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INTRODUCTION 
 

The blood is a circulating representation of all body 

tissues and hence carries a plethora of information about 

the overall pathophysiology of an individual. Age-

related changes in the blood have been investigated by 

metabolomics or proteomics, with the goal of 

understanding the mechanisms of aging and age-related 

pathogenesis, and also to identify candidate diagnostic 

and prognostic biomarkers for diseases [1–4]. 

Longitudinal metabolomics data from human plasma 

have revealed that plasma metabolite levels are 

influenced by aging, and that numerous metabolites are 

correlated with age [1, 5]. Using the SomaScan aptamer 

technology, two studies identified a conserved aging 

signature in human plasma proteomic data [2, 3]. These 

observations offer a deeper understanding of the aging 

process and provide new insight into the molecular 

mechanisms underlying human health and aging. 

Changes in plasma proteins contribute to the aging 

process, as well as age-related diseases. Parabiosis 

models, aimed at elucidating the effect of young or old 

blood on aging, revealed that young blood rejuvenates 

aged tissues in multiple organs, including brain, heart, 

pancreas, bone, skeletal muscle [6–10]. These studies 

strongly support the notion that both pro-aging and 

rejuvenating factors are present in the circulation, and a 

wide range of efforts are underway to identify these 

factors. Initial studies in parabiosis models identified 

GDF11 as a molecule capable of rejuvenating cerebral, 

cardiac, and skeletal muscle functions [7, 11, 12]. 

Similarly, the C-C motif chemokine 11 (CCL11) and β2 

microglobulin (B2M) negatively regulate neurogenesis 

and cognitive function in the hippocampus. In addition, 

several plasma proteins have been identified as 

rejuvenating factors that provide beneficial effects  

in diverse tissues. Based on the identification of  

these circulating proteins, anti-aging startups have 
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ABSTRACT 
 

Aging is defined as a time-dependent functional decline that occurs in many physiological systems. This decline 
is the primary risk factor for prominent human pathologies such as cancer, metabolic disorders, cardiovascular 
disorders, and neurodegenerative diseases. Aging and age-related diseases have multiple causes. Parabiosis 
experiments, in which the circulatory systems of young and old mice were surgically joined, revealed that 
young plasma counteracts aging and rejuvenates organs in old mice, suggesting the existence of rejuvenating 
factors that become less abundant with aging. Diverse approaches have identified a large number of plasma 
proteins whose levels differ significantly between young and old mice, as well as numerous rejuvenating factors 
that reverse aged-related impairments in multiple tissues. These observations suggest that increasing the levels 
of key rejuvenating factors could promote restorative biological processes or inhibit pathological degeneration. 
Inspired by such findings, several companies have begun selling “young blood transfusions,” and others have 
tested young plasma as a treatment for Alzheimer’s disease. Here, we summarize the current findings regarding 
rejuvenating factors. 
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started to develop new therapies targeting age-related 

diseases [13]. 

 

The discovery and validation of rejuvenating factors 

have been investigated so far with diverse approaches. 

In this review, we highlight the potential roles of 

selected plasma proteins that are present at different 

levels between young and old blood, and describe the 

results of many fascinating studies reporting pro-aging 

or rejuvenating factors in the blood (Table 1 and  

Figure 1). 

 

Apelin 
 

Apelin, a 13-amino acid peptide, was initially identified 

as an endogenous ligand that regulates gastric acid 

production through a G protein–coupled receptor, APJ 

[14, 15]. The human APLN gene encodes a proprotein 

consisting of 77 amino acid residues, which can be 

cleaved into a 55–amino acid fragment and then into 

several active fragments. Apelin-13, which is highly 

bioactive, is responsible for APJ binding and biological 

activity [16, 17]. Apelin and APJ are widely expressed 

in the body and play important roles in many organs.  

In addition, apelin ameliorates the symptoms of  

many diseases, including, neurological disorders [18], 

hypertension [19], metabolic disorders [16], 

gastrointestinal diseases [20], and hepatic diseases  

[21]. Interestingly, expression of apelin and APJ in 

tissues decline with age, and stress-induced senescence 

downregulates endogenous apelin and APJ [22]. 

Consistent with this, the circulating levels of apelin 

decrease with age in mice [23, 24]. Although Apln−/− and 

Aplnr−/− mice appear healthy, they undergo accelerated 

multi-organ aging. Genetic or pharmacological 

inhibition of apelin-mediated signaling leads to cellular 

senescence, whereas systemic restoration of apelin 

attenuates age-related pathologies and extends 

healthspan in mice [22]. 

