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Background: Small populations that have been isolated by conflict make vaccination and
surveillance difficult, threatening polio eradication. Silent circulation is caused by asymp-
tomatic infections. It is currently not clear whether the dynamics of waning immunity also
influence the risk of silent circulation in the absence of vaccination. Such circulation can,
nevertheless, be present following a declaration of elimination as a result of inadequate
acute flaccid paralysis surveillance (AFPS) or environmental surveillance (ES).
Methods: We have constructed a stochastic model to understand how stochastic effects
alter the ability of small populations to sustain virus circulation in the absence of vacci-
nation. We analyzed how the stochastic process determinants of the duration of silent
circulation that could have been detected by ES were affected by R0, waning dynamics,
population size, and AFPS sensitivity in a discrete individual stochastic model with ho-
mogeneous contagiousness and random mixing. We measured the duration of silent cir-
culation both by the interval between detected acute flaccid paralysis (AFP) cases and the
duration of circulation until elimination.
Results: As R0 increased and population size increased, the interval between detected AFP
cases and the duration of circulation until elimination increased. As AFPS detection rates
decreased, the interval between detected AFP cases increased. There was up to a 22%
chance of silent circulation lasting for more than 3 years with 100% AFP detection. The
duration of silent circulation was not affected by the waning immunity dynamics.
Conclusion: We demonstrated that small populations have the potential to sustain pro-
longed silent circulation. Surveillance in these areas should be intensified before declaring
elimination. To further validate these conclusions, it is necessary to realistically relax the
simplifying assumptions about mixing and waning.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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Abbreviations

AFP acute flaccid paralysis
AFPS acute flaccid paralysis surveillance
ES environmental surveillance
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1. Introduction

After polio was on the precipice of elimination in Nigeria based upon the WHO criteria of three years without a paralytic
case (Henderson, 1989), there were several new paralytic cases of poliovirus type 1 in an area of small villages in Borno State
(Nnadi et al., 2017). After an attempt at exhaustive vaccination coverage, therewas unanticipated emergence. A possible cause
is that communities were not reachable by the intervention program. This could either be due to political impediments such
as Boko Haram terrorism or due to noncompliance (MM & Ayivor, 2012). Furthermore, Fulani communities are migratory
populations that are present in this and in neighboring states in Northern Nigeria (Callaway, 2013; Molineauz & Gramiccia,
1980). Their nomadic lifestyle makes them difficult to reach with comprehensive vaccination coverage, which represents a
second potential source of an unanticipated paralytic case following the three years with no such observed case.

The paralytic cases are a result of a silent circulation of the virus in the population. In this paper, we focus on small and
somewhat isolated populations that have endemic circulation of poliovirus. The questionwe aim to answer is: how long, and
under what conditions, can a silent circulation persist in small populations in the absence of vaccinations? A silent circulation
either ends when there are no longer infected individuals in the population or a paralytic case of polio is detected. We
investigate this situation using a microsimulation model of polio transmission in village sizes between 3;500 and 10;000. We
assume transmission takes place in the absence of intervention against polio. This allows for the understanding of polio
transmission in a natural setting, and, in particular, to ascertain the distribution of times until the infected population reaches
zero as well as the distribution of times between consecutive appearances of paralytic cases. It also raises the question as to
whether AFPS is a sufficient monitoring strategy to declare areas of small populations free of poliovirus.

