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Tick-Borne Pathogens: The Model
Ticks are blood-feeding arthropod ectoparasites that transmit pathogens that constitute a
growing burden for human and animal health worldwide [1–3]. Only second to mosquitoes as
vector of human diseases and the first vector of animal diseases, ticks transmit bacterial, para-
sitic, and viral pathogens [1]. One of these pathogens is the intracellular bacterium Anaplasma
phagocytophilum, which is vectored primarily by Ixodes tick species and is the causative agent
of human granulocytic anaplasmosis (HGA), equine and canine granulocytic anaplasmosis,
and tick-borne fever of ruminants [1]. This pathogen is a good model because recent analysis
of the molecular interactions between Ixodes tick vectors, A. phagocytophilum, and host cells
showed pathogenic effects of both ticks and pathogens but also revealed the mutual beneficial
effects of the tick–host–pathogen molecular interactions [4–7].

Tick–Host–Pathogen Interactions: Conflict and Cooperation
It has been established that ticks produce a feeding lesion and inhibit host hemostatic, immune,
and inflammatory responses to complete feeding, while pathogens manipulate host and tick
biological processes to facilitate infection, multiplication, and transmission [4–7]. At the same
time, both ticks and hosts react to tick infestation and/or pathogen infection by activating dif-
ferent mechanisms to fight against tick infestations and limit pathogen infection [4–7]. There-
fore, the generally accepted view is that tick infestation and pathogen infection produce
detrimental effects on both hosts and ticks that highlight a conflict between hosts, ticks, and
pathogens (Fig 1A; see also S1 Video) [5,7]. The evolutionary processes show that coevolution
includes interactions between organisms that can produce both conflict and cooperation [8],
but the latter has been largely ignored for tick–host–pathogen interactions. However, the con-
flict between ticks, hosts, and pathogens also reveals cooperation between them benefiting ticks
and pathogens and to a lesser extent hosts, leading to mutual beneficial effects of the tick–
host–pathogen molecular interactions (Fig 1B; see also S1 Video). The conflict and cooperation
in tick–host–pathogen interactions are analyzed in detail in the following sections with exam-
ples summarized in Table 1.

(a) Tick–pathogen interaction: conflict for both ticks and pathogens
Like other intracellular bacteria, A. phagocytophilum have evolved mechanisms to subvert host
response to facilitate infection, multiplication, and transmission [5]. These molecular
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mechanisms for infection of tick cells include but are not limited to remodeling of the cytoskel-
eton, inhibition of cell apoptosis, manipulation of the immune response, and control of host
cell epigenetics [5]. For example, in tick salivary glands, A. phagocytophilum inhibits the intrin-
sic apoptosis pathway through porin down-regulation to facilitate bacterial infection, while tick
cells respond through FAS down-regulation, resulting in the activation of the extrinsic apopto-
sis pathway to limit A. phagocytophilum infection and promote tick survival (Table 1) [9].

Fig 1. Tick–host–pathogen interactions: conflict and cooperation. (A) Conflict. Ticks produce a feeding
lesion and inhibit host hemostatic, immune, and inflammatory responses to complete feeding, while hosts
react locally and systemically to tick infestation. Ticks react to pathogen infection by activating different
mechanisms to limit pathogen infection, while pathogens manipulate tick biological processes such as innate
immune response and apoptosis to facilitate infection, multiplication, and transmission. Pathogens inhibit
host immune response, among other mechanisms, to facilitate infection, but at the same time, hosts react to
pathogen infection by activating different mechanisms to control pathogen infection. (B) Cooperation. Ticks
benefit from hosts by promoting feeding after deviation of host response to tick bite, while hosts may benefit
from tick infestation by increased resistance to pathogen infection. Ticks benefit from pathogen infection by
increased survival at low and high temperatures and fitness, while pathogens manipulate tick biological
processes to facilitate infection but without affecting tick feeding and reproduction. Pathogens benefit from
host response to facilitate infection, while hosts may benefit from pathogen infection by interference with and
reduced susceptibility to infection with other more lethal pathogens or by bacterial-induced epigenetic
deregulations that could promote host defense to infection.

doi:10.1371/journal.ppat.1005488.g001

Table 1. Examples of the conflict and cooperation events acting on tick–host–pathogen interactions.

Interactions Affected Conflict Benefit and/or Cooperation

Tick–pathogen Tick Porin down-regulation to inhibit host intrinsic apoptosis pathway [9]. Induction of tick antifreeze glycoprotein (AFGP) and
heat shock proteins (HSP) [11,12].

Pathogen FAS down-regulation to activate host extrinsic apoptosis pathway [9].
Dual oxidase activation to induce host production of reactive oxygen
species (ROS) [10].

