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In this review, we described the structure and organization of antigen-recognizing
repertoires of B and T cells from the standpoint of modern immunology. We
summarized the latest advances in bioinformatics analysis of sequencing data from T
and B cell repertoires and also presented contemporary ideas about the mechanisms of
clonal diversity formation at different stages of organism development. At the same time,
we focused on the importance of the allelic variants of the HLA genes and spectra of
presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea
of this review is that immune equilibrium and proper functioning of immunity are highly
dependent on the interaction between the recognition and the presentation landscapes of
antigens. Certain changes in these landscapes can occur during life, which can affect the
protective function of adaptive immunity. We described some mechanisms associated
with these changes, for example, the conversion of effector cells into regulatory cells and
vice versa due to the trans-differentiation or bystander effect, changes in the clonal
organization of the general TCR repertoire due to homeostatic proliferation or aging, and
the background for the altered presentation of some antigens due to SNP mutations of
MHC, or the alteration of the presenting antigens due to post-translational modifications.
The authors suggest that such alterations can lead to an increase in the risk of the
development of oncological and autoimmune diseases and influence the sensitivity of the
organism to different infectious agents.

Keywords: adaptive immunity, immune equilibrium, T-cell receptor repertoire, B-cell receptor repertoire, antigen
presentation/recognition, homeostatic proliferation, a rank-size frequency distribution of T- and B-cell
receptors, immunopeptidome
INTRODUCTION

The immune system is a complicated multilevel system of protection from different pathogens that
contributes to the multicellularity and maintenance of genetic homeostasis (1–3). The development
of adaptive immunity is associated with the appearance of RAG (recombination-activating gene)
and two consecutive whole-genome duplications (4) that could be associated with the appearance of
vertebrates and a transition from Agnatha to gnathostomes, which occurred around 500 million
years ago (5, 6). The most important evolutionary advantage of adaptive immunity seems to be its
specificity, which provides high precision and selectivity of the immune system activity. Another
org July 2021 | Volume 12 | Article 7061361
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important advantage is the formation of immunological
memory, which provides a quick and targeted reaction to the
pathogen that the organism faced before (7). The so-called
“price” that has to be paid for these advantages is the necessity
to re-customize the adaptive immunity and form the immune
memory individually in each generation.

The evolutionary development of the adaptive immune
response is associated with the appearance of populations of T
and B lymphocytes. Their precursors are found at the stage of
early vertebrates (8). The main peculiarity of adaptive immunity
is the formation of T and B lymphocytes with a high diversity of
clones, wherein each clone has a unique antigen-recognizing
receptor (TCR—T-cell receptor or BCR—B-cell receptor,
respectively). For example, according to the recent data, the
clonal diversity of only b chains of TCRs in the peripheral
bloodstream is up to 108, which does not reflect the whole
diversity that is comprised in the different organism
compartments because the total number of T cells in the
human organism is up to 1012 (9). At the same time, a recent
evaluation indicates that the potential diversity of ab TCRs
varies from 1020 to 1061, which significantly exceeds the
number of unique TCRs in the human organism (10, 11). In
the case of B cells, the potential diversity of the BCR repertoire is
also great and reaches 1020 (12–14). However, as for TCRs, the
actual number is lower than the theoretical one and is
approximately 108–109 of unique heavy BCR chains in the
peripheral bloodstream (15, 16). These peculiarities lead to
high personalization of repertoires, when the major part is
private TCRs/BCRs and only a small part can be common in
different individuals (public TCRs/BCRs). It is suggested that
cross-reactivity plays an important role in the recognition of
antigens because the approximate diversity of potential antigens
reaches 209 and seems to exceed the summed actual diversity of
T- and B-cell repertoires (11).

Such diversity is provided due to recombination of V(D)J
gene segments of TCRs and BCRs caused by the activation of the
RAG gene and due to the effect of terminal deoxynucleotidyl
transferase (TdT) at the early stages of lymphocyte maturation
(17, 18). The migration of T cells from the thymus begins at the
end of the first trimester of the intrauterine development, while
TdT, which randomly inserts nucleotides during V(D)J
recombination, begins to express only in the middle of the
second trimester (19). Thus, the majority of T cells in the fetus
to the middle of gestation have zero nucleotide insertion in the
region CDR3 (complementarity-determining region-3) (20).
Still, their repertoire has a quite high diversity of TCRs due to
V(D)J recombination. Unlike TCRs, the diversification of the
BCR repertoire occurs earlier. For this reason, at the beginning of
the second trimester, the BCR repertoire is characterized by a
relatively high diversity, which gradually increases to the time of
birth. After the birth, the diversity of the T-cell repertoire
continues to increase to the involution of the thymus, while an
increase in the diversity of the B-cell repertoire seems to be
limited by the age-related degeneration of the bone marrow (20,
21). At the same time, at the early stages of development (less
than 14 weeks), both repertoires of T and B cells are
Frontiers in Immunology | www.frontiersin.org 2
characterized by the oligoclonal organization that is replaced
with polyclonal one by the 17th week of gestation, which is
associated with a progressive increase in the number of sjTRECs
(signal-joint T-cell receptor excision circles) and sjKRECs
(signal-joint kappa-deleting recombination excision circles)
(20). In early childhood, the diversity of T- and B-cell
repertoires tends to its maximum (20, 22). Thus, in the fetal
period and early childhood, the main diversity of the TCR and
BCR repertoires is established that form the general landscape of
recognition of antigens, which normally changes insignificantly
within the life and tends to decrease with aging (22–24).