There are two surveillance systems used to detect poliovirus in a population: AFPS and ES. AFPS uses reported cases of
polio-induced AFP to detect circulating poliovirus. This surveillance system can only be used to identify an individual's first
contact with the virus since these are the only individuals with the potential to be symptomatic (Koopman et al., 2017;
Thompson, Pallansch, Tebbens, Wassilak, & Cochi, 2013). ES can be used to detect silently circulating poliovirus in a popu-
lation. Poliovirus is excreted when an individual has an active infection regardless if they are symptomatic or asymptomatic
(Fine& Carneiro, 1999; Grassly et al., 2012; Mayer et al., 2013; Tebbens et al., 2013; Thompson et al., 2013). ES involves testing
sewage for evidence of the virus. In the case where there are no symptomatic individuals, poliovirus found in the sewage can
demonstrate that the virus is silently circulating in the population (Fine& Carneiro,1999). ES may not be feasible either due to
monetary limitations or to the lack of a sewage system or at least a common drainage area for defecations. For these reasons,
AFPS is, currently, the most used method of poliovirus detection. AFPS is not without its limitations. This method of detection
requires that individuals report the symptoms of paralysis to a healthcare worker. Instances of under-reporting can cause
cases of polio to go undetected. This may lead to countries being declared polio-free prematurely. Under-reporting of polio-
induced paralysis cases can be the result of political instability or geographical isolation.

The waning of immunity and subsequent reinfections can cause silent circulation or asymptomatic transmission. Neither
infection from poliovirus nor infection from vaccination provide life-long immunity from the virus (Famulare et al., 2016;
Grassly et al., 2012). Once immunity to poliovirus has waned, there is a possibility of reinfection. To capture the waning
immunity dynamics, Koopman et al. (2017) explored three different waning scenarios. The first is that the immunity wanes
quickly after recovery from the infection, but the individual retains a significant amount of immunity. This is defined as fast-
shallowwaning. The second is that the individual preserves a high level of immunity for a long period of time, but then loses a
large portion of their immunity to the virus. This is defined as slow-deep waning. The third is an intermediate between fast
and slow in both speed and depth. In this paper, we focus on these three waning scenarios.

The small population sizes that are emphasized in this paper are, indeed, realistic village sizes in Nigeria. There is a cluster
of villages in Pampaida, Nigeria that are associated with the Millennium Villages Project (Millennium Villages Project:
Pampaida, Nigeria, 2006). These villages are comprised of both the Hausa and the Fulani, two of the main tribal groups
found in Nigeria. There are a total of four villages with approximately 27;000 individuals. This implies that the average village
size contains 6;750 individuals. The Garki project provided a population census for the Garki District in northern Nigeria from
1969 to 1976 (Molineauz&Gramiccia,1980). In February of 1972, the 8 villages that were considered for the project had a total
of 7;540 individuals. If we assume a constant growth rate of 0.0088 individuals per year (birth rate minus death rate)
(Molineauz & Gramiccia, 1980) then, over the last 44 years, the population of these villages has increased to 10;459 in-
dividuals. On a per village basis, the population sizes are all within the range considered in our simulations.
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2. Methods

2.1. The microsimulation model

We introduce a counting process on 5 states, labeled S (susceptible), I1 (first infection), R (full immunity from infection), P
(partial susceptibility), and Ir (reinfection). The vector of counts XðtÞ ¼ ðXSðtÞ;XI1 ðtÞ;XRðtÞ;XPðtÞ;XIr ðtÞÞ for t � 0 has entries
defined by XiðtÞ, where XiðtÞ is the number of individuals in state i at time t, for i any of the five states. Movement of individuals
among the states is constrained by the directed graph in Fig. 1.

Associated with the states are set of events E ¼ ðE1; E2;…; E11Þ, defined by the entries in the first column of Table 1. Each
event is associatedwith a rate of occurrence, Ri, i ¼ 1;2;…;11, specified by the entries in column 3 of Table 1. It is important to
note that the rates depend on the population counts in XðtÞ.