Promotion of tick protein misfolding in the
endoplasmic reticulum (ER) [13].

Host–tick Host Down-regulation of lectin and complement activation [7,16]. Increased antibody levels to α-gal [21–23].

Tick Activation of host coagulation and platelet aggregation. Increased tick feeding after the effect of tick saliva
on host immunity and inflammatory responses
[4,6,7,16].

Host–pathogen Host Inflammatory histopathologic lesions and neutropenia [17]. Bacterial-induced epigenetic deregulations and
production of host interleukin (IL)-10 [17,18,26].

Pathogen Host production of pathogen-specific immunoglobulin G (IgG) and
CD4-dependent inflammatory responses [18].

Increased levels of host IL-8, CXCR1, and other
chemokines [19,20].

The conflict affects tick, pathogen, or host biology and/or life cycle, while benefit and/or cooperation results in beneficial effects to increase tick, pathogen,

or host fitness.

doi:10.1371/journal.ppat.1005488.t001
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Alterations in the tick gut microbiome associated with feeding, development, and infection
could modulate immune response in ticks [10]. Microbiota and A. phagocytophilum-induced
activation of dual oxidase results in production of reactive oxygen species (ROS) to control bac-
teria and activate immune responses as well as epithelial regeneration and repair to protect
ticks from infection (Table 1) [10]. However, ROS-mediated damage to gut epithelial cells
results in activation of the Janus kinase/signal transducers and activators of transcription
(JAK/STAT) pathway, which in turn inhibits apoptosis that facilitates infection of tick salivary
glands [9,10].

(b) Tick–pathogen interaction: benefits for both ticks and pathogens
At the tick–pathogen interface, pathogens induce several mechanisms to increase tick survival
and favor pathogen infection and transmission. These mechanisms include the induction of an
antifreeze glycoprotein (AFGP) and heat shock proteins (HSP) (Table 1) [11,12]. The AFGP
increases tick survival at cold temperatures [11], while the HSP response helps to increase tick
survival by protecting from stress and preventing desiccation at high temperatures after
enhancing questing speed in order to increase chances to attach to a host [12]. In addition,
because pathogen infection occurs during blood feeding, ticks have developed a protective
response to limit pathogen infection, which also contributes to their survival [12–14]. A. phago-
cytophilum subvert tick RNA interference by mechanisms other than reducing tudor staphylo-
coccal nuclease (Tudor-SN) levels to preserve tick life cycle because of the role of this protein
during tick feeding [14]. In contrast, subolesin, which is involved in tick innate immune
response to limit pathogen infection [15], is not manipulated by A. phagocytophilum infection
because it affects tick feeding and reproduction and infection with tick-borne bacteria (Fig 2)
[15].

Fig 2. Ixodes scapularis tick–A. phagocytophilum coevolution. The pathogen inhibits apoptosis by
reducing porin levels to increase infection but without affecting tick feeding and reproduction, as illustrated
after gene knockdown to maintain tick vector capacity. However, the pathogens do not manipulate subolesin
levels because, as shown after gene knockdown, it can affect infection and tick performance. These results
illustrate coevolutionary mechanisms by which pathogens manipulate tick protective responses to facilitate
infection while preserving tick feeding and vector capacity to guarantee survival of both pathogens and ticks.

doi:10.1371/journal.ppat.1005488.g002
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On the pathogen side, A. phagocytophilum could promote protein misfolding in the endo-
plasmic reticulum (ER) to counteract the tick cell response to infection, but tick cells respond
by activating protein targeting and degradation to prevent ER stress and cell apoptosis, a mech-
anism that facilitates pathogen infection (Table 1) [13]. Additionally, A. phagocytophilummay
benefit from the tick cell ability to limit rickettsial infection through phosphoenolpyruvate car-
boxykinase (PEPCK) inhibition, leading to decreased glucose metabolism and the availability
of essential metabolites for bacterial growth, which also results in the inhibition of cell apopto-
sis that increases infection of tick cells [13].

(c) Host–tick and host–pathogen interactions: conflict for hosts, ticks,
and pathogens
Tick infestations produce a feeding lesion and inhibit host cell responses such as immunity by
down-regulation of lectin, complement activation, and other mechanisms to impair the activity
of natural killer cells, neutrophils, eosinophils, basophils, and T lymphocytes (Table 1) [7,16].
In turn, hosts respond to tick infestation by activating different mechanisms, including coagu-
lation and platelet aggregation, that affect tick feeding and blood digestion (Table 1) [7,16].
Pathogens manipulate host biological processes to facilitate infection, multiplication, and
transmission [4–7]. For example, A. phagocytophilum infection results in inflammatory histo-
pathologic lesions and neutropenia (Table 1) [17]. However, host response to A. phagocytophi-
lum infection produces pathogen-specific IgG against bacterial major surface proteins and
CD4-dependent inflammatory responses of activated macrophages and neutrophils to control
pathogen infection (Table 1) [18].