It is worth noting that MHC (major histocompatibility
complex) molecules influence the formation of TCR repertoires
of CD4+ and CD8+ lymphocytes. In other words, allele variants
of MHCs limit the diversity of the represented antigens, which in
turn, influences the formation of naïve and antigen-experienced
TCR repertoires (25–27). At the same time, there are some
differences in the formation of TCR repertoires of CD4+ and
CD8+. This could be associated with different events observed in
the thymus that determine the choice between the CD4+ or CD8+

cell differentiation. Double-positive CD4+CD8+ lymphocytes
that receive a strong TCR-MHC-II signal, quickly stop the
expression of CD8 and become single-positive CD4+

lymphocytes. In turn, CD4+CD8+ lymphocytes that do not
receive a relatively strong TCR-MHC-II signal for a long time
stop the expression of CD4+ and become single-positive CD8+

lymphocytes (28). Thus, CD8+ lymphocytes undergo a stricter
selection in the thymus. Along with the possibility of recognizing
epitopes presented by MHC-I, they lose the capability to
recognize epitopes presented by MHC-II, which plays an
important role in forming the naïve CD8+ TCR repertoire (29).
This is confirmed by a small total amount of common TCRb
sequences in the populations of CD4+ and CD8+ lymphocytes,
i.e. TCR repertoires of CD4+ and CD8+ overlap weakly, and there
is a small amount of TCRs capable of reacting with both classes
of MHC-I and MHC-II (30). Thus, the specificity of TCRs at the
stage of CD4+CD8+ cells regulates the choice of CD4/CD8
differentiation. Further changes in the CD8+ repertoires could
be associated with the allele variants of MHC-I, in particular,
with their variants of fastidious or promiscuous binding that
initiate oligoclonal or polyclonal variants of the immune
response, respectively, by changing the number of certain
clones (31–33). The difference between the CD4+ and CD8+

repertoires is in the formation of T-regulatory cells (Tregs) with a
relatively high affinity of TCRs to self-antigens at the double-
positive stage (34). Thus, the CD4+ repertoire contains cells with
relatively high affinity to self-antigens, which is not observed in
the CD8+ repertoire.

The formation of the naïve BCR repertoire of B cells is not so
dependent on innate immunity. Similar to T cells, during
maturation, B cells go through several stages of positive and
negative selection. Each B cell can go through several cycles of
rearrangement of V genes at different stages of maturation to
increase the possibility of the formation of BCRs with the
minimal capacity of reacting to self-antigens for the population
of B-2 cells and a relatively higher affinity to self-antigens for the
July 2021 | Volume 12 | Article 706136
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population of B-1a and B-1b cells (35, 36). Further formation of
antigen-experienced BCR repertoire occurs in the process of
somatic hypermutations (SHMs) during the maturation and
activation of B cells on the periphery and under the mediated
effect of Th cells, which suggests indirect involvement of the
innate immunity (36).

Although the formation of the diversity of Ag-recognizing
receptors occurs in a stochastic manner due to random V(D)J
recombination and non-template nucleotide insertions (NIs), it
is limited by a set of allele variants of MHC genes for a certain
subject, at least, for CD4+ and CD8+ cells. Probably, this
determines the individuality of the immune response and
peculiarity of the homeostasis of the immune system in general
in a certain organism. In this review, the authors will shortly
describe the main peculiarities that can occur throughout life and
affect the immune equilibrium increasing the risk of pathology.
LANDSCAPE OF RECOGNITION

As it was mentioned before, the general landscape of recognition
is understood as a diversity of specific antigen-recognizing
receptors that include TCRs of CD4+ and CD8+ cells, as well
as BCRs of B cells. It is assumed that the higher the diversity of
antigen-recognizing receptors, the wider the range of antigens
that can potentially be recognized by the immune system, and,
thus, the higher the effectiveness of the immune response against
pathogens and altered self-antigens (37). It is suggested that the
maintenance of auto-tolerance and the efficiency of anti-cancer
immunity are also associated with the diversity of antigen-
recognizing receptors of Tregs, which is critical in the context
of antigen-specific action of these cells (38). Since the number of
cells in the organism is limited, the formation of protective
diversity should be based on the relation between the general
diversity and the size of each antigen-specific clone. This idea is
described in the Protecton Theory (39), wherein the protecton
is the minimum number of cells of certain antigen specificity
required for the timely provision of the sufficient number of
effector cells per the unit of the body volume for the efficient
protection against antigens (10, 39). Thus, knowledge of the
clonal organization of T- and B-cell repertoires is important for
the understanding of consistencies in the immune response in
normal and pathological conditions, as well as for the
identification of the peculiarities of the immune equilibrium
maintenance in different conditions.
ORGANIZATION OF THE HUMAN
T-CELL REPERTOIRE