The parameters used for simulation, as given in Table 2, are the same as those defined in (Koopman et al., 2017) with the
exception of population size (N) and the upper bound on b. Koopman et al. (2017) cites the parameter values found in
(Tebbens et al., 2013). We give some insight into the derivation and value of each parameter. The transmission rate (b) is the
product of the number of contacts per individual per year and the transmission probability given a contact (Koopman et al.,
2017). The transmission probability given a contact is fixed at 0.5 (Koopman et al., 2017). Thus, modifying b implies modifying
the number of contacts per individual per year. In this paper, the b values were chosen to represent a range of average ages at
first infection seen in the prevaccine era in endemic regions with poor sanitation. The formula for the average age at first
infection can be derived to be either A ¼ L

ðR0�1Þ in the case in which there is a constant death rate across all ages (the formula

used in this paper) (Dietz, 1975) or A ¼ L
R0
in the case inwhich all individuals die at age L, where L is the average lifespan of the

individual
�
1
m

�
and R0 is the basic reproduction number. The equation A ¼ L

ðR0�1Þ follows from the equation for the force of

infection ðl ¼ mðR0 � 1ÞÞ, where A ¼ 1
l
. The equation A ¼ L

R0
can be obtained by noting that S can be approximated by both 1

R0

and A
L. Using the next generation matrix method (Diekmann, Heesterbeek, & Roberts, 2010), refer to the equations in the

Appendix to get R0 ¼ b
ðmþgÞ. We use the following values: b ¼ 135 (average age of first infection of 5.6 years, R0 ¼ 10), b ¼ 200

(average age of first infection of 3.6 years, R0 ¼ 15), and b ¼ 260 (average age of first infection of 2.6 years, R0 ¼ 20) (Fine &
Carneiro, 1999; Ofosu-Amaah, Kratzer, & Nicholas, 1977; Paul & Horstmann, 1955; Paul, Melnick, Barnett, & Goldblum, 1952).
The rate of recovery from a first infection with poliovirus (g) is a determined quantity based upon “expert assessment”
(Tebbens et al., 2013). The birth (b) and the death rate (m) are assumed to be equal to keep the population size constant
(Koopman et al., 2017; Tebbens et al., 2013). The waning of the immunity is comprised of two processes: the depth to which
the immunity wanes (k3) and the speed at which the immunity wanes (u). The depth is controlled by three factors, all of
which are set equal to each other for simplification purposes. The three components are the relative susceptibility of partially
susceptible individuals to fully susceptible individuals, the relative contagiousness of reinfected individuals to first infected
individuals, and the relative duration of infection of reinfected individuals with respect to first infected individuals (Koopman
et al., 2017). In (Koopman et al., 2017), the waning rate was fixed and the waning depths were fitted such that each waning
scenario had the same average age at first infection. The paralysis to infection ratio (PIR) was determined for each serotype in
1955 using available data (Nathanson & Kew, 2010).

Finally, at any time t� >0, we associate independent exponential waiting times ðT1; T2;…; T11Þ with the events
E1; E2;…; E11, respectively and set PðTi > tÞ ¼ expð�tRiðt�ÞÞ. With these ingredients at hand, we can specify the simulation
algorithm that generates the dynamics in the population vector, XðtÞ. We terminate each simulation either when the infected
population reaches zero or after fifteen years has elapsed, whichever comes first.
2.2. Algorithm description

The method of simulation was motivated by the Gillespie algorithm (Gillespie, 1976). The steps of the algorithm are as
follows:
Fig. 1. The schematic diagram of the simplified model (Koopman et al., 2017).



Table 1
These are the transitions with transition rates for the microsimulation model.

Transition Movement Rate of Transition

E1 ¼ birth XS/XS þ 1 R1 ¼ bN
E2 ¼ death in S XS/XS � 1 R2 ¼ mXS

E3 ¼ death in I1 XI1/XI1 � 1 R3 ¼ mXI1
E4 ¼ death in R XR/XR � 1 R4 ¼ mXR

E5 ¼ death in P XP/XP � 1 R5 ¼ mXP

E6 ¼ death in Ir XIr/XIr � 1 R6 ¼ mXIr
E7 ¼ first infection XS/XS � 1, XI1/XI1 þ 1 R7 ¼ b XS

N ðXI1 þ kXIr Þ
E8 ¼ first infected recovery XI1/XI1 � 1, XR/XR þ 1 R8 ¼ gXI1
E9 ¼ wane XR/XR � 1, XP/XP þ 1 R9 ¼ uXR

E10 ¼ reinfection XP/XP � 1, XIr/XIr þ 1 R10 ¼ kb XP
N ðXI1 þ kXIr Þ

E11 ¼ reinfected recovery XIr/XIr � 1, XR/XR þ 1 R11 ¼ g
kXIr

Table 2
Parameters and values (Koopman et al., 2017).