 

Physical exercise ameliorates age-related muscle 

wasting [25], and restoration of myokines is the main 

mechanism by which physical activity prevents muscle 

wasting. Besse-Patin et al. identified apelin as an 

exercise-regulated myokine in humans [26]. In 

particular, they found that 8 weeks of endurance 

exercise training in obese male subjects upregulated 

APLN expression in skeletal muscle. Consistent with 

this, exercise stimulates secretion of apelin into the 

bloodstream in both mice and humans. Plasma apelin 

levels are associated with sarcopenia, defined as a 

gradual loss of function and muscle with age [23]. 

Accordingly, chronic apelin administration in old mice 

increases muscle mass and function by promoting 

mitochondriogenesis and protein synthesis. In addition, 

apelin targets muscle stem cells and increases their 

regenerative capacity. The phenotypes of Apln−/− and 

Aplnr−/− mice support the idea that these factors play 

critical roles muscle physiology during aging. 

Collectively, these findings suggest that apelin and its 

receptor are therapeutic targets for the rejuvenation of 

aged skeletal muscle [23]. 

 

β2-microglobulin 
 

Beta 2–microglobulin (β2M) is a secretory protein that 

serves as coreceptor for antigen presentation by major 

histocompatibility complex (MHC) class I to the 

immune system [27]. β2M is produced by all nucleated 

cells and is present in the circulation under normal 

physiological conditions. β2M has no transmembrane 

region and contains a distinctive molecular structure 

called a constant-1 Ig superfamily domain. β2M-

deficient mice exhibit a wide variety of immunological 

aberrations, such as antigen-specific IgG production 

[28], the catabolism of IgG [29], and greater 

susceptibility to pathogen infections [30–33]. 

 

Serum and plasma β2M levels are elevated in many 

pathological conditions, including renal disease, 

immunodeficiency, autoimmune diseases, and tumor 

burden [34–39]. Accelerated aging also affects the 

concentration of circulating β2M. In the general 

population of older adults, serum β2M concentration is 

a predictor of total mortality [40]. Furthermore, among 

geriatric inpatients, higher levels of β2M are 

associated with frailty [41]. High levels of plasma 

β2M are observed in elderly humans and aged mice 

[42], and circulating β2M levels are elevated in the 

younger partners in heterochronic parabiosis 

experiments [8]. Villeda et al. found that β2M acts  

as pro-aging factor by contributing to age-related 

decline in adult neurogenesis and impairments in 

hippocampal-dependent cognitive functions. Systemic 

administration of β2M or local injection of the protein 

into the brain impairs hippocampal-dependent 

neurogenesis and cognitive functions. Aged B2m-/- 

mice exhibit superior cognitive function and 

neurogenesis in comparison aged WT mice [42]. These 

observations raise the possibility that targeting β2M 

could attenuate age-related decline in cognition and 

regenerative functions in old age. 

 

Cadherin-13 
 

Cadherin-13 (also known as T-cadherin or H-cadherin) 

is an atypical member of the cadherin superfamily, 

whose members are membrane proteins that mediate 

calcium-dependent cellular adhesion. Cadherin-13 lacks 

transmembrane and cytoplasmic domains, but rather 

contains a glycosylphosphatidylinositol moiety that 

anchors it to the plasma membrane [43, 44]. Thus, 
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Table 1. Summary of circulating plasma factors involved in rejuvenation. 

Circulating 

factor 

Plasma levels 

in aged mice 

Class Functions References 

Apelin Decline Hormone 

(Rejuvenating 

factor) 

• Extends the murine healthspan and 

promotes mitochondriogenesis and 

protein synthesis 

• Reverses age-associated muscle 

wasting and delays stress-induced 

cellular senescence 

Vinel et al., Nature 

Medicine (2018) 

 

Rai et al., Cell Reports 

(2017) 

β2-

microglobulin 

Increase component of 

MHC class I 

molecules (Pro-

aging factor) 

• Impairs hippocampus-dependent 

cognitive function and neurogenesis 

Smith et al., Nature 

Medicine (2016) 

Cadherin13 Decline cell adhesion 

protein 
(Rejuvenating 

factor) 

• Inhibits osteoclast differentiation and 

ameliorates age-associated bone loss 

Yang et al. Aging 

(2020) 

CCL11 Increase Cytokine (Pro-

aging factor) 

• Reduced synaptic plasticity, and 

impairment of contextual fear 

conditioning and spatial learning and 

memory. 