Recently, next-generation sequencing technologies and
mathematic analysis have expanded the understanding of the
clonal organization of the TCR repertoire in humans. It has been
shown that the distribution of T-cell clones in the general TCR
repertoire complies with the general consistency pattern within
the human population and is not age-dependent (22, 40).
Frontiers in Immunology | www.frontiersin.org 3
The distribution of clones in the descending rank order (r)
depending on the size of a clone (C) is subject to power-law
distribution, i.e. the rank (r) of the largest clones correlates with
their size (C) according to the power-law distribution r~C-a,
wherein a is a scaling exponent (22, 41). The size of a clone is
inversely proportional to its rank, i.e. the larger the clone, the
lower is its rank, and vice versa. This dependence is described by
a power-law function y = kC-a (40, 41). Empiric calculation of
a is associated with a number of difficulties and depends on the
used methods of sequencing and mathematical analysis. Thus,
a recent study on the frequency distribution of T-cell clones
of two independent cohorts showed a power-law relationship
between the rank and size of the largest clones. At the same time,
in both cohorts, a was almost similar and was equal to ~1.2 (22).
The character of distribution of T-cell clones was similar in
people of different ages. Thus, the general TCR repertoire in
different people is characterized by a similar frequency distribution
of T-cell clones regardless of age and is represented by a small
number of dominant clones and a large variety of minor clones,
which is consistent with the general type of Pareto distribution
(Figure 1) (42).

A significant part of dominant clones in healthy people
comprises zero insertion clones that are formed before birth and
preserve in high abundance for several years with a tendency to a
slight decrease throughout life (22, 24). At the same time, these
clones provide the basis for public TCR repertoire in different
individuals, which raises the issue of the presence of the inborn
evolutionary determined set of T-cell clones within the adaptive
immunity (11, 22, 24). If these clones exert certain functions or if
they are a by-product of the formation of the TCR repertoire in the
fetal period, it should be the subject of further studies.

Meier et al. (40) studied the frequency distribution of the
TCRb sequences at each level of the combination of gene
segments (DJ, VDJ, and VDJ + NI) and revealed a fractal
organization of the TCR repertoire and self-similarity of the
frequency distribution of unique TCR clones (Figure 2) (40).
An earlier study revealed the fractal organization of CD8+ TCR
FIGURE 1 | Rank–size frequency distribution follows a power-law
distribution. This graph demonstrates the ranking of TCR clones by sizes. To
the left, there are few dominant clones (red), and to the right, there is the long
tail reflecting a multitude of minor clones (green).
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repertoires (43). At the same time, persons that are similar by
human leukocyte antigens (HLAs) have a similar organization of
TCR repertoires, which confirms the involvement of MHC genes
in the formation of self-similarity pattern with a strict hierarchy
of dominant and minor clones in the individual TCR
repertoire (40).

Besides, this study showed that the development of the “graft-
versus-host disease” (GVHD) in recipients after transplantation
of hematopoietic stem cells (HSCs) is associated with the changes
in the clonal organization of the TCR repertoire and change of
dominant clones within the first four ranks in comparison with
the respective donors (40). Probably, such a shift in dominant
clones is associated with incomplete identity by MHC genes
between donors and recipients. GVHD is based on the
incompliance between the landscapes of self-antigen presentation,
which leads to the activation and expansion of minor self-reactive
clones in recipients with GVHD (40, 44). This can be associated not
only with quantitative changes in the clonal organization of the
TCR repertoire but also with the plasticity of some subpopulations
of T cells and the respective functional changes within these
subpopulations (45, 46). In particular, the transition of some
Tregs to some subpopulations of the effector cells or polarization
Frontiers in Immunology | www.frontiersin.org 4
of Th0 into Th17 cells in HSC recipients can lead to the
development of GVHD (46, 47).