Parameter Parameter value Parameter description

N varies total population (individuals)
b varies infection rate (effective contacts/individual/year)
g 13 recovery rate ((year)�1)
u 0:2ð0:02Þ½0:04� fast (slow) [intermediate] waning rate ((year)�1)
k3 0:073ð0:6Þ½0:26� shallow (deep) [intermediate] waning depth
b 0.02 birth rate ((total population)�1)
m 0.02 natural death rate ((total population)�1)
PIR 0:005ð0:0005Þ½0:001� serotype 1 (2) [3] paralysis to infection ratio
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1. Initialize with Xð0Þ ¼ ðXSð0Þ;XI1 ð0Þ;XRð0Þ;XPð0Þ;XIr ð0ÞÞ such that the proportion of individuals in the states S, I1, R, P, and Ir
is the same as the equilibrium proportions for the differential equation system (see Appendix) associatedwith the directed
graph in Fig. 1.

2. Generate a time tð1Þ when a first event in E is to occur by using a deviate from the exponential distribution
Pðtð1Þ > tÞ ¼ expð�t

P11
i¼1Rið0ÞÞ. Observe that tð1Þ ¼ minðt1; t2;…; t11Þ is the minimum of the waiting times associated

with the individual events E1; E2;…; E11.
3. At time tð1Þ, generate a uniform random deviate, r, and introduce the following decision rule:
Select event Ej ifPj�1

i¼1
RiP11

i¼1
Ri

< r �
Pj

i¼1
RiP11

i¼1
Ri

for j ¼ 2;3;…11

Select E1 if

0< r< R1P11

i¼1
Ri
4. Update Xðtð1ÞÞ based on the index selected in step 4. The possible specifications for Xðtð1ÞÞ are given in Table 1, where the
compartments specified under movement are updated appropriately and all other compartments stay fixed.

5. If the index that was chosen in step 4 was “first infection” then generate a second uniform random deviate, r1, on ½0;1�. If
r1 < PIR then we declare an incidence of paralysis to have occurred. Record this time of occurrence.

6. Go back to step 2 initializing with Xðtð1ÞÞ ¼ ðXSðtð1ÞÞ;XI1 ðtð1ÞÞ;XRðtð1ÞÞ;XPðtð1ÞÞ;XIr ðtð1ÞÞÞ. Notice that the rates are now
R1ðXðtð1ÞÞ;…;R11ðXðtð1ÞÞÞ.

This process repeats until the stochastic process is killed. The simulation was killed when there were no longer infected
individuals in the population or 15 years had elapsed, whichever came first.

To investigate the impact of overlooking paralytic cases, we modified step 5 in the algorithm. In step 5, if the event that is
chosen in step 3 corresponds to a fully susceptible individual becoming infected, then a uniformly distributed random
number (r1) is generated such that if r1 is less than the serotype-specific paralysis to infection ratio (PIR) then a paralytic case
of polio is detected. If an incidence of paralysis occurred, the time at which this event took place was recorded. To vary the
detection rate, we multiplied the PIR by the appropriate multiplier (i.e. 0.75 for a 75% detection rate) and checked that the
generated random number was less than this new paralysis to infection ratio. Varying the detection rate simulated missing a
paralytic case. In all simulations, we use the serotype 1 specific paralysis incidence rate.
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3. Results