Villeda et al., Nature 

(2011) 

Decline • Reverses age-related cardiac 

hypertrophy by suppressing 

phosphorylation Forkhead 

transcription factor 

Loffredo et al., Cell 

(2013) 

Not verified • Restores the functionality of the 

vasculature of the neurogenic niches 

• Improves muscle physiology and 

physical function by improving 

satellite cell competency 

• Shows calorie restriction–like 

phenotype 

• Increases bone mass by stimulating 

the BMP signaling pathway, thereby 

promoting osteogenic differentiation 

Katsimpardi et. al., 

Science (2014) 

Sinha et al., Science 

(2014) 

 

Katsimpardi et al., 

Aging Cell (2020) 

Suh et al., PNAS (2020) 

Increase • Impairs muscle regeneration 

 

• Impairs liver regeneration 

Egerman et al. Cell 

Metab (2015) 

Liu et al. Faseb J 

(2018) 

Not verified • Induces skeletal muscle atrophy 

 

• Decrease bone mass 

Hammers  et al. EMBO 

Mol Med (2017) 

Liu et al. Nat Commun 

(2016) 

eNAMPT Decline enzyme • Improves physical activity and 

extends mouse lifespan by promoting 

NAD+ biosynthesis 

Mitsukuni et al. Cell 

Metab. (2019) 

Oxytocin Decline hormone • Prevent skeletal muscle aging by 

promoting proliferation of myogenic 

progenitor cells 

Elabd et al. Nat. Comm. 

(2014) 
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SPARCL1 Decline matricellular 

extracellular 

matrix protein 

• Elevated spontaneous synaptic 

responses, synapse density, and 

dendritic branching; enhancement of 

evoked neurotransmission 

Kathlyn et al. PNAS 

(2019) 

TIMP2 Decline Protease 

inhibitor 

• Increases synaptic plasticity and 

hippocampus-dependent cognition 

Castellano et al. Nature 

(2017) 

THBS4 Decline matricellular 

extracellular 

matrix protein 

• Increased spontaneous synaptic 

responses, synapse density, and 

dendritic branching; enhancement of 

evoked neurotransmission 

Kathlyn et al. PNAS 

(2019) 

 

cadherin-13 acts by interacting with other membrane-

bound molecules to regulate cellular functions. It is 

highly expressed in developing and adult brain [45], and 

is known as an ADHD-risk gene [46]. Studies have 

reported that the cadherin-13 protein inhibits neuronal 

outgrowth, cell migration, and axon guidance [44, 47–

49]. Cadherin-13 is also found in the heart, pancreatic 

β-cells, liver, and skeletal muscle, and studies have 

shown that it contributes to regulating stress-induced 

pathological cardiac remodeling and metabolism 

through binding to adiponectin and insulin granules 

[50–52]. Although cadherin-13 is attached to the cell 

membrane, it is detected in the blood. Reduced levels of 

circulating cadherin-13 have been associated with 

coronary artery disease [53]. Plasma proteomic 

profiling revealed that cadherin-13 is expressed at lower 

levels in old mice compared to young mice [54]. 

Cadherin-13 inhibits osteoclast differentiation by

 

 
 

Figure 1. Effect of blood factors on organs. 
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blocking the activation of RANKL-associated signaling 

cascades, and cadherin-13 treatment of aged mice was 

found to delay age-associated bone loss [54]. These 

results suggest that cadherin-13 is an age-related bone 

factor that contributes to osteoporosis or osteopenia 

during aging, and that it could potentially be used as a 

novel therapeutic molecule for the treatment of bone 

loss. However, the underlying molecular mechanisms 

remain to be elucidated. 

 

CCL11/Eotaxin-1 
 

CCL11, a chemokine that can bind the chemokine 

receptors CCR2, CCR3, and CCR5 [55, 56], was first 

identified as a potent eosinophil chemoattractant. Thus, 

it participates in multiple inflammatory diseases 

including allergic reactions, allergic reactions, atopic 

dermatitis, and inflammatory bowel diseases; 