Transdifferentiation between the different T-cell subpopulations
is well-known. However, not long ago, it was established that
functionally different subpopulations of CD4+ cells expressed
TCRs with different physicochemical properties and had different
profiles of VDJ recombination, which affected their tendency to
differentiate into each other (48). In their study, Kasatskaya et al.
(48) focused on some characteristics of the CDR3 region in different
subpopulations of T cells. The authors of that study evaluated
different properties of amino acids in the CDR3 loop, the
hydrophobicity of the loop (Kidera factor 4) (49), the length of
the CDR3 loop, the predicted averaged binding energy of the TCR-
pMHC (50, 51), and some other parameters that generally influence
the affinity of Ag-specific TCR-pMHC interaction and the degree of
TCR cross-reactivity (48). The study of these parameters revealed
the differences in the physicochemical properties of the CDR3 TCR
loop at the level of different subpopulations of T cells. It was shown
that Treg cells have TCRs with high cross-reactivity, while follicular
helpers Tfh have TCRs with minimal cross-reactivity (48). TCRs of
Treg cells exert relatively higher affinity to self-antigens, bind
cognate pMHC ligands less specifically and have lower averaged
FIGURE 2 | Fractal organization of T-cell repertoire. A fractal is a set with self-similarity (an object that exactly or approximately coincides with a part of itself, similar
to itself on any magnification).
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energy of TCR-pMHC binding than Tfh cells that bind cognate
pMHC ligands with high affinity and have a higher energy of TCR-
pMHC binding, which agrees with previous data (52–54). At the
same time, such differences were also observed in other
subpopulations: amino acidic characteristics of the CDR3 loop
among the populations Th1/Th1-17/Th17 were similar to the
characteristics of Tfh, while among populations Th22/Th2a/Th2,
there was a similarity with Treg cells (48). Besides, different
subpopulations of T cells were distinguished by a diversity of
TCR repertoires. The highest diversity was observed in the
subpopulation Tfh. A relatively high TCR diversity was observed
in the subpopulations Th2, Th17, Th1, and Treg, while
subpopulations Th22 and Th2a had signs of oligoclonal
expansion, which indicated Ag-specific proliferation in these
subpopulations (48). The physicochemical properties of TCRs are
different in naïve TCR T cells and memory T cells, which was
shown for populations of CD4+ and CD8+ lymphocytes. At the
same time, for naïve nTreg and memory mTreg cells, such
differences were not revealed (48, 55). Thus, the functional
Frontiers in Immunology | www.frontiersin.org 5
specialization of T cells depends on the structure of the CDR3
region and could be determined by the interaction of TCRs with the
respective diversity of pMHC epitopes for each T-cell population
(Figure 3). A paired analysis of the overlap of CDR3b diversity of
different subpopulations of T cells revealed certain consistency in
the transdifferentiation in healthy donors. A high plasticity was
revealed between the functionally close populations Th17/Th22,
Th17/Th2, Th22/Th2, Th2/Th2a. Lower plasticity was revealed
between other populations Th17/Treg and Th1/Th17. At the
same time, Tfh and Treg subpopulations were characterized by a
high discreteness and had few CDR3b sequences common with
other subpopulations of T cells (Figure 3) (48). Such data were first
obtained for healthy donors and agreed with the data obtained in
vitro or on animal models (38, 56, 57). Taking into account that the
functional specialization of the subpopulation of T cells could be
defined by specific interaction between TCR-pMHC and
physicochemical properties of the CDR3 loop, the changes in the
presentation landscape of antigens can lead to changes in the clonal
structure of certain subpopulations of T cells. In some cases, such
FIGURE 3 | The landscape of presentation shapes different CD4+ subpopulations according to their CDR3 physicochemical properties and specificity. Possible
shifts in pMHC spectra can contribute to transdifferentiation between some subpopulations of CD4+ T cells. The width of the arrows reflects the number of common
TCR clonotypes between subpopulations.
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transitions of Ag-specific clones between subpopulations of T cells
are involved in pathological processes. For example, an important
role of a transition Treg ↔ Th17 was established in patients with
different autoimmune conditions, graft rejection, and oncologic
processes (58–63). Besides, plasticity Th17 ! Th1 was revealed in
patients with juvenile idiopathic arthritis and Crohn’s disease. In
patients with allergic conditions and bronchial asthma, an
enhanced transdifferentiation Th17 ! Th2 was observed (64,
65). An imbalance between the subpopulations Th1/Th2 explains
the pathogenesis of allergic and some oncologic diseases. However,
in this case, an incorrect functional specialization of certain Ag-
specific clones in the ontogenesis resulting from the changes in the
conditions of presentation of the respective antigens is observed
rather than a transdifferentiation (66–68).

Similar to CD4+ lymphocytes, an imbalance between effector
CD8+ Teff and regulatory CD8+ Treg cells is significant for the
maintenance of the immune equilibrium. Along with humoral
factors of suppression, CD8+ Treg cells can exert Ag-specific
suppressive activity mediated by the interaction with antigen-
representing cells (69). Shifts in the represented antigen spectra
and changes of conditions of their presentation can contribute to
the irrelevant CD8+ Teff ↔ CD8+ Treg transdifferentiation (70).
It was shown that such plasticity between subpopulations of
CD8+ lymphocytes significantly contributed to the pathogenesis
of different autoimmune and infectious diseases and oncological
processes and took part in the graft rejections (69, 71–73). Still,
despite the present achievements in the understanding of the
organization of the T-cell repertoire, the identification of certain
clones involved in the pathogenesis of different diseases attracts
the attention of scientists in modern immunology and opens
perspectives for personalized medicine.
ORGANIZATION OF THE HUMAN
B-CELL REPERTOIRE