Simulations were run 1000 times, initialized at the endemic equilibrium of the related differential equations model. The
related differential equations model is represented by the diagram in Fig. 1. The system of ordinary differential equations is
presented in the Appendix. We do not use these equations for our analytical purposes, as we require a stochastic model to
capture the fluctuations in the populations of small size that are the focus of the present paper. The rate of paralytic case
detection was varied, the R0 values were varied, the population sizes were varied, and the type of waning immunity (fast-
shallow, intermediate, slow-deep) was varied. Note that only those simulations in which 2 or more paralytic cases occurred
were used to find a distribution of times between detected paralytic cases. A sample of these results at the largest and the
Fig. 2. These plots show the distribution of time between detected paralytic cases with varying population sizes, varying R0 values and varying waning immunity
scenarios. These simulations ended when either there were no longer infected individuals remaining in the population or 15 years had elapsed.



Fig. 3. These plots show the distribution for the duration of a silent circulation with varying population sizes, varying R0 values and varying waning immunity
scenarios. The simulations were ended when either there were no longer infected individuals in the population or the time exceeded 15 years.

Table 3
This table shows the proportion of simulations with time between detected paralytic cases greater than 3 years in a natural transmission setting (i.e. no
modification to detection rates). The number in the parentheses gives the proportion of simulations with 2 or more paralytic cases detected.

R0 Value Type of Waning Immunity Population Size

N ¼ 3500 N ¼ 5000 N ¼ 7000 N ¼ 10,000

10 fast-shallow 6.25% (0.064) 6.71% (0.164) 10.63% (0.320) 12.98% (0.578)
intermediate 8.06% (0.062) 11.36% (0.176) 10.88% (0.340) 13.76% (0.603)
slow-deep 2.62% (0.076) 10.88% (0.173) 9.54% (0.346) 13.40% (0.597)

15 fast-shallow 6.06% (0.066) 12.15% (0.181) 14.62% (0.390) 18.21% (0.692)
intermediate 1.96% (0.051) 11.32% (0.159) 16.04% (0.374) 17.74% (0.620)
slow-deep 3.03% (0.066) 10.60% (0.151) 14.17% (0.367) 18.26% (0.657)

20 fast-shallow 7.23% (0.083) 15.45% (0.220) 22.27% (0.476) 22.03% (0.749)
intermediate 4.35% (0.069) 10.73% (0.205) 12.34% (0.397) 17.10% (0.696)
slow-deep 3.33% (0.060) 15.00% (0.180) 15.18% (0.415) 15.89% (0.711)

Table 4
This table shows the proportion of simulations with time between detected paralytic cases greater than 3 years with a 50% detection rate. The number in the
parentheses gives the proportion of simulations with 2 or more paralytic cases detected.

R0 Value Type of Waning Immunity Population Size

N ¼ 3500 N ¼ 5000 N ¼ 7000 N ¼ 10,000

10 fast-shallow 4.76% (0.021) 8.70% (0.046) 15.97% (0.144) 31.45% (0.337)
intermediate 5.26% (0.019) 11.86% (0.059) 21.57% (0.153) 32.08% (0.346)
slow-deep 4.35% (0.023) 14.71% (0.068) 32.89% (0.149) 38.46% (0.364)

15 fast-shallow 8.70% (0.023) 23.19% (0.069) 26.37% (0.182) 41.49% (0.417)
intermediate 10.00% (0.020) 9.68% (0.062) 26.11% (0.157) 40.09% (0.424)
slow-deep 0% (0.023) 17.33% (0.075) 26.35% (0.167) 38.69% (0.429)

20 fast-shallow 11.54% (0.026) 26.92% (0.078) 36.24% (0.229) 52.02% (0.519)
intermediate 4.76% (0.021) 12.73% (0.055) 34.83% (0.178) 48.08% (0.468)
slow-deep 10.00% (0.020) 20.93% (0.086) 32.06% (0.209) 43.79% (0.459)
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smallest population sizes are presented in Fig. 2 and Fig. 3. Tables 3 and 4 give the proportion of inter-paralytic case periods of
at least 3 years with 100% and 50% detection rates, respectively.