accordingly, its serum levels are elevated in each of 

these diseases [57–59]. In addition to its role in the 

immune response, CCL11 has multiple functions in 

diverse tissues and organs. Moreover, CCL11 plays roles 

in diseases, and has been implicated in cancer, 

atherosclerosis, neurogenesis, and neurodegeneration, 

and myocardial diseases [8, 60–63]. Notably, in this 

regard Villeda et al. showed that the plasma levels of 

CCL11 increase with aging and contribute to impaired 

neurogenesis and cognitive function in mice; the 

reduction in neurogenesis could be prevented by CCL11 

neutralizing antibodies [8]. Injection of CCL11 into 

young mice mimicked hippocampal aging, with a 

reduction in synapses and an increase in microglial 

activation [64]. Interestingly, plasma levels of CCL11 

are negatively associated with memory function in 

patients with Alzheimer’s dementia and older adults 

dwelling in rural communities [65, 66]. Furthermore, 

plasma CCL11 levels are elevated in patients with 

psychiatric conditions such as schizophrenia, bipolar 

disorder, dysthymia, and autism spectrum disorder [67–

70]. However, the mechanism by which circulating 

CCL11 affects neuronal dysfunction is currently not well 

understood. Several studies have suggested that CCL11 

may play a neurotoxic role in the pathophysiology of 

AD and PD [71, 72]. CCL11 is now considered to be a 

pro-aging factor that promotes aging-related neuronal 

dysfunction independent of eosinophil recruitment. 

Inspired by such findings, a startup called Alkahest has 

initiated a Phase II clinical trial investigating ALK4290, 

the first non–plasma-derived product targeting CCL11, 

for treatment of wet age-related macular degeneration 

(AMD) and Parkinson’s disease. 

 

eNAMPT 
 

Nicotinamide adenine dinucleotide (NAD+) an essential 

pyridine nucleotide that is present in all living cells. 

NAD+ is an abundant cofactor that participates in 

multiple aspects of biological processes, including 

energy metabolism, DNA repair, gene expression, 

cellular signaling, and stress response [73, 74]. NAD+ 

levels decrease with age, and that elevated intracellular 

NAD+ levels extend lifespan in model organisms [75–

81]. Several studies have confirmed that administration 

of NMN, an intermediate in NAD+ biosynthesis, 

ameliorates age-related dysfunction [76, 81–83]. 

Nicotinamide phosphoribosyltransferase (NAMPT), a 

key enzyme in the biosynthesis of nicotinamide adenine 

dinucleotide (NAD+), converts nicotinamide and 5′-

phosphoribosyl-pyrophosphate (PRPP) to nicotinamide 

mononucleotide (NMN) [84]. Stimulation of NAMPT 

activity has been proposed as a strategy for preventing 

and treating age-related diseases [85, 86]. In mammals, 

NAMPT exists in intracellular (iNAMPT) and 

extracellular (eNAMPT) forms [87]. In addition to its 

enzymatic function, eNAMPT (also known as pre–B-

cell enhancing factor (PBEF)/visfatin) acts as a cytokine 

in circulation. Remarkably, Yoshida et al. found that 

circulating eNAMPT is carried in extracellular vesicles 

and correlates significantly with age in both mice and 

humans. In mice, increasing eNAMPT levels via 

adipose-specific overexpression maintains NAD+ levels 

during aging, prevents age-associated physiological 

decline, and extends lifespan. eNAMPT carried by EVs 

is internalized into target cells, resulting in upregulation 

of NMN/NAD+ biosynthesis [88]. Based on these 

findings, NAD+ metabolism has emerged as a potential 

target for treatment of age-related disorders. Indeed, 

several clinical studies have been planned or are already 

ongoing in the US and Europe. 

 

GDF11 
 

Growth differentiation factor 11 (GDF11), a secreted 

protein, is also known as bone morphogenetic protein 11 

(BMP-11). GDF11 is a member of TGF-β/BMP 

superfamily that mainly activates Smad and non-Smad 

signaling pathways via binding to Activin receptor I and 

II, thereby regulating expression of its target genes [89]. 

GDF11 was initially synthesized as a precursor protein, 

and then cleaved by pro-protein convertase 

subtilisin/kexin type 5 (PCSK5), forming a non-covalent 

latent complex consisting of an N-terminal inhibitory 

pro-domain and two disulfide-linked carboxyl-terminal 

active domains [90, 91]. BMP1/Tolloid matrix 

metalloproteinase further cleaves the latent complex to 

generate active GDF11 [92]. 

