displacement field
U in the presence of cloaked [Fig. 5(a)] and uncloaked [Fig. 5(b)]
objects. When it is surrounded by the negative density platonic shell
(following the Drude-like model described above), the field ampli-
tude is constant and equal to unity everywhere in space, in contrast to
the considerably perturbed fields in the uncloaked case. The scatter-

Figure 4 | (a) The Drude-like density dispersion of the shell material with kpas 5 0.15 and ce~10{2k2
p. (b) Scattering efficiency esca of the cloaked object

with rs/r0 5 10 vs. k0as for various values of ce and c 5 0.5.

Figure 5 | Time-averaged displacement field distributions (vector direction with white arrows, amplitude indicated by the contours) in linear scale of a
rigid elastic object with rs/r0 5 10 cloaked by a Drude-like shell (a) and on its own for comparison (b). The structures are illuminated with a unit-

amplitude plane wave (k0as 5 0.11) propagating in the x-direction from right to left.

www.nature.com/scientificreports
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ing reduction can be attributed to the proper choice of mass density
of the platonic shell, in view of the scattering reduction predicted in
Figs. 3 and 4.

In summary, we proposed a design of an elastic cloak based on the
scattering cancellation technique, inspired by earlier applications in
electrodynamics and acoustic scenarios. Here, however, the chal-
lenge is associated with the fact that a different, more complex ana-
lytical form governs bending waves. The cloaking mechanism
introduced here presents significant advantages in comparison with
transformation acoustic designs: there is no need of anisotropy and
inhomogeneity of the material parameters. Using a homogeneous
isotropic platonic shell with low or negative density we have been
able to greatly reduce the scattering from soft and highly rigid objects
as well as from stress-free holes. It should also be noted here that the
proposed technique cannot be used to cloak clamped objects in the
quasistatic limit. However, cloaks made of layered shells have the
potential to overcome this problem at higher frequencies (where
scattering from clamped objects is finite) by adding extra degrees
of freedom to cancel more than one scattering coefficient, as prev-
iously demonstrated in electromagnetic cloak designs58.

Experimental realization of this idea may be within reach in the
near future (note for instance that lensing of bending waves via
negative refraction was theoretically predicted using the biharmonic
plate model in41,42 and experimentally confirmed in a thin
Duralumium plate in59 and a theoretical proposal for cloaking via
geometric transforms in the biharmonic operator was also experi-
mentally confirmed in37,38), allowing for exciting applications in
scenarios in which it is desirable to suppress the scattering from
obstacles in thin plates in the motor vehicle and airplane industry,
in which the scattering of bending waves in thin plates generated by
engines may be totally suppressed, or smart secure buildings, pro-
tecting them from bending and other types of seismic vibration
damages caused by scattering from neighboring buildings60.

Methods
Analytical methods based on scattering Mie theory of cylindrical objects in thin elastic
plates are used to obtain the numerical simulations in this Report (for further details
and physical insight, see supplementary material45). The vertical displacement of the
plate is the solution of the fourth order partial differential equation of Kirchhoff. We
proceed, as is usually done, by expanding the impinging plane waves and the scattered
fields in terms of Bessel and Hankel functions in polar coordinate system centered
with the object to be cloaked. We then apply four elastodynamic boundary conditions
on each cylindrical interface in order to obtain the scattering coefficients for waves,
which uniquely determine the displacement fields everywhere. The displacement
field distributions and scattering cross sections are computed using Bessel develop-
ments and Eq. (6) respectively. In the quasistatic limit, where the size of the elastic
core sphere is much smaller than the wavelength and only the lowest-order Mie
coefficient is important, an analytical formula is obtained [Eq. (10)] and it gives
similar results to the full-wave simulations. Proper convergence for all the results is
reached. The simulations given in Fig. 5 are obtained using the commercial finite-
elements software COMSOL Multiphysics.
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