The immunoglobulin gene rearrangement of B cell in the bone
marrow results in the formation of a highly diverse repertoire of
naïve (antigen-inexperienced) B cells that get into the peripheral
circulation (74, 75). Similar to T cells, this process occurs under the
influence of a complex of RAG, TdT, and a number of enzymes.
Their activation induces V(D)J recombination and P- and N-
insertions in the CDR3 loop of naive B cells (75–78). Further
diversification of the BCR repertoire is associated with SHMs that
occur in a cell under the influence of activation-induced deaminase
(AID) in the peripheral lymph nodes with a cognate antigen (79,
80). This process underlies the affinity maturation of antibodies and
targets an increase in the specificity of antigen recognition (75).
Similar to T cells, the frequency distribution of clones in the general
repertoire of B cells complies with power-law distribution
(Figure 1) and agrees with the general biological type of Pareto
distribution (81, 82). In other words, the BCR repertoire contains a
relatively low number of dominant clones and an extremely high
diversity of minor clones that form a long tail of distribution.
Besides, as for T cells, the repertoires of naïve B cells are
characterized by a tree-like fractal organization (Figure 4) (82, 83).
Frontiers in Immunology | www.frontiersin.org 6
However, the architecture of the BCR repertoire has some
peculiarities that are closely associated with the process of SHM
and the formation of memory plasma cells. The diversity of the
repertoire of these cells is significantly lower than the diversity of
naïve B cells (84), which is associated with the history of antigen
challenges that an organism faces throughout its life. At the same
time, a tree-like structure of the repertoire of naïve B cells, which
is generated due to VDJ recombination and nucleotide
insertions, is replaced by a star-like structure for memory B
cells and plasma cells, which is associated with the process of
SHM (Figure 4) (82, 85). Such star-like structures reflect the
process of activation of one or several B-cell clones closed by
specificity. In the course of further expansion and SHMs, these
B-cell clones form a set of antigen-experienced B-cell clone
neighboring in the common space of CDR3 sequences. Part of
these cells later becomes plasma cells. In this case, for the
evaluation of similarity/closeness of the clones, Levenshtein
distances were used (82, 86). Finally, the activity of AID is
capable of mediating the shift of heavy chains from IgM/IgD
to IgG, IgA, or IgE during SHM (74). It should be noted that
despite the high personalization of BCR repertoires, different
individuals have a similar organization of BCR and antigen
repertoires (82, 87), which indicates general principles of the
formation of BCRs and Ig diversity in different individuals. At
the same time, the diversity of naïve B cells is affected by self-
antigens and the repertoire of naïve B cells is limited by positive
and negative selection (35, 36). The diversity of plasma cells
directly depends on the diversity of antigen challenges within the
life and depends on the functional activity of T cells, which is
confirmed by a significant decrease in SHM in T cell-deficient
mice (36, 87).

It is well-known that B cells play a central role in humoral
immunity as antibody producers, can express some cytokines,
and act as antigen-presenting cells (88–90). During the past
years, many studies have been dedicated to the subpopulation of
B cells with regulatory functions that were called B regulatory
cells (Bregs) (91–94). Bregs exert their functions due to the
production of anti-inflammatory cytokines, inhibit different
populations of immune cells, and can induce the formation of
Tregs from effector T cells acting as tolerogenic antigen-
presenting cells, which do not exclude the Ag-specific effect of
Bregs (91, 95, 96). Similar to T cells, irrelevant induction of Bregs
and an imbalance between effector and regulatory B cells play a
significant role in the pathogenesis of different autoimmune and
oncologic processes, in patients with chronic infections and graft
rejections (97–101). However, in this case, a transition Beff ↔
Breg could be primarily associated with the peculiarities of the
microenvironment and only indirectly mediated by the shifts of
spectra of the presented antigens and the conditions of their
presentations via T cells (91, 102–104). Still, in some cases, the
induction and functional activity of Bregs depend on the
recognition of cognate antigens by Breg cells; and the
suppression activity of Bregs can be mediated by direct B–T
cellular interaction, which confirms the possibility of the
Ag-specific effect of Bregs (105, 106). Thus, the conditions of
the microenvironment and spectra of B-dependent antigens in
July 2021 | Volume 12 | Article 706136
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the microenvironment of B cells influence their functional
specialization; and an irrelevant transdifferentiation Beff ↔ Breg
can underlie the pathogenesis of different pathologies.

An extremely high diversity of Ag-recognizing receptors of T
and B cells provides the formation of qualitatively new properties
that distinguish adaptive immunity from innate. The most
important of them is the specificity of antigen recognition.
Another important property is universality, i.e. the adaptive
immune system can potentially specifically recognize any
antigen of all possibilities. Redundancy—the same antigen can
be recognized by different Ag-recognizing receptors due to cross-
reactivity and the fact that one antigen can have different
epitopes. Clones that are close by their specificity can duplicate
and replace each other during the formation of the immune
response. This underlies the robustness of adaptive immunity. In
general, these properties provide the reliability of the immune
system functioning and reflect the qualitative–quantitative
transition, when a high diversity of Ag-recognizing receptors
provides a qualitatively new level of the immune system
functioning. However, changes in the conditions of antigen
presentation can lead to situations when a disturbance of
functional specialization of some subpopulations of T and B
cells occurs, which can underlie the pathogenesis of different
pathologies and be the main factor in the disturbances of the
adaptive immunity.
Frontiers in Immunology | www.frontiersin.org 7
PRESENTATION LANDSCAPE