(d) Host–tick and host–pathogen interactions: benefits for ticks and
pathogens
The mechanisms described above, by which tick saliva modulates host immunity and sup-
presses inflammatory responses, deviate the host immune response to facilitate tick feeding
and pathogen transmission (Table 1) [4,6,7,16].

The mechanisms by which A. phagocytophilum subvert host response to facilitate infection,
multiplication, and transmission appear to be common to tick vectors and vertebrate hosts,
suggesting an evolutionary adaptation to a diverse number of vector and host species [5].
Therefore, these coevolutionary mechanisms are also reflected at the host–pathogen interface,
where neutrophils infected with A. phagocytophilum show up-regulation of proinflammatory
genes and increased levels of interleukin 8 (IL-8), IL-8 receptor (CXCR1), and other chemo-
kines [19,20]. These protective responses result in the recruitment of neutrophils and increased
granulocytic phagocytosis, which in turn facilitate A. phagocytophilum dissemination (Table 1)
[20].

(e) Host–tick and host–pathogen interactions: benefits for the host
A remaining question is what is the benefit for the host from both ticks and pathogens? One
hypothesis is that hosts may benefit from the capacity of ticks to manipulate their immune
response [16]. For example, in humans, tick feeding may result in increased antibody levels to
the carbohydrate α-gal (Gal α 1-3Gal β 1-[3]4GlcNAc-R) [21,22]. Although the tick-induced
response to α-gal may result in anaphylactic reactions to red meat, tick bite, and cetuximab
treatment, it could also increase protection to pathogen infection [21–23]. Likely, most tick-
borne pathogens contain α-gal-modified proteins on their surface. Therefore, increased
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antibody levels to α-gal could contribute to reducing pathogen infection and multiplication
(Table 1) [21–23].

It is difficult to consider that pathogen infection may have a benefit for the host. However,
reservoir hosts and not accidental hosts that do not play a role during tick and pathogen life
cycle can control pathogen infection to guarantee survival and facilitate pathogen transmission.
These facts suggest the existence of mechanisms that evolved to produce a beneficial effect after
pathogen infection. Pathogen interference may constitute one of these mechanisms in which
pathogen infection, as shown for tick microbiota [10], may interfere with and reduce the sus-
ceptibility to infection with other more lethal pathogens [24]. Another possible mechanism is
the epigenetic modification produced by A. phagocytophilum that affects the chromatin struc-
ture and transcriptional program of host cells [25]. Bacterial-induced epigenetic deregulations
may affect host cell function, resulting in pathogen persistence but also promoting host defense
to infection (Table 1) [26]. Additionally, the induction of IL-10 in response to A. phagocytophi-
lum infection results in the control of histopathologic lesions induced by host-derived inter-
feron gamma (IFN-γ) (Table 1) [17,18].

Conclusions and Future Directions
The evolution of the tick–host–pathogen molecular interactions resulted in conflict and coop-
eration between them, with mutual beneficial effects for ticks, hosts, and pathogens (see S1
Video). These results illustrate coevolutionary mechanisms by which pathogens manipulate
tick protective responses to facilitate infection while preserving tick feeding and vector capacity
to guarantee survival of both pathogens and ticks (Fig 2). The conflict between hosts, ticks, and
pathogens has been well characterized. However, the beneficial effects are being discovered for
ticks and pathogens and require additional research to provide more evidence for their pres-
ence in vertebrate hosts. As discussed here for ticks and A. phagocytophilum, these coevolution-
ary mechanisms probably apply to other arthropod vectors and transmitted pathogens.

Because of the growing impact of tick-borne pathogens on human and animal health, more
effective measures are needed for the control of tick-borne diseases, and the understanding of
the molecular interactions between vertebrate hosts, tick vectors, and transmitted pathogens is
crucial towards achieving this goal [15]. The characterization of the conflict and mutual benefi-
cial effects of the tick–host–pathogen molecular interactions will likely provide new targets for
the control of tick-borne diseases. The possibility of ticks inducing cross-reactive protective
antibodies to α-gal that could increase protection to pathogen infection opens new research
areas to control and prevent vector-borne diseases [21,22].

Supporting Information
S1 Video. Tick–host–pathogen interactions: conflict and cooperation.
(M4V)
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