 

Over the past few decades, a series of studies revealed 

that GDF11 participates in embryonic development by 

regulating anterior/posterior patterning of the axial 

skeleton, kidney organogenesis, spinal cord 

neurogenesis, pancreatic beta-cell differentiation, and 
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retinal formation [93–97]. In addition, it plays a critical 

role in multiple fundamental homeostatic processes 

including osteogenesis, myogenesis, neurogenesis, and 

erythropoiesis [7, 12, 98–101]. Therefore, many studies 

have demonstrated that GDF11-mediated physiological 

processes have implications in human development and 

diseases. 

 

Loffredo et al. hypothesized that anti-aging factors 

might reverse age-related cardiac hypertrophy, and 

identified GDF11 as anti-aging factor with 

antihypertrophic properties [11]. Aptamer-based 

proteomic analysis revealed several circulating proteins 

present at different levels between young and old mice. 

Among these candidates, GDF11 level declined with 

age and administration of GDF11 reversed age-related 

cardiac hypertrophy in old mice [11]. In addition to 

cardiac aging, GDF11 reverses skeletal muscle aging: 

systemic delivery of GDF11 protein restores genomic 

integrity in aged muscle stem cells and improves muscle 

physiology and physical functions [12]. GDF11 also 

exerts positive effects in the aged brain by promoting 

vascular remodeling and neurogenesis [7]. In contrast to 

these observations, however, a series of follow-up 

studies reported that GDF11 negatively affects aged 

tissues. In particular, GDF11 inhibits myoblast 

differentiation in mice, thereby impairing muscle 

regeneration [100]. Moreover, Hinken et al. reported 

that GDF11 does not affect outgrowth of muscle stem 

cells [102]; indeed, systemic overexpression of GDF11 

induces skeletal and cardiac muscle atrophy in mice 

[103]. GDF11 inhibits bone formation, and inhibition of 

GDF11 functions prevents age-related osteoporosis 

[99]. Furthermore, it remains unclear whether the levels 

of circulating GDF11 are related to age. Multiple 

studies using different detection methods have reported 

conflicting age-related changes in GDF11 levels. The 

mature active region of GDF11 is highly similar to that 

of myostatin (GDF8). Consequently, commercially 

available ELISAs are available using antibodies with 

cross-reactivity with myostatin. Egerman et al. found 

that a previously used GDF11 SOMAmer and GDF11 

antibodies bind to both GDF11 and myostatin [11, 12, 

100], and GDF11-specific immunoassays revealed that 

serum GDF11 levels are elevated with age in human 

and rats [100]. Importantly, using a highly specific LC-

MS/MS assay, Schafer et al. found that the levels of 

GDF11 do not decline in men or women throughout the 

lifespan and are instead positively associated with 

frailty and other morbidities [104]. The controversy 

about the relationship between GDF11 and aging may 

be caused by differences in GDF11 detection methods, 

the source of recombinant GDF11 protein, experimental 

design, or other factors. Although the biology of GDF11 

remains controversial, the protein has important 

implications for physiological and pathological 

processes related to diagnosis and therapy of human 

diseases. 

 

Oxytocin 
 

Oxytocin is a hormone produced mainly in the 

hypothalamus and secreted by the pituitary gland. 

Oxytocin plays well-known roles in female 

reproduction, including uterine contraction and milk 

ejection. The oxytocin receptor, a typical member of the 

class I G protein–coupled receptor superfamily, is 

expressed in a variety of tissues, such as the ovary, 

testis, adrenals, uterus, mammary glands, bone, brain, 

liver, and adipose [105]. Because the oxytocin receptor 

is present on diverse cell types, oxytocin has multiple 

positive physiological and psychological effects [106]. 

In particular, it influences a wide array of social 

behaviors through direct projections to other brain 

regions such as the nucleus accumbens, olfactory bulb, 

amygdala, and brain stem [107–110]. Although several 

studies of postmortem neural tissues have investigated 

whether aging affects the oxytocin system, some 

controversy persists regarding the number of 

oxytonergic cells in the brain of elderly subjects [111, 

112]. In addition, reduced levels of oxytocin have been 

detected in postmenopausal women with osteoporosis 

[113]. Consistent with these observations, 

ovariectomized mice and rats have significantly lower 

plasma oxytocin levels than sham-operated mice. 

Oxytocin enhances osteoblast differentiation, and 

supplementation of oxytocin reverses bone loss induced 

by ovariectomy in rodents [114]. Interestingly, 

circulating oxytocin levels decline with age in rhesus 

macaques and mice [115, 116]. Elabd et al. [116] 

suggested that this age-related decline in oxytocin 

contributes to defects in muscle regeneration. They 

found that oxytocin rejuvenates muscle stem cells by 

promoting their proliferation after muscle injury. 