Rearrangement of a genome underlies a colossal diversity of
Ag-recognizing receptors (17, 75, 107). However, the final
formation of naïve repertoires of T and B cells is observed
during the process of positive, and then, negative selection and
depends on the diversity of the antigens presented in the thymus
(108, 109) and the diversity of self-antigens in bone marrow (110,
111). In the past years, more data have been accumulated that
confirm the influence of allele variants of MHC on the formation
of individual TCR landscape (25–27, 112, 113).
T-CELL PRESENTATION LANDSCAPE

The significance of MHC restriction for the development of T cells
is well-known and can be illustrated by a recent study. It showed
that during positive and negative selection, a selection of T cells
with certain properties of the CDR3 loop occurred (114). Thus,
during the process of positive selection, MHC restriction provides
the selection of TCRs with the length of CDR3 (8–13 amino acid
residues) and limits the selection of TCRs with positively charged
and hydrophobic amine acid residues in the CDR3 loop. During
the process of negative selection, it prevents the selection of TCRs
with the residues of cysteine in the Ag-binding regions of the CDR3
FIGURE 4 | Model of the organization of the B-cell repertoire. Tree-like structures generated by VDJ recombination and nucleotide additions/deletions and a star-
like structure for plasma cells likely generated by somatic hypermutation. The uniform distribution of naive B cells in the similarity layer schematically reflects a
homogeneously interconnected network (by Levenshtein distances) of these cells, in contrast to plasma cells, that form highly interconnected subnetworks of similar
clones. The number of V, D, and J segments is indicated for the IgH chain.
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loop (114). Probably, in this case, the selection of TCRs is primarily
influenced by the physicochemical properties of MHC molecules
and not certain epitopes in their composition. It should be noted
that MHC restriction does not lead to the selection of TCRs with
certain sequences of amino acids in the CDR3 loop and preserves
high randomness of amino acid sequences in the CDR3 loop and
sufficient diversity of TCRs for the recognition of the variety of
potential antigens (9, 114, 115).

Apart from the common physicochemical properties of MHC
molecules, an important role in the formation of the naïve
repertoire of TCRs is played by epitopes presented in the
thymus as a part of MHC molecules. The formation of the
central auto-tolerance occurs due to the independent activity of
transcriptional factors AIRE and Fezf2 that induce the expression
of different tissue-restricted antigens by medullary thymic
epithelial cells (mTECs) and thymic B cells (AIRE), which
provide the elimination of self-reactive T cells during negative
selection (109, 116–119). At the same time, some T cells, that exert
a relatively high affinity to self-antigens, become Treg cells (38,
117). The affinity of TCR Treg cells to self-antigens is 100-fold
lower than in the self-reactive T cells that undergo negative
selection (38, 120). It was established that the transcriptional
factors AIRE and Fezf2 provided the expression of nearly 60%
of tissue-restricted antigens presented in the thymus (116). It is
suggested that other antigens are presented in the thymus by
different subpopulations of dendritic cells (DCs) (121). Presently,
at least three DC subpopulations are known to provide the
presentation of antigens in the thymus: CD8a+, Sirpa+, and
B220+ plasmacytoid dendritic cell (pDCs). CD8a+ DCs occupy
~50% of the pool of thymic DCs (121), develop from the
precursors in the thymus (122), and present tissue-restricted
antigens, obtained from mTECs during trogocytosis or uptake of
extracellular matrix, to T cells (123). Sirpa+ DCs occupy ~20% of
the pool of thymic DCs, are found primarily in the
corticomedullary perivascular spaces (124), and present antigens
taken up from the bloodstream or acquired in the peripheral
tissues before the migration to the thymus (121). The remaining
~30% of the pool of thymic DCs represent B220+ pDCs and
present antigens obtained primarily on the periphery before the
migration to the thymus (121). The presentation of self-antigens
by the thymic DCs provides a negative selection of self-reactive
CD4+ and CD8+ cells and probably contributes to the formation of
Treg cells. However, precise mechanisms of this process are
understudied (121, 125, 126). It is suggested that the migration
of DCs from the periphery and the pathologic migration of B cells
to the thymus (127) create the risks of inadequate formation of the
central tolerance, for example, to the tumor or infectious antigens.
However, this assumption requires experimental confirmation.
Besides, it should be noted that the mechanisms of central
tolerance do not exert absolute efficiency, and some self-reactive
T cells can get to the peripheral bloodstream, which should be
suppressed by Treg cells in normal conditions (54). This creates
additional risks for the development of autoimmune diseases.

Thus, as a result of the described process, two varieties of T cells
are formed that leave the thymus: T cells with relatively high
affinity to self-antigens (Tregs) and T cells with low affinity to self-
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antigens (future anti-pathogen T cells) (54). After leaving the
thymus, recent thymic emigrants (RTEs) migrate to the peripheral
lymph nodes. During the maturation under the influence of the
microenvironmental factors, they form a variety of mature naïve T
cells (128). It is suggested that on the periphery, RTEs are subject
to additional selection that is provided by MHC molecules in the
peripheral lymph nodes. Only some RTEs with certain
physicochemical properties of the CDR3 loop become mature
naïve T cells (128). Probably, this stage of peripheral selection is
necessary for the culling of potentially self-reactive T cells that
manage to avoid negative selection in the thymus and deletion of T
cells that cannot recognize effectively MHC molecules (48, 55,
128). At the same time, it is suggested that Treg cells do not
undergo this stage of additional peripheral selection, which is
confirmed by the lack of differences in physicochemical properties
of the CDR3 loop between immature and mature subpopulations
of Treg cells (48). Thus, the presentation landscape on the
periphery provides an additional stage of the selection of CD4+