Changing the value of R0 and varying the population size (N) had a dramatic impact on the length of time between
detected paralytic cases. As R0 and N increased, the time between detected paralytic cases increased. However, as the pop-
ulation size increased, the variance in the time between detected paralytic cases decreased. The variance also decreased as the
detection rate increased. In both cases, this was due to the range in the number of paralytic cases detected. This implies that
two villages of small population sizes can have drastically different dynamics in terms of the duration of a silent circulation as
measured by detection of paralytic cases. An elimination or eradication criterion that is appropriate for one villagemay not be
applicable to another even if it is of comparable size. Although a villagewith a population size of 10;000will have, on average,



Fig. 4. These plots show the count of the total infected population at every 100 event steps averaged over all 1000 simulations. The population considered was of
size 10,000 with fast-shallow waning immunity dynamics.
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longer times between detected paralytic cases than a village with a population size of 3500, the large variance seen in the
dynamics for the smaller population sizes maymake these villages more dangerous because they have less predictability. It is
important to note that the waning immunity scenario imposed on the population had little impact on the time between
detected paralytic cases.

Table 3 shows the natural process of paralytic cases of poliovirus type 1. The high proportions of inter-paralytic intervals
exceeding three years seen in the larger population sizes implies that AFPS alone cannot be an adequate surveillance scheme
for declaring elimination to have occurred in the absence of vaccination. ES would be essential if there is to be confidence in
elimination claims for small communities. Additionally, a large proportion of the simulations in Table 3 had 2 or more
detected paralytic cases. In spite of this, up to 22% of the simulations, depending upon the parameter sweep, had a time
between detected paralytic cases greater than 3 years. This demonstrates that even in the case where there are paralytic cases
occurring in regions with perfect detection and no vaccination, the time between these cases can exceed 3 years. This may



Fig. 5. These plots demonstrate the effect of modifying the birth rate on the count of the total number of infected individuals in the populations. All populations
considered had R0 ¼ 20 with fast-shallow waning immunity dynamics. Plots (a) and (b) give the count of the total infected individuals with no modification to
the birth rate. In the case of Plot (a), there are an average of 200 naive susceptibles produced per year and in the case of Plot (b), there are an average of 70 naive
suceptibles produced per year. Plots (c) and (d) give the count of the total infected population with modification to the birth rate. In the case of Plot (c) the birth
rate was modified such that the average number of naive susceptibles produced per year was 70 and in the case of Plot (d) the birth rate was modified such that
the average number of naive susceptibles produced per year was 200.
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lead to a false declaration of elimination in these areas based upon the WHO criteria of three years without a detected
paralytic case (Henderson, 1989).

As shown in Fig. 3, the duration of a silent circulation, as measured by the infected population reaching zero, increased as
the population size and R0 increased. The duration of a silent circulationwas not affected by the type of waning immunity. As
R0 increased and as the population size increased, the variance in the length of a silent circulation increased. As R0 increases,
the contact rates increase, which allows for an increased probability in a susceptible individual contacting an infected in-
dividual and becoming infected. As a result of stochastic effects, the larger populations at the larger R0 values are subject to an
increased probability of infection, thus prolonging the silent circulation. These effects do not appear to be as significant in the
case of the smaller population sizes considered.

The increase in the time to elimination and in the time between paralytic cases as both the population size and R0
increased was due to the large fluctuations of the infected population. These large fluctuations were induced by the sub-
stantial number of births in the larger population sizes as compared to the smaller population sizes. In addition, as R0
increased, the height of the fluctuations increased. These large fluctuations allowed for the prolonged silent circulation that
was observed in the larger populations at higher R0 values (refer to Fig. 4). A protracted time until elimination provides the
potential for long times between paralytic cases. This indicates that, in order to prevent long durations of silent circulation, it
is necessary to inhibit large influxes of naive susceptible individuals. Furthermore, this demonstrates that first infections
make a significant contribution to prolonging a silent circulation. For this reason, the waning immunity dynamics did not
impact the length of a silent circulation.