Furthermore, aged Oxt-/- mice exhibit premature 

sarcopenia. Because several lines of evidence have 

revealed that oxytocin improves social deficits 

associated with various psychiatric disorders, numerous 

clinical trials have investigated the effect of this protein 

on social dysfunction [117]. In addition to improvement 

of social behavioral dysfunction, oxytocin and the 

oxytocin-mediated signaling pathway represent new 

clinical targets for rejuvenation of aged skeletal muscle. 

 

TIMP2 
 

Tissue inhibitor of metalloproteinases (TIMPs) are a 

family of secretory proteins consisting of four members: 

TIMP-1, -2, -3, and -4. TIMPs are endogenous 

inhibitors of metalloproteinases, including the matrix 

metalloproteinases (MMPs), a disintegrin and 

metalloproteinases (ADAMs), and ADAMs with 
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thrombospondin motifs (ADAMTSs) [118]. Generally, 

TIMPs participate in extracellular matrix (ECM) 

catabolism, which is essential for many biological 

processes such as embryonic development, 

morphogenesis, tissue repair, and regeneration. In 

addition to ability to inhibit metalloproteinases, TIMPs 

are involved in multiple biological functions such as 

cell proliferation, apoptosis, and synaptic plasticity, 

many of which are independent of MMP inhibitory 

activity [119]. Notably in this regard, TIMP2 expression 

in plasma and hippocampus decreases with age in mice 

[120]. Interestingly, Castellano et al. reported that 

human umbilical cord plasma enriched with TIMP2 

improved hippocampal function, and systemic 

supplementation with TIMP2 increase synaptic 

plasticity and cognition in aged mice. On the basis of 

these findings, they suggested that plasma TIMP2 

reverses age-related neuronal dysfunction. However, 

little is known regarding the molecular mechanism 

underlying this effect. 

 

SPARCL1 and THBS4 
 

Ever since parabiosis experiments revealed that blood 

from young animals could rejuvenate neural function in 

old mice, many scientists used a wide range of 

approaches to identify rejuvenating factors in the blood. 

In a mass spectrometry study of plasma from young and 

old mice, Gan et al. found a series of proteins enriched 

in young or old blood [121]. Among the proteins they 

identified, SPARC-like protein 1 (SPARCL1) and 

thrombospondin-4 (THBS4) are abundant in young 

serum. Both proteins boost synaptic responses, synapse 

density, and dendritic branching in neurons 

transdifferentiated from human embryonic stem cells. 

Remarkably, these proteins are extracellular matrix-

associated proteins and synaptogenic factors secreted 

from astrocytes. Astrocytes are essential for the function 

of the nervous system, as they regulate neurons by 

providing metabolic and trophic support [122]. THBS1 

and 2 are astrocyte-secreted proteins that promotes 

synaptogenesis, whereas THBS4 enhance neurite 

adhesion and outgrowth [123]. SPARCL1 regulates 

CNS synaptogenesis [124]. Although THBS4 and 

SPARCL1, which are enriched in young mouse blood, 

increase synapse formation in vitro, their effects on 

brain rejuvenation in animal models remain unclear. 

 

CONCLUSIONS 
 

Multiple studies have reported that young blood can 

reverse aspects of aging in various organs. Although 

young blood transfusion is effective for rejuvenation in 

aged mice, it remains unclear whether young blood 

transfusion into older people has clinical benefits. 

Young blood may contain multiple factors that 

contribute to the aging process, and studies using 

diverse approaches have identified several candidate 

anti-aging and pro-aging factors. The use of 

recombinant proteins as rejuvenating factors may enable 

the revitalization of aged organs in clinical application. 

Conboy’s team demonstrated that young blood by itself 

does not have positive effects on rejuvenating old 

tissues. [125]. Furthermore, the team found that 

replacing half of the blood plasma of old mice with a 

mixture of saline and albumin. is sufficient to 

rejuvenate the brain, liver, and muscle [126]. The 

authors suggested that young blood or rejuvenating 

factors are not required for rejuvenating effect, and 

removing pro-aging factors in old blood is effective way 

to rejuvenate old tissues. Thus, blockade of specific pro-

aging factors or their receptors could contribute to 

treating age-related diseases. Although the mechanism 

by which these proteins act is far from being fully 

understood, multiple studies have demonstrated that 

these factors play important roles in age-related 

diseases, and may therefore have clinical applications in 

the future. 
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