and CD8+ cells. As a result, a formation of the repertoire of mature
naïve T cells occurs that will further go through a functional
specialization according to their physicochemical properties and
the specificity of their TCRs and form the main subpopulations of
Th lymphocytes (48, 55, 129–131). It is evident that the changes in
the landscape of presentation of antigens associated with different
antigen challenges in the ontogenesis will influence the further
formation of the TCR repertoire and clonal organization of
different subpopulations of T cells in a certain individual. At the
same time, it should be noted that the personalization of TCR
repertoires of CD4+ and CD8+ is significantly provided by the
individual set of allele variants of MHC genes (26, 31–33, 112).
GENETIC VARIANTS OF MHC
MOLECULES INFLUENCE THE
LANDSCAPE OF RECOGNITION

During the past decade, a lot of attention has been paid to the
study of the influence of MHC allele variants on the repertoire of
TCRs in different individuals. Associations were revealed
between MHC genetic variability and the profiles of expression
of TCR V genes (132). It was established that such associations
were provided not only by the contact of TCRs with a peptide in
the MHC complex but also by a physical contact between V-
regions of the TCR b-chain and complementary regions of MHC
molecules (132, 133), which indicated a direct influence of MHC
genotypes on the formation of individual TCR repertoires. This
agrees with the assumption of Niels Jerne on the co-evolution of
MHC and TCR genes for a better predisposition to interact with
each other (134). Still, the influence of the MHC genotype is
primarily observed on the CD8+ lymphocytes. This is explained
by a closer contact between TCRs of CD8+ cells and MHC-I
molecules, while the regions CDR1 and CDR2 in TCRs of CD4+

cells have a weaker contact with complementary regions of the
MHC-II molecules, and the region CDR3 primarily contacts with
a peptide in the MHC-II complex (133, 135). This could provide
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the lack of influence of individual polymorphism of MHC-II
genes on the diversity of the CD4+ repertoire, while a higher
polymorphism of the MHC-I gene in heterozygotes is associated
with a higher diversity of CD8+ cells (27). Still, a recent study on
animal models showed a direct influence of MHC-II allele
variants on the diversity and clonal organization of the CD4+

repertoire, including Treg cells (112). This confirms the
hypothesis that allele variants of MHC-I and MHC-II play an
important role in the formation of TCR repertoires of CD4+ and
CD8+, respectively. Besides, it was shown that mutations in the
conservative regions of MHC-I and MHC-II that contact with
the complementary regions of TCRs influence the profiles of
expression of TRAV and TRBV in the CD4+ and CD8+

repertoires and change their clonal organization (136, 137).
Thus, it is evident that the individual HLA phenotype defines

epitope spectra that could be presented with the highest possibility,
i.e. HLA phenotype is responsible for the formation of
immunopeptidomes of MHC-I and MHC-II-associated antigens
(138, 139). In turn, this affects the selection of T cells in the thymus,
plays an important role in the formation of individual TCR
repertoires on the periphery, and determines the individualization
of the immune response. Such association between HLA genes and
TCR repertoires reflects a close functional and phylogenetic
association between innate and adaptive immunity.
POTENTIAL RISKS OF IMMUNE
DISEQUILIBRIUM

The equilibrium in the immune system is achieved due to fine
coordination between the innate and adaptive branches of immunity.
Potential risks of the immune disequilibrium can be associated with
different genetic factors, all possible antigenic challenges, and the
influence of unfavorable factors of the environment.

It is well-known that there is a genetic predisposition to auto-
immune diseases (ADs). It is hypothesized that the influence of
different HLA variants and other genes associated with ADs in
combination with epigenetic factors and unfavorable exogenous
conditions contributes to the development of ADs (140).
However, the presence of genetic predisposition does not
always lead to the realization of the risk of ADs. Probably, an
additional trigger is required (long-term lymphopenia or some
immune regulatory disturbance) (141, 142). During the past two
decades, the role of homeostatic proliferation in the development
of ADs has been widely discussed (54, 143–147). This is a
physiological process of the quantitative restoration of the
peripheral pool of T cells after lymphopenia of any etiology by
means of the antigen-specific proliferation of lymphocytes under
the influence of IL-7 and IL-15 that could acquire pathological
traits depending on the depth of lymphopenia (54, 148, 149). It
was shown that this process could result in the selection of
potentially self-reactive clones of T cells due to the competition
for the contact of TCRs with self-pMHC, in a decrease in the
diversity of the general TCR repertoire, and in a decrease of
functional activity of Treg cells because of the deficiency of IL-2
in the conditions of lymphopenia (54, 150–153). Besides, a
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disturbance of the functional specialization of Treg cells and
their conversion into pathogenic Th lymphocytes can occur
(154). Some studies showed that Treg cells could not suppress
the proliferation of T cells that received a strong TCR signal
under the influence of IL-7 and IL-15, which was important in
the context of homeostatic proliferation when a strong TCR
signal gives advantages to T cells in the competition for the
factors of survival (155, 156). This fact is interesting taking into
account that AD-associated variants of MHCs contribute to a
better presentation of antigens associated with the disease, and
thus, homeostatic proliferation can contribute to the expansion
of self-reactive T-clones in people with genetic predisposition
(157, 158). Thus, a shift of spectra of the presented antigens
towards self-antigens that are provided by AD-associated HLA
variants and mediated via homeostatic proliferation of the
changes in the clonal organization of TCR repertoires can
underlie the disturbances in the immune equilibrium in
patients with ADs.

Homeostatic proliferation can lead to a favorable antitumor
immune response (159, 160). This response is formed as a result
of polyclonal homeostatic expansion in the lymph nodes and is
characterized by CD8+-cell cytotoxicity, an increase in the
concentration of IFNg, and the formation of memory cells
(159). Besides, some data indicate that the shift in focus of
homeostatic proliferation from CD8+ to CD4+ cells can be one of
the causes of the development of ADs (159, 161). At the same
time, the homeostatic proliferation of B cells does not lead to
negative effects because it is exerted via an Ag-independent
pathway and does not influence the diversity and clonal
organization of the BCR repertoire (162, 163).

Probably, homeostatic proliferation can also contribute to a
decrease in the general diversity of TCRs and the TCR diversity
of naïve T cells with age (23), which negatively affects the
protective function of the immune system against infections or
other antigenic challenges in senior age (23, 164). It was shown
that increased sensitivity to viral and oncological disease was
associated with a decrease in the diversity of TCRs and connected
with the formation of holes in the TCR repertoires (164–167).

The conditions of the microenvironment can significantly
affect the functional activity of T and B cells causing their
activation or leading to anergy and inducing the formation of
Treg and Breg cells. An inflammatory microenvironment and
co-stimulating signals that are transmitted during contact with
the neighboring cells can lead to non-specific activation of
different lymphocyte clones due to a so-called bystander effect
(168). Since self-antigens can be present in the site of
inflammation or immune response to an infection and any
other antigen, the bystander effect can potentially cause
unfavorable activation of self-reactive clones and increase the
risk of ADs (168–171). Probably, a functional modulation of the
TCR activation threshold due to the factors of co-stimulation
and inflammatory microenvironment can contribute to the non-
specific activation of T cells (172, 173). It was established that as a
result of the bystander effect, a disturbance in the functional
specialization of different subpopulations of lymphocytes could
occur, for example, a transition of Treg cells into pathogenic Th
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lymphocytes, which could be also associated with the risk of the
development of ADs (174). In other words, the bystander effect
can lead to irrelevant Ag-independent activation of self-reactive
lymphocytes and their expansion changing the structural
organization of TCR and BCR repertoires at the level of
separate clones and can contribute to the development of ADs.

Apart from the activation of lymphocytes, the factors of the
microenvironment can cause anergy or even induce lymphocytes
with regulatory functions by the Ag-independent bystander
suppression. Similar effects are observed in the microenvironment
of tumors that express some suppressor factors forming a
tolerogenic medium and avoiding the immune surveillance (175,
176). At the same time, in the microenvironment of the tumor, a
population of tolerogenic dendrite cells is formed. These cells are
responsible for the formation of tumor-specific tolerance that is
provided by T and B lymphocytes with regulatory functions
(177–180). Besides, there is a possibility of the formation of
central tolerance due to a migration of some dendrite cells loaded
with tumor antigens to the thymus, wherein they can potentially be
involved in the process of negative selection of T cells (121,
124–126). However, this assumption is hypothetical, and this
issue requires additional research. Thus, the changes in the
conditions of presentation of tumor antigens can shift the
immune response from the immunogenic to tolerogenic and
result in the respective changes in the clonal organization of
T- and B-cell repertoires (181, 182). Besides, it changes the
functional specialization of different lymphocyte populations
providing the progression of the tumor growth.
CONCLUSION

The maintenance of the equilibrium in the immune system is an
intricate dynamic process associated with constant changes in
Frontiers in Immunology | www.frontiersin.org 10
the landscapes of presentation and recognition, wherein genetic
HLA variants play an important role, influence the formation of
TCR repertoires, and determine the individualization of the
immune response. In general, the disturbance of the immune
equilibrium (autoimmune, infectious, or oncogenic process) is
associated with the changes in the conditions of presentation and
the spectra of the presented antigens, as well as with the
transformation of T- and B-cell repertoires and a shift in the
functional specialization of some T and B cells. In this case,
the most important role is played by the genetic background and
the influence of external environmental factors.

It is suggested that the study of genetic HLA variants and
immunopeptidomes associated with a disease in a certain individual
and the identification of certain clones of T and B cells involved in
the pathogenesis of the disease will allow using personalized
approaches to the therapy of different pathologies based on a
targeted, specific effect on certain pathology mechanisms.
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