To justify the high rate of naive suceptibles produced per year in the larger populations as the explanation for the fluc-
tuations, we modified the birth rates in both the larger and small populations. As an example, consider the plots given in
Fig. 5. In this example, we reduced the naive suceptibles produced per year in the 10,000 population to be equal to that of the
3500 population. This gave a birth rate of 0.007 individuals per year. Similarly, we increased the naive susceptible produced
per year in the 3500 population to be equal to that of the 10,000 population. This gave a birth rate of 0.06. These simulations
were run as previously described. By modifying the birth rate, we were able to change the dynamics of the infected popu-
lation. Specifically, in the case of the 10,000 population, with a reduced birth rate, we observed dynamics similar to that of the
3500 without modified birth rate and vice versa.
4. Discussion and conclusion

The microsimulation model that is presented in this paper was used to examine the conditions under which a small
population could sustain a silent circulation of poliovirus in the absence of vaccination. A silent circulation either ends when
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there are no longer infected individuals in the population or a paralytic case of polio is detected. Due to the predominately
asymptomatic spread of polio, it is not reasonable to be able to detect when there are no infected individuals remaining in the
population. We must rely on the detection of paralytic cases as a surrogate. For this reason, one part of the criterion for
declaring a region polio-free is the absence of a paralytic case of polio for at least three years (Henderson, 1989). This
motivated the question: in the absence of vaccination, how long can a silent circulation persist in small populations? In our
analysis, we used both the time between detected paralytic cases as well as the time at which the infected population reached
zero to determine the duration of a silent circulation. Since we have the benefit of simulation, the latter results are attainable.

If we were to rely solely on detecting paralytic cases to establish the end of a silent circulation then, depending on the
parameter sweep, a silent circulation could last between 1 and 4 years, with an upper bound of 15 years between two
successive paralytic cases. Our results imply that three years without a detected paralytic case does not guarantee elimination.
If wewere to rely solely on the population of infected individuals reaching zero to declare elimination then, depending on the
parameter sweep, a silent circulation could persist between 2 and 7 years, with an upper bound of 15 years. The duration of a
silent circulation in either case was not affected by the type of waning immunity imposed. These results apply to small
populations that are not vaccinated.

The most striking feature of these simulations is that even if every paralytic case of polio that occurs is detected, the time
between detected paralytic cases can be long depending on the parameters considered. In a natural transmission setting (i.e.
100% detection) without vaccination, there is up to a 22% chance that a silent circulation lasts beyond 3 years. Furthermore,
there is evidence that there exist areas in which detection rates are dramatically reduced. In May of 2016, the accessibility of
Borno State, Nigeria to special vaccination teams was 50% (Nnadi et al., 2017). Though it has since increased to 61% (Nnadi
et al., 2017), it is not unreasonable to suspect that this inaccessibility may have an effect on detection or reporting rates of
AFP. This indicates that a system in which detecting paralytic cases of polio is the primary method of surveillance is not
sufficient to prevent prolonged periods of silent circulation in the absence of intervention. Thus, it is necessary to implement
other methods such as ES to supplement AFPS. This will help to detect circulating poliovirus before a paralytic case occurs
with the intention of preventing prolonged periods of silent circulation.
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Appendix A

The equations in (A.1) give the system of related differential equations that was used to formulate the transition rates for
the stochastic microsimulation model. The endemic equilibrium of the system was used to initialize the microsimulation
model.

dS
dt

¼ bN � b
S
N
ðI1 þ kIrÞ � mS

dI1
dt

¼ b
S
N
ðI1 þ kIrÞ � gI1 � mI1

dR
dt

¼ gI1 þ
g

k
Ir � uR� mR

dP
dt

¼ uR� kb
P
N
ðI1 þ kIrÞ � mP

dIr
dt

¼ kb
P
N
ðI1 þ kIrÞ � g

k
Ir � mIr

(A.